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Selecting among three-mode principal
component models of different types and
complexities: A numerical convex hull based
method

Eva Ceulemans1* and Henk A. L. Kiers2

1Katholieke Universiteit Leuven, Belgium
2Rijksuniversiteit Groningen, The Netherlands

Several three-mode principal component models can be considered for the modelling

of three-way, three-mode data, including the Candecomp/Parafac, Tucker3, Tucker2,

and Tucker1 models. The following question then may be raised: given a specific data

set, which of these models should be selected, and at what complexity (i.e. with how

many components)? We address this question by proposing a numerical model

selection heuristic based on a convex hull. Simulation results show that this heuristic

performs almost perfectly, except for Tucker3 data arrays with at least one small mode

and a relatively large amount of error.

1. Introduction

The family of three-mode principal component models is a collection of methods for

analysing three-way, three-mode data, for instance, scores of a number of participants

on a number of variables, measured in a number of conditions. In particular, the family

of three-mode principal component models consists of the Candecomp/Parafac

(CP), Tucker3 (T3), Tucker2 (T2), and Tucker1 (T1) models (Carroll & Chang, 1970;

Harshman, 1970; Kroonenberg, 1983; Kroonenberg & De Leeuw, 1980; Tucker, 1966).

Being generalizations of standard two-mode principal component analysis (PCA), these

models summarize the main information in the data by reducing up to three modes of
the data to a few components and defining a linking structure between the components

of the reduced modes and, if applicable, the elements of the modes not reduced.

The formal relations among (most of) these models have been discussed by Kiers (1991)

and Kroonenberg (1983).
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Considering that several models have been developed for the same type of data, the

question may be raised as to which type of three-mode principal component model at

what complexity (i.e. with howmany components) yields the most useful description of

a given data set. Hitherto, this complex model selection problem has almost always been

addressed by first choosing a particular model type on the basis of substantive

arguments and then selecting among solutions of the chosen model type with the aid of
numerical model selection heuristics developed for the model type in question – for

example, the CONCORDIA method for selecting among CP solutions of different

complexities (Bro & Kiers, 2003) and the DIFFIT method for solving the T3 model

selection problem (Kiers & der Kinderen, 2003; Timmerman & Kiers, 2000).

A more systematic approach for solving the three-mode principal component model

selection problem may be the use of the visual inspection based method proposed by

Kroonenberg and Van der Voort (1987), Kroonenberg and Oort (2003), and Murakami

and Kroonenberg (2003). Following the seminal work of Mallows (1973), Verbeek

(1984), and Fowlkes, Freeny, and Landwehr (1988), these authors have suggested
handling similarly complex model selection problems by visually inspecting scree-like

plots with a measure of the badness of fit (e.g. residual sum of squares) of the different

solutions on the y-axis and a measure of the degrees of freedom associated with each

solution on the x-axis. In particular, they argue that one should select a model on or

close to an elbow in the lower boundary of the convex hull of this scree-like plot,

because these ‘hull’ solutions have the best badness-of-fit/degrees-of-freedom balance.

In the present paper, building on the visual inspection based method, we propose to

solve the three-mode principal component model selection problem by means of a

numerical heuristic. In particular, we propose and evaluate a numerical procedure for
assessing the boundary of the convex hull in scree-like plots as well as the elbow in the

boundary. In contrast to the visual inspection based procedure, this numerical model

selection heuristic can be programmed, which is important for two reasons. First, in

practice this will help people with the often difficult and subjective task of choosing a

model (although it should be noted that subjective aspects in this choice will and should

always remain). Second, it allows for a systematic test of the validity of the numerical

model selection procedure: applying a fully programmed model selection heuristic to

data constructed in a simulation study, we can assess how often the procedure actually

indicates the underlying model correctly. Such a simulation study will be reported in this
paper. Furthermore, our numerical procedure differs slightly from the visual inspection

method in two respects. First, we use goodness-of-fit rather than badness-of-fit measures,

with, in some cases, these goodness-of-fit measures being approximate; note that the use

of goodness-of-fit measures implies that we are interested in the higher rather than the

lower boundary of the convex hull. Second, we use numbers of free parameters rather

than degrees of freedom; note that Weesie and Van Houwelingen (1983) pointed out

that for the T3 model the degrees of freedom equal the number of observations in the

data minus the number of free parameters.

The rest of this paper is organized as follows. Section 2 describes the family of three-
mode principal component models. In Section 3 the numerical convex hull based

model selection heuristic is proposed. In particular, it is explained in detail how one

may obtain approximate goodness-of-fit measures for some of the models and how the

number of free parameters is defined. Furthermore, a description is given of how to find

the higher boundary of the convex hull as well as an elbow in it. In Section 4 the

proposed model selection heuristic is illustrated by applying it to an empirical data set.

In Section 5 the performance of this heuristic is evaluated in an extensive simulation
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study. Section 6 contains a theoretical and empirical comparison of the numerical

convex hull based heuristic and Timmerman and Kiers’s (2000) DIFFIT method for

solving the T3 model selection problem. Section 7 contains some concluding remarks.

2. The family of three-mode principal component models

2.1. Models

Each three-mode principal component model approximates an I £ J £ K participants by

variables by conditions data array X by a model array M of the same size. Each model

further includes a decomposition of M into (a) up to three component matrices

A (I £ P), B (J £ Q), and C (K £ R) that respectively reduce the participants, variables,
and conditions to P, Q, and R components, and (b) a three-way, three-mode core array G

that defines a linking structure among the components of the reduced modes and, if

applicable, the elements of the modes not reduced. In this paper, eight different types of

three-mode principal component model are considered, which are all represented in

Figure 1. In the following paragraphs we will discuss their distinctive features.

2.1.1. The three types of T1 model

A T1 model reduces only one of the three modes of M to components. Hence, three

different types of T1 model can be distinguished: type Awhich reduces the participants,

type B which reduces the variables, and type C which reduces the conditions.
Formally, the decomposition rules of the T1A, T1B, and T1C models can be stated as

follows:

T1A : mijk ¼
X

P

p¼1

aipgpjk; ð1Þ

T1B : mijk ¼
X

Q

q¼1

bjqgiqk; ð2Þ

Figure 1. Interrelations of the eight types of three-mode principal component model.
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and

T1C : mijk ¼
X

R

r¼1

ckrgijr; ð3Þ

with P, Q, and R indicating the complexity, that is, the number of components of the

respective models. Note that a T1A model of complexity P is equivalent to a PCA

model with P components for the matricized I £ JK model array. The same holds for

a T1B model of complexity Q (or a T1C model of complexity R) in being equivalent

to a PCA model with Q (or R) components for the matricized J £ KI (or K £ IJ)

model array.

2.1.2. The three types of T2 model

A T2 model reduces two of the three modes of M to components, implying that three

different types of T2 model can be considered: type AB which reduces the participants

and the variables, type AC which reduces the participants and the conditions, and type

BC which reduces the variables and the conditions. The decomposition rules of these

T2AB, T2AC, and T2BC models are given by

T2AB : mijk ¼
X

P

p¼1

X

Q

q¼1

aipbjqgpqk; ð4Þ

T2AC : mijk ¼
X

P

p¼1

X

R

r¼1

aipckrgpjr; ð5Þ

and

T2BC : mijk ¼
X

Q

q¼1

X

R

r¼1

bjqckrgiqr; ð6Þ

with (P,Q), (P,R), and (Q,R) representing the complexity of the respective models.

2.1.3. The T3 model

A T3 model reduces each of the three modes of M to components. Formally, the T3

decomposition rule reads

mijk ¼
X

P

p¼1

X

Q

q¼1

X

R

r¼1

aipbjqckrgpqr; ð7Þ

with (P,Q,R) denoting the complexity of the model.

2.1.4. The CP model

A CP model summarizes each of the three modes of M by the same number of

components and restricts the core array G to a unit superdiagonal array (i.e. gpqr ¼ 1 if

and only if p ¼ q ¼ r), implying a one-to-one correspondence among the respective

components. Hence, the CP decomposition rule can be stated as follows:
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mijk ¼
X

R

r¼1

airbjrckr; ð8Þ

where R denotes the complexity of the model.

From the model descriptions above, one may conclude that some of the three-mode

principal component models are interrelated in that some models are more restrictive or

constrained versions of other models. All such interrelations among the models are
graphically represented in Figure 1, which is to be read as follows. Model 1 is less

restrictive than or as restrictive as model 2 if and only if a downward path of lines exists

from model 1 to model 2. As such, one may, for instance, conclude that a T3 model of

complexity (P, Q,R) is a constrained version of, amongst others, a T2BC model of

complexity (Q,R) and a T1A model of complexity P. Similarly, one may conclude that a

T1A model of complexity P and a T2BC model of complexity (Q,R) are not interrelated.

For a more detailed description of the interrelations among the models, refer to Kiers

(1991) and Kroonenberg (1983).

2.2. Fitting the models to data

To fit the eight types of three-mode principal component model to a given data array X,

one may apply the standard two-mode PCA approach to the appropriately matricized

data array for obtaining T1 solutions, and use the alternating least squares T2, T3, and CP

algorithms for obtaining T2, T3, and CP solutions (for details of the T2 and T3

algorithms, see Kroonenberg & De Leeuw, 1980; for details about the CP algorithm, see

Carroll & Chang, 1970; Harshman, 1970). Given a specific complexity and a data arrayX,
these algorithms look for a model array M that minimizes

X

I

i¼1

X

J

j¼1

X

K

k¼1

ðxijk 2mijkÞ
2; ð9Þ

and that can be further decomposed according to a three-mode principal component

model of the specified type and complexity. Subsequently, the goodness-of-fit value f of

the obtained solution can be calculated as

f ¼

PI
i¼1

PJ
j¼1

PK
k¼1 m

2
ijk

PI
i¼1

PJ
j¼1

PK
k¼1 x

2
ijk

ð10Þ

(Kroonenberg, 1983). Note that (10) holds irrespective of the preprocessing of the data.

3. A numerical convex hull based model selection heuristic

When applying each of the above three-mode PCA techniques to a given data array X,

one typically faces a model selection problem: which of the eight different types of

three-mode principal component model yields the most useful description of X, and at

what complexity? The purpose of the present paper is to provide a solution for this
complex problem by proposing a numerical convex hull based model selection

procedure. As mentioned in the Introduction, this procedure numerically assesses the

higher boundary of the convex hull of a plot of goodness of fit versus number of free

parameters as well as the location of the elbow in this boundary. In this section, we

present the details of the proposed procedure. We begin by describing how to obtain
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approximate goodness-of-fit measures for some of the models. Then we examine how

the number of free parameters is defined for all models. This is followed by a description

of the procedure for numerically assessing the higher boundary of the convex hull

and the procedure for finding the elbow in this boundary. Finally, we give a stepwise

overview of the proposed model selection heuristic.

3.1. Kiers and der Kinderen’s quick method for obtaining approximate T3 and T2

goodness-of-fit values

Obtaining optimal T3 goodness-of-fit values with the alternating least squares T3

algorithm is rather time-consuming, especially if one wishes to consider several

complexities. As this is an important factor for model selection procedures, Kiers and

der Kinderen (2003) proposed a quick procedure for computing approximate T3

goodness-of-fit values for all possible complexities in one go, and demonstrated that

applying Timmerman and Kiers’s (2000) T3 model selection method DIFFIT to the
approximate goodness-of-fit values yields slightly better results than applying DIFFIT to

the optimal goodness-of-fit values (i.e. obtained with the alternating least squares T3

algorithm).

Kiers and der Kinderen’s (2003) procedure works as follows. First, matricize X

into Xa ðI £ JKÞ, Xb ð J £ KIÞ, and Xc ðK £ IJÞ and compute the eigendecomposi-

tions X aX
0
a ¼ KaLaK

0
a, XbX

0
b ¼ KbLbK

0
b; and XcX

0
c ¼ KcLcK

0
c. Then, compute

Ha ¼ K
0
aXaðKc^KbÞ, where Ha, Ka, Kb, and Kc are the matricized version of the T3

core array H and the T3 component matrices associated with the maximal number of
components I, J, and K for the three modes, and ^ denotes the Kronecker product.

Finally, compute the approximate goodness-of-fit value f of a T3 solution of complexity

(P,Q,R) by dividing the sumof squared elements of the subarrayG ofH that is obtained by

retaining only the first P participant,Q variable, andR condition components, by the sum

of squared elements of X:

f ¼

PP
p¼1

PQ
q¼1

PR
r¼1 g

2
pqr

PI
i¼1

PJ
j¼1

PK
k¼1 x

2
ijk

: ð11Þ

ReplacingKc,Kb, orKa by an identity matrix, the same procedure can be used to obtain

approximate goodness-of-fit values f of T2AB, T2AC, or T2BC solutions.

Finally, note that from the eigendecompositions of Xa, Xb, and Xc, one can also

calculate the optimal goodness-of-fit values f of T1A, T1B, and T1C solutions: divide the

sum of squared elements of the submatrix ofLa,Lb, andLc that is obtained by retaining
only the first P participant, Q variable, and R condition components, respectively, by the

sum of squared elements of X.

3.2. The number of free parameters of three-mode principal component solutions

Regarding the number of free parameters fp of the different types of three-mode

principal component solution, Weesie and Van Houwelingen (1983) argue that the

fp-value of a T3 solution of complexity (P,Q, R) amounts to IP þ JQþ
KRþ PQR2 P 2

2 Q2
2 R2. The last three terms of this sum correct for the fact that

A, B, and C are determined up to non-singular transformations only. In other words, we

may fix a P £ P block of P2 elements in A, a Q £ Q block in B, and a R £ R block in C,

because we can always (i.e. with probability 1) transform our solution without loss of fit

into a solution with fixed elements thus.
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By the same reasoning, the number of free parameters fp of a T2BC solution of

complexity (Q,R) equals JQþ KRþ IQR2 Q2
2 R2, with the last two terms correcting

for transformational freedom. Note that the fp-value of a T3 model of complexity

(I,Q,R), that is, a T3 model that is equivalent to a T2BC model of complexity (Q,R),

gives exactly the same number of free parameters, as it should: I 2 þ JQþ KRþ IQR2

I 2 2 Q2
2 R2 ¼ JQþ KRþ IQR2 Q2

2 R2. Regarding the equivalence relation
between a T3 model and a T2BC model in general, note that a T3 model of complexity

(I,Q,R) with I $ QR is equivalent to a T3 model of complexity (QR,Q,R) (Wansbeek &

Verhees, 1989); hence, as a T2BC model of complexity (Q,R) is equivalent to a T3 model

of complexity (I,Q,R), it is also equivalent to a T3 model of complexity (QR,Q,R). The

T2AB and T2AC models have similar equivalence relations to the T3 model.

Again analogously, the number of free parameters fp of a T1A solution can be

calculated as IP þ PJK 2 P 2. Note again that the fp-value of a T1A solution of

complexity P equals the fp-value of an equivalent T3 solution, that is, a T3 solution of
complexity (P, J,K): IP þ J 2 þ K 2 þ PJK 2 P 2

2 J 2 2 K 2 ¼ IP þ PJK 2 P 2.

Regarding the number of free parameters fp of a CP solution, given that CP solutions

are determined up to scaling only, this number amounts to (I þ J þ K)R2 2R.

Specifically, the last term corrects for the scaling freedom, where scaling the component

matrices of two modes fixes the scaling of the third.

Finally, note that in cases where the size of one of the modes is larger than the

product of the other two, special adjustments must be made, because in such cases (see

Kiers & Harshman, 1997), the biggest mode can be reduced considerably without loss of
information essential for the components of the two other modes and the core.

Specifically, when I . JK , the data can be reduced to a JK £ J £ K data set. Therefore,

in such cases, in the computation of the number of free parameters fp, I should be

replaced by JK.

3.3. Ceulemans and Van Mechelen’s procedure for finding the solutions on the higher

boundary of the convex hull

In this section, Ceulemans and Van Mechelen’s (2005) procedure for determining the

subset of solutions that are on the higher boundary of the convex hull of the plot of

goodness of fit versus number of free parameters is described. The plots in Figure 2 will

be used as a guiding example. Figure 2a shows a plot of goodness of fit versus number of

free parameters for a data set from the simulation study in Section 5; in this plot the

higher boundary of the convex hull has been drawn. As we wish to explain how to

determine this boundary numerically, the ‘clean’ plot without the boundary is also

given (Figure 2b).
Ceulemans and Van Mechelen’s (2005) procedure works as follows. First, for each

observed number of free parameters fp, retain only the best-fitting solution; if two or

more solutions have equal fp- and f-values, select one of them at random. The solutions

thus retained for our guiding example are displayed in Figure 2c. Considering the

difference between Figures 2b and 2c, it can be concluded that this step implies a huge

decrease in the number of solutions to be compared. Then, sort the n retained solutions

by their number of free parameters fp and label them si ði ¼ 1; : : : ;nÞ. In Figure 2c they

are ordered from left to right. Next, given that the procedure looks for the solutions with
an optimal balance between goodness of fit and number of free parameters, exclude

a solution si from the n retained solutions if a solution sj ðj , iÞ exists such that f j . fi;

as can be seen from Figures 2c and 2d, this step implies that the line that one could draw

between the points representing the subsequent solutions becomes
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non-decreasing. Finally, apply the following routine that consecutively considers all

triplets of adjacent solutions. For the first triplet of solutions (s1, s2, s3), determine

whether or not the point for s2 is located below or on the line that one could draw

between the points for s1 and s3 in the plot of goodness of fit versus number of free

parameters; if so, exclude s2 from the subset of retained solutions. Next, do the same for

all following triplets of adjacent retained solutions; one run of this routine transforms

Figure 2d into Figure 2e. Repeating this routine until no solution can be excluded yields

Figure 2. Graphical representation of the different steps (numbered as in Section 3.5) of Ceulemans

and Van Mechelen’s procedure for finding the solutions on the higher boundary of the convex hull of a

plot of goodness of fit versus number of free parameters: (a) plot of goodness of fit versus number of

free parameters, with the line representing the higher boundary of the convex hull; (b) retained

solutions after step 1; (c) retained solutions after steps 2 and 3; (d) retained solutions after step 4;

(e) retained solutions after step 5; and (f) retained solutions after step 6.
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the solutions on the higher boundary of the convex hull of the plot of goodness of fit

versus number of free parameters; Figure 2f, which shows the final set of retained

solutions, does indeed consist of the solution points that belong to the higher boundary

of the convex hull in Figure 2a.

3.4. Selecting among the hull solutions: A numerical implementation of the scree test

To select the solution on the higher boundary of the convex hull with the best balance

of goodness of fit and number of free parameters fp, we propose the following

numerical implementation of the scree test: select the solution i that maximizes

sti ¼
f i 2 f i21

fpi 2 fpi21

. f iþ1 2 f i

fpiþ1 2 fpi
: ð12Þ

A relatively large st-value indicates that allowing for fpi free parameters (instead of fpi21

free parameters) increases the fit of the model considerably, whereas allowing for more

than fpi free parameters hardly increases it at all. Thus, we select that solution after

which the increase in fit levels off.

3.5. Stepwise overview of the numerical convex hull based model selection procedure

The numerical convex hull based model selection procedure can be summarized in

eight steps:

(1) Determine the fp- and f-values of all three-mode principal component solutions

from which one wishes to choose.

(2) For each of the n observed fp-values, retain only the best-fitting solution.

(3) Sort the n retained solutions by their fp-values and denote them by
si ði ¼ 1; : : :;nÞ.

(4) Exclude all solutions si for which a solution sj ð j , iÞ exists such that f j . fi.

(5) Consecutively consider all triplets of adjacent solutions. Exclude the middle

solution if its point is located below or on the line connecting its neighbours in a

plot of goodness of fit versus number of free parameters.

(6) Repeat step 5 until no solution can be excluded.

(7) Determine the st-values of the ‘hull’ solutions obtained.

(8) Select the solution with the highest st-value.

Note that equivalent solutions – for instance, a T3 model of complexity (QR, Q, R) and a

T2BC model of complexity (Q, R) – have equal fp-values (see Section 3.2). Hence, the

‘hull’-finding procedure described in Section 3.3 will retain at most one of such

equivalent solutions, in particular, the solution with the highest f-value. However, some

of these f-values are only approximate. Therefore, if one such equivalent solution has

the highest st-value, one could choose to report one of the other equivalent solutions as

well. In fact, the ultimate choice among them should then be made on the basis of ease
of substantive interpretation.

Finally, in practice, the procedure can be used in a somewhat relaxed way: models

close to the higher boundary could also be considered as important alternative models,

as well as models with a high but not maximal scree test value st. Moreover, one should

also take substantive considerations into account when selecting a model. However, the

strict numerical procedure described above can be helpful as an important heuristic in
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making a first selection. In the simulation study described in Section 5 it will be seen that

this procedure works very well indeed.

4. Illustrative application

In this section we illustrate the use of the numerical convex hull based model selection

heuristic by applying it to the Chopin’s preludes data set, which can be downloaded

from http://three-mode.leidenuniv.nl. As Murakami and Kroonenberg (2003) describe

in detail, this data set was gathered by asking 38 Japanese university students to rate the

24 preludes composed by Chopin on 20 bipolar scales (e.g. bright–dark, slow–fast).

Murakami and Kroonenberg suggested preprocessing the resulting 24 £ 20 £ 38 data

array X by centring the scores across the prelude mode and then normalizing the scores

by scale.
Given X, numbers of free parameters fp and goodness-of-fit values f were obtained

for 169 three-mode principal component solutions: 15 T1A, T1B, and T1C solutions of

complexity 1 to 5; 75 T2AB, T2AC, and T2BC solutions of complexity (1,1) to (5,5); 74

T3 solutions of complexity (1,1,1) to (5,5,5); and 5 CP solutions of complexity 1 to 5.

With respect to the number of T3 solutions considered, note that, as mentioned in

Section 3.2, Wansbeek and Verhees (1989) proved that a T3 model for which the

number of components for the participant mode (for example) exceeds the product of

the number of components for the other two modes gives the same fit as a T3 model for
which the number of participant components equals the product of the number of

components for the other two modes; this implies that of all 125 T3 solutions the 51

solutions for which P . QR, Q . PR, or R . PQ can be omitted. The fp-values of the

169 solutions were computed as described in Section 3.2. The f-values of the T1A, T1B,

and T1C solutions were calculated on the basis of the eigendecomposition ofXa,Xb, and

Xc, and the f-values of the T2AB, T2AC, T2BC, and T3 solutions were approximated with

the Kiers and der Kinderen (2003) procedure (see Section 3.1). The f-values of the CP

solutions resulted from analysing the data set with the CP algorithm (the best fit was
retained from five runs, four of which were initialized randomly and one rationally).

Figure 3 shows a plot of goodness of fit versus number of free parameters for the 169

solutions. Applying the numerical convex hull based model selection procedure to this

plot yielded 11 ‘hull’ solutions, which are indicated by larger points in Figure 3. The

scree test values st of these 11 ‘hull’ solutions are given in Table 1. From this table, one

may conclude that the ‘hull’ heuristic indicates the selection of the T2BC model of

complexity (2,1). As this solution is equivalent to the T2AC solution of complexity (2,1)

and the T3 solution of complexity (2,2,1), we could choose to report either of these two
models as well. As mentioned in Section 3.5, the ultimate choice should be made on the

basis of ease of substantive interpretation. Finally, it is interesting to note that Murakami

and Kroonenberg (2003) reported that applying the DIFFIT method to optimal T3

solutions of complexity (1,1,1) to (3,3,3) yielded the same model selection result, in that

it indicated the selection of the T3 solution of complexity (2,2,1).

5. Simulation study

In this section, we present an extensive simulation study in which we evaluate to what

extent the numerical convex hull based model selection heuristic succeeds in indicating

the type and complexity of the three-mode principal component model that underlies a

given three-way, three-mode data array. In this simulation study, we distinguish between
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two types of simulated data set: (a) data sets that are based on a randomly generated

three-mode principal component model and (b) data sets that are constructed from an

empirically obtained three-mode principal component solution.

5.1. Data sets constructed from a randomly generated three-mode principal

component solution

5.1.1. Design

In this part of the simulation study, we constructed 225 data arrays for all eight types of

three-mode principal component model. In particular, for each model type, three

Table 1. Goodness-of-fit values f, numbers of free parameters fp, and scree test values st of the

11 solutions on the higher boundary of the convex hull of Figure 3

Model Complexity f fp st

CP 1 .2893 80 –

T2BC (2,1) .4066 121 8.65

CP 2 .4195 160 1.01

CP 3 .4456 240 1.05

CP 4 .4705 320 1.28

CP 5 .4900 400 2.27

T2BC (4,5) .5232 709 1.25

T2AB (5,4) .5413 919 1.19

T2AB (5,5) .5558 1120 1.20

T1B 4 .7118 3712 1.60

T1B 5 .7466 4635 –

Figure 3. Plot of goodness of fit versus number of free parameters for the 169 three-mode principal

component solutions for the Chopin’s preludes data, with the line representing the higher boundary of

the convex hull and the larger points indicating the 11 ‘hull’ solutions.
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parameters were systematically varied:

(1) the size I £ J £ K of the data arrays, at three levels: 200 £ 10 £ 10, 50 £ 20 £ 20,

27 £ 27 £ 27;

(2) the true complexity of the three-mode principal component model that underlies

the data arrays, at three levels 2, 3, 4 for T1A, T1B, T1C, and CP, at three levels
(3,2), (3,3), (3,4) for T2AB, T2AC, and T2BC, and at three levels (3,2,2), (3,3,3),

(4,3,2) for T3;

(3) the amount of error in the data, at five levels 0, 15, 30, 45, 60%.

For each cell of the design five replications were considered.

The 225 T3 data arrays (3 sizes £ 3 complexities £ 5 error levels £ 5 replications)

were generated by

X ¼ AGðC0
^B

0Þ þ 1E; ð13Þ

where A is sampled from the standard normal distribution, G is sampled from a uniform

distribution with entries ranging from 20.5 to 0.5, B and C are random orthonormal
matrices, 1 denotes a coefficient for manipulating the error level, and E is sampled from

the standard normal distribution and multiplied by a scalar such that

kAGðC0^B
0Þk ¼ kEk. Note that X ðI £ JKÞ and G ðP £ QRÞ are matricized versions of X

and G. To generate the CP data arrays by means of (13), A, B, and C are all sampled from

the standard normal distribution and G is fixed such that rewriting G into G yields a unit

superidentity array. To obtain T2 and T1 data arrays from (13), the componentmatrices of

the reducedmodes are randomorthonormalmatrices and the componentmatrices of the

modes not reduced are fixed to identity matrices. This construction method may
sometimes lead to data sets of which the structural part, AGðC0^B

0Þ, can be fitted almost

as well by solutions with lower fp-values than the true solution. As Timmerman and Kiers

(2000) argue that suchcasesmaybeundesirable for evaluating T3model selection results,

they only considered T3 data arrays forwhich atmost 98%of the structural sumof squares

can be fitted by T3 solutions with lower fp-values than the true solution. Aswewanted to

compare the performance of the ‘hull’ heuristic and DIFFIT (see Section 6), we did the

same here for the T3 data. In order to keep the evaluation of the ‘hull’ heuristic as general

as possible, however, we did not impose this constraint when generating CP, T2, and T1
data. Therefore, in the results section, we will investigate whether possible selection

errors can be explained by this phenomenon.

For each of the 1800 simulated data sets (8 model types £ 225 data arrays), numbers

of free parameters fp and goodness-of-fit-values f were obtained for 565 three-mode

principal component solutions (in the same way as for the example data set in Section

4): 24 T1A, T1B, and T1C solutions of complexity 1 to 8; 192 T2AB, T2AC, and T2BC

solutions of complexity (1,1) to (8,8); 341 T3 solutions of complexity (1,1,1) to (8,8,8)

(regarding the number of T3 solutions considered, refer to Section 4); and 8 CP solutions
of complexity 1 to 8. The numerical convex hull based model selection heuristic was

then applied to these 565 fp- and f-values.

5.1.2. Results
Given the 565 fp- and f-values, the numerical convex hull based model selection

heuristic selected the correct model type and complexity for all 225 T1A, T1B, T1C, and

T2BC data sets. For the 225 T2AB, T2AC, and CP data sets, correct selection occurred in

all but one case for each model type; in the two T2 ‘incorrect selection’ cases the
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solution selected had a lower fp-value than the true solution but, when fitted to the

structural data, accounted for more than 99.9% of the variance in the structural data.

This indicates that, in fact, for these data sets the true and the selected model were

virtually equivalent. For the CP ‘incorrect selection’ case, no such near equivalence was

found.

For the 225 T3 data sets, an incorrect selection occurred in 17 cases. A further

investigation of the results for these 17 cases shows that incorrect selection mostly

occurs for size 200 £ 10 £ 10, complexity (3,2,2) or (4,3,2), and 45 or 60% error (see

Figure 4). In particular, in 10 of the 11 ‘incorrect selection’ cases of complexity (3,2,2)

the procedure selected the CP solution of complexity 2 and in 4 of the 5 cases of

complexity (4,3,2) the T3 solution of complexity (3,3,2), with only one of these 17 T3

selection errors being explained by a virtual equivalence between the true and the

selected model. To check whether the model selection problems for T3 data arrays of

size 200 £ 10 £ 10 are caused by (a) the asymmetry of these data arrays or (b) the small

number of elements in the second and third modes, which yields a small number of

second and third mode component entries in comparison to the number of core entries,

we also generated and analysed 75 T3 data arrays of size 10 £ 10 £ 10 and 75 T3 data

arrays of size 625 £ 25 £ 25; these data arrays were generated and analysed as described

in Section 5.1.1. The results clearly show that the numerical convex hull based model

selection heuristic does not perform so well for T3 data arrays for which at least one of

the three modes contains few elements, say fewer than 15: whereas for size 625 £

25 £ 25 correct selection occurred in all but one case, an incorrect selection occurred

for 32 of the 75 size 10 £ 10 £ 10 data arrays. Also, given that for the T3 and T2 models

approximate goodness-of-fit values were used whereas the CP and T1 goodness-of-fit

values were optimal, an investigation was undertaken into whether (some of) the 17 T3

model selection problems could be solved by using optimal T3 goodness-of-fit values

instead of approximate ones; this was not the case.

Finally, it should be noted that of the 20 T2AB, T2AC, CP, and T3 ‘incorrect selection’

cases, the true solution did not belong to the higher boundary of the convex hull in two

cases only. With respect to the 18 other cases, in 11 the true solution had the second

highest st-value, in 4 it had the third highest st-value, and in 3 it had the fourth, fifth and

eighth highest st-value, respectively. These results qualify the term ‘incorrect selection’,

because they imply that if the numerical convex hull based procedure had been applied

Figure 4. Frequency of correct model selection for the 225 T3 data arrays, as a function of (a) size,

(b) complexity, and (c) error.
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in a somewhat relaxed way (see Section 3.5), as will often be the case in practice, the

true solution would in most cases have belonged to the subset of solutions selected for

further consideration.

5.2. Data sets constructed from an empirically obtained solution

5.2.1. Design

In this part of the simulation study, we generated data arrays by adding error to the
(2,2,1) T3 solution that was obtained for the Chopin’s preludes data in Section 4. Similar

to the construction of the randomly generated data sets, the error was sampled from the

standard normal distribution and rescaled to obtain four levels of error perturbation: 15,

30, 45, and 60%. For each level of error five replications were considered.

For each of the 20 simulated data sets (4 error levels £ 5 replications), numbers of

free parameters fp and goodness-of-fit values f were obtained for 169 three-mode

principal component solutions: 15 T1A, T1B, and T1C solutions of complexity 1 to 5;

75 T2AB, T2AC, and T2BC solutions of complexity (1,1) to (5,5); 74 T3 solutions of
complexity (1,1,1) to (5,5,5) (regarding the number of T3 solutions considered, refer

to Section 4); and 5 CP solutions of complexity 1 to 5. The numerical convex hull

based model selection heuristic was then applied to the 169 fp- and f-values for these

solutions.

5.2.2. Results

Applying the numerical convex hull based model selection heuristic to the 169 fp- and
f-values for the 20 generated data sets always resulted in the selection of the true model,

that is, the T3 solution of complexity (2,2,1) or the equivalent T2AC or T2BC solutions

of complexity (2,1). However, when we used the T3 solution of complexity (3,2,2),

which was reported by Murakami and Kroonenberg (2003), as a basis for generating

simulated data sets, applying the ‘hull’ heuristic also resulted in half of the cases in the

selection of the T3 solution of complexity (2,2,1) or the equivalent T2AC or T2BC

solutions of complexity (2,1). This result is probably caused by the near equivalence of

the true solution of complexity (3,2,2) and the selected solution of complexity (2,2,1):
the solution selected accounts for 95.6% of the variance in the model array M that is

associated with the true solution.

6. Comparison between the proposed heuristic and Timmerman and
Kiers’s DIFFIT method

In this section, the numerical convex hull based model selection heuristic is compared

to Timmerman and Kiers’s (2000) DIFFIT method for selecting among T3 solutions of

different complexities. DIFFIT works as follows:

(1) For all T3 solutions among which one wishes to select, determine the goodness-of-

fit values f and the sum of components sum ¼ P þ Qþ R.

(2) For each of the N observed sum-values, retain only the best-fitting solution. Denote
the N retained solutions by ssum.

(3) For each of the N retained solutions, compute difsum as the difference between

f ssum and f ssum21
; this implies that the dif-value of the simplest solution equals its

goodness-of-fit value f.
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(4) Exclude all solutions si for which a solution sj ðj . iÞ exists such that difj . difi.

Indicate the M remaining solutions by m ¼ 1; : : :;M. The associated sum-values

are given by sum(m), implying that the corresponding dif-values are given by
difsum(m). Note that this step results in an approximation of the set of solutions on

the higher boundary of the convex hull of a plot of goodness of fit versus sum of

components (see Kroonenberg & Oort, 2003). In particular, DIFFIT sometimes

also retains solutions that are located close to but below the higher boundary of

the convex hull. For an example see Figure 5, which displays a plot of goodness of

fit versus sum of components for the retained solutions for the Chopin’s preludes

data set (see Section 4); it is clear that the retained solution with 11 components is

located below the higher boundary of the convex hull.
(5) For the first M 2 1 solutions, compute bsumðmÞ ¼ dif sumðmÞ=dif sumðmþ1Þ.

(6) To eliminate solutions which entail small fit increases only, select those solutions

for which dif sumðmÞ . kXk2=ðsummax 2 3Þ only, with summax ¼ minðI ; JKÞ þ
minð J ; IKÞþ minðK ; IJÞ.

(7) From the remaining solutions, select the solution with the highest bsum(m)-value.

For a detailed discussion of the DIFFIT method refer to Timmerman and Kiers

(2000).

6.1. Theoretical comparison

The above description suffices to note five differences between DIFFIT and the

proposed numerical convex hull based model selection heuristic:

Figure 5. Plot of goodness of fit versus sum of components for the five T3 solutions for the Chopin’s

preludes data that are retained by the DIFFIT method, with the line representing the higher boundary of

the convex hull.

A numerical convex hull based model selection heuristic 147



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

(1) Whereas the numerical convex hull based model selection heuristic uses the

number of free parameters as a complexity measure, DIFFIT uses the sum of

components. This difference results from the fact that the ‘hull’ heuristic was

designed to select among T3, T2, T1, and CP solutions of different complexities,

whereas DIFFIT considers T3 solutions only. Indeed, extending DIFFIT to CP, T2,

and T1 solutions is not straightforward, since it is not clear how the sum concept
can be generalized.

(2) Unlike the ‘hull’ heuristic, which was explicitly designed for selecting the set of

solutions on the higher boundary of the convex hull of a plot of fit measure versus

complexity measure, DIFFIT only approximates the set of ‘hull’ solutions.

(3) The implementation of the scree test in DIFFIT does not take into account the

differences in the complexity of the solutions considered – that is, the differences

in their sum-values.

(4) Unlike DIFFIT, the numerical convex hull based heuristic does not impose a
minimum value for the dif-value of the selected solution.

(5) DIFFIT may select the simplest solution considered, whereas with the numerical

convex hull based heuristic this is not possible.

6.2. Empirical comparison

Applying the numerical convex hull based heuristic to the 341 T3 solutions for the 225

randomly generated T3 data arrays of the simulation study (see Section 5.1) resulted in
12 selection errors, whereas applying DIFFIT resulted in 18 selection errors. Hence, it

can be concluded that the more general ‘hull’ heuristic outperforms the DIFFIT method.

Given that we reported in Section 5.1 that the performance of the ‘hull’ heuristic is

influenced by the size of a T3 data set, it could be conjectured that the advantage of the

‘hull’ heuristic over DIFFIT could be further increased by applying the ‘hull’ heuristic to

sums of components rather than numbers of free parameters, as these sums do not

depend on the size of a data set. To evaluate this conjecture, we applied the ‘hull’

heuristic to the sum-values (rather than the fp-values) and the f-values of the 341 T3
solutions for each of the 225 T3 simulated data sets mentioned above. It turned out that

this alternative ‘hull’ heuristic worked even better, yielding only five selection errors.

Unfortunately, this alternative ‘hull’ procedure cannot be used for selecting among

different types of models, because generalizing the sum-concept to T2, T1, and CP

models is not straightforward. However, given that this alternative ‘hull’ approachworks

so well for T3 data, it seems definitely recommendable for selecting among T3 models,

and further research into its use for comparing models of different types seems

indicated.

7. Discussion

In this paper, we have presented a numerical convex hull based model selection

heuristic for selecting among three-mode principal component solutions of different

types and complexities. Simulation results show that this heuristic performs almost

perfectly, except for T3 data arrays with at least one small mode and a relatively large
amount of error. Yet, it should be noted that a considerable number of three-way, three-

mode arrays belong to this category. The reported simulation results, however, show

that this problem can be tackled fairly well by applying the proposed procedure in a

somewhat relaxed way, that is, also considering solutions close to the higher boundary

of the convex hull or solutions with a high but not maximal st-value.
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Our numerical convex hull based model selection heuristic may also be useful for

solving other types of complex model selection problem. Indeed, promising results have

already been reported for the family of three-mode hierarchical classes models

(Ceulemans & Van Mechelen, 2005), a model family that is closely related to the family of

principal component models. In particular, the proposed heuristic can be useful for all

model selection problems for which a degrees-of-freedom-like measure and a fit measure
are available for all solutions considered. Examples include loglinear analysis and

structural equation modelling. However, as was also mentioned in Section 3.5 and holds

for numerical model selection heuristics in general, one should not use this heuristic too

rigidly, but rather as a helpful tool for making a first selection of interesting solutions.

Indeed, for the final selection decision, one should also take into account substantive

information and interpretability of the results.
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