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Abstract: Successful implementation of construction projects worldwide calls for a set of effective risk
management plans in which uncertainties associated with risks and effective response strategies are
addressed meticulously. Thus, this study aims to provide an optimization approach with which risk
response strategies that maximize the utility function are selected. This selection is by opting for the
most appropriate strategies with the highest impact on the project regarding the weight of each risk
and budget constraints. Moreover, the risk assessment and response strategy of a construction project
in Iran as a case study, based on the global standard of the project management body of knowledge
(PMBOK) and related literature, is evaluated. To handle the complexity of the proposed model,
different state of the art metaheuristic algorithms including the ant lion optimizer (ALO), dragonfly
algorithm (DA), grasshopper optimization algorithm (GOA), Harris hawks optimization (HHO),
moth-flame optimization algorithm (MFO), multi-verse optimizer (MVO), sine cosine algorithm
(SCA), salp swarm algorithm (SSA), whale optimization algorithm (WOA), and grey wolf optimizer
(GWO). These algorithms are validated by the exact solver from CPLEX software and compare with
each other. One finding from this comparison is the high performance of MFO and HHO algorithms.
Based on some sensitivity analyses, an extensive discussion is provided to suggest managerial insights
for real-world construction projects.

Keywords: risk management; optimization; utility function; risk response strategies; construc-
tion projects

1. Introduction

Project management is critical to successfully completing a mission [1,2]. Project
management aims to keep the project on track and find the right balance between cost,
time, and quality, which, if not appropriately managed, can lead to serious negative
consequences and project failure [3]. However, there is ample evidence that the success
of many construction projects may be compromised by a variety of unanticipated risks
and losses [4,5]. Projects are, indeed, characterized by uncertainty and risk, and they are
frequently carried out in a dynamic and complex environment, which may exacerbate
the consequences of the risks [6]. The most common problems are a lack of economic
justification for the project’s operation, efficiency reduction, and dissatisfaction [7]. Internal
and external factors can contribute to project failures if not considered during project
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planning and management. Due to the complexity, changes, and competition in the project
environment, which causes many risks [8], organizations need to use appropriate risk
management strategies to evaluate, manage, and control risk [9,10].

Construction companies’ ability to collect, store, and disseminate information to
improve risk management in construction projects has been questioned by many re-
searchers [11,12]. Even though systematic risk management’s advantages have been ex-
tensively discussed [13–15], construction companies, particularly in developing countries,
have been slow to adopt it due to a lack of appropriate decision-making processes and
tools [16]. This motivates a great deal of interest in developing systematic risk management
frameworks [17–21]. However, assumptions and methodological flaws are inherent in every
tool or approach, and the research is still needed for the development of a comprehensive
framework with regards to uncertainty and real-life constraints. Hence, there are still many
unanswered questions regarding construction risk management, particularly in terms of
developing an effective response strategy need to be addressed.

This research aims to contribute new theoretical and practical insights to the growing
body of knowledge about reducing risks associated with construction project management,
particularly in countries where the construction sector is increasingly vulnerable to unex-
pected risks. As a result, the main contribution of this study is to provide a framework for
selecting risk response strategies that maximize the utility function. Different recent and
state of the art metaheuristic algorithms including the ant lion optimizer (ALO), dragonfly
algorithm (DA), grasshopper optimization algorithm (GOA), Harris hawks optimization
(HHO), moth-flame optimization algorithm (MFO), multi-verse optimizer (MVO), sine
cosine algorithm (SCA), salp swarm algorithm (SSA), whale optimization algorithm (WOA),
grey wolf optimizer (GWO) are applied. These algorithms are validated by the exact solver
from CPLEX software and compared with each other. The outcomes of this study enable
project-based company managers to make more effective risk-response decisions during
planning and before implementation.

The paper has been structured as follows: Section 2 provides a literature review.
Section 3 deals with methodology and provides information about each step. Section 4
presents the practical implementation of the new proposed methodology in an Iranian
construction company. Section 5 solves our case study to analyze the proposed optimization
model and compare our metaheuristic algorithms. Finally, the conclusion and managerial
insights are explained in the last section.

2. Literature Review

According to our knowledge and review articles in this area, the first article can be
referred to the approach proposed by Ben-David and Raz [22], who developed a simple
zero-one model to select risk response strategy. Similarly, the first general framework in
risk response management can be attributed to Ben-David et al. [23]. They provided a
general framework with a mathematical model and an innovative algorithm to select a
set of responses. The objective function was to minimize the total expected risks’ costs.
Using various decision-making and optimization techniques has led to an increase in the
number of studies in this field. Wu et al. [24] proposed a novel risk response method by
opening the project process’s black box and considering risk correlations among different
subprocesses to assist practitioners in developing a practical risk response plan. This
study began by identifying risk factors based on two-dimensional criteria known as risk
categories and project development subprocesses. The risk correlations between different
subprocesses were then considered to determine the true impact of each process’s risk factor.
Finally, under resource constraints, a multi-objective risk response model was developed
to minimize the total expected losses, total expected schedule delay, and total expected
quality reduction. Zuo and Zhang [25] proposed an optimization method to address the
problem of selecting risk response actions (RRAs) while taking secondary risk into account.
The optimization model aimed to reduce total risk costs while keeping the project timeline
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in mind. By solving the model, it is possible to obtain an optimal set of RRAs as well as the
earliest start time for each activity.

Zhang and Guan [26] used a bow-tie chart drawn by several experts to select appro-
priate risk prevention and response strategies. Then, an optimization model was used
to choose the best strategies. This optimization model was then solved by using Lingo
software. Later, Wang et al. [27] used a simulated risk interaction network model including
a binary matrix to evaluate risk response decision making and an improved refrigeration
simulation algorithm to optimize responses. Buganová and Šimíčková [28] analyzed and
compared risk management considering the perspective of the traditional approach and
different models of risk responses and, finally, introduced the most appropriate approach
for some industries. Shoar and Nazari [29] presented a framework for addressing the
risk response action selection problem by considering the impact of risk events on project
objectives, risk event interactions, and management criteria and preferences. Therefore,
a framework was developed by an ant colony optimization (ACO) and a multi-criteria
decision-making (MCDM) approach. In another study, Zhang et al. [30] used an integrating
case-based analysis and fuzzy optimization to make decisions about risk response. As a
result, the optimal set of responses was selected. Chaouch et al. [31] provided a framework
for risk management implementation in development projects and considered the proposed
optimization framework as a methodology and standard project management as a project
risk management guide.

Beltrão and Carvalho [32] presented a reliable and practical methodology to identify
construction-related risks. They prioritized the main risks of main construction through
prioritizing a fuzzy analytic hierarchical practical model. This model included three
stages: (1) risk identification and development of risk failure structure, (2) pairwise com-
parison, and (3) risk prioritization. Ahmadi-Javid et al. [33] presented a mathematical
optimization-based method for selecting an appropriate set of a priori local and global
responses to address risks that threaten a project portfolio. They considered key factors
such as cost, budget, project preference weights, risk-event probabilities, interdependencies
among work packages, and both occurrence and impact dependencies among risk events.
Zhang et al. [34] presented a method for controlling the risk probabilities of construction
projects based on integrated TOPSIS and set pair analysis (SPA). The risk-mitigation effect
matrix is used by SPA to evaluate risk levels. The TOPSIS ranks the risk-mitigation effects
of the safety-measure combinations and quickly determines the optimal combination using
dichotomy. The TOPSIS–SPA method seeks to identify the best combination of safety mea-
sures for reducing risks to an acceptable level. Wang et al. [35] explored a novel approach
for optimizing the risk response decisions under risk interactions, which is composed of a
simulation model and an optimization model within the modified genetic algorithm.

Mokhtari and Aghagoli [36] proposed a hybrid Bayesian model and fuzzy optimization
to minimize the risk response costs. Finally, Boral et al. [37] developed an integrated fuzzy
hierarchical approach considering the points of the structure of project failure and the
interaction between risks. Fallahpour et al. [38] considered different risks and criteria
based on Industry 4.0 and incorporated them with sustainable supplier selection in a case
study for the wood industry in Iran. Guan et al. [39] presented an analytical approach for
allocating the response budget between risk prevention and risk protection to manage risks
effectively in a project. The proposed method considers the project’s risk characteristics, risk
response strategy, and requirement and models the relationship between risk response cost
and effect as both linear and non-linear. Yan et al. [40] developed a credibility-based fuzzy
chance-constrained programming (CFCCP) model to generate appropriate risk response
strategies for international construction project managers (PMs) while accounting for their
different risk preferences. A fuzzy interactive solution method was used to solve this
multi-objective model. Additionally, the model’s performance was validated through a
real-world international industrial plant project.

Zhang and Guan [41] proposed a method for allocating response budgets based on
fault tree analysis. They developed an optimization model from both preventive and
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protective perspectives. The proposed method consisted of two major steps. The first
step was to analyze and calculate the risk’s probability and loss. The next step was
to create an optimization model for allocating the response budget. Parsaei Motamed
and Bamdad [42] provided a goal programming model for secondary risks to minimize
undesirable deviations from expected changes in project cost, time, and quality due to the
risk occurrence. Following the solution of this model, an optimal set of both primary and
secondary response actions was chosen. A case study on the environmental risks of an oil
and gas project was conducted to demonstrate the model’s effectiveness.

Having a conclusion for the literature review and identifying the research gaps, as
far as we studied, the research on a comprehensive framework for the risk management
of construction projects considering utility functions and budget constraints is still scarce.
This study also applies innovative metaheuristics, which are recently proposed algorithms
for solving optimization models.

3. Problem Definition

Inherently, construction projects are subject to various internal and external risks. If
projects are not effectively managed, there will be cost overruns and delays. As a result,
managing construction project risks is a constant challenge that should be addressed at
each project stage. Risk management is a multi-step process that typically includes risk
identification, analysis, response plan, response implementation, and ongoing risk moni-
toring as part of a project’s overall risk management strategy. Effective risk management
is critical to accomplishing the project’s goals and fulfilling the sustainable development
goals of the organizations.

Risk identification, which identifies and documents related risks, is the first stage in
project risk management. The following stage is the process of assessing the project’s risks
based on characteristics, such as probability and effect. The risk response strategy refers
to the development, selection, and implementation of strategies to minimize exposed risk,
which significantly reduces the negative impacts of project risks. As a result, optimizing
the risk response analysis is a challenging task. Using the results of this optimization,
response strategies should be chosen to minimize the total risk reflected in the project’s
implementation, which has already been identified and analyzed.

In the majority of studies, risks are considered independently in risk response analysis.
Indeed, because project risks are not always independent, they can be mutually reinforced
in the project. As a result of this issue, risk interactions should be addressed as part of risk
analysis. As one of the significant elements in defining the project’s complexity, interactions
between risks cause an increase in the complexity of risk management models. As a result,
risk response analysis optimization problems are regarded as complex. As the project’s
complexities grow, more issues emerge as solutions to risk prioritization and strategy
development are developed. As a result, it stands to reason that project managers will be
able to make effective risk response decisions if the risk interaction can be truly amended.

This study aims to develop a risk management approach to select risk response strate-
gies in projects to address the current challenges associated with risks in construction
projects. The risk response strategy optimization model maximizes the project’s utility. In
the case study, the utility objective function is non-linear exponential, which we convert
into a linear model to reduce its complexity and then solve using CPLEX software. Since
our optimization model is non-convex and non-linear, we need to use approximate so-
lutions by metaheuristic algorithms for finding an optimal solution in a reasonable time.
The proposed approach for project risk management begins by identifying key risks and
response strategies. The risk interaction is then measured using this method. The weight
or strength of the risks is then calculated. Because of the risk interdependence, the risk
interaction is chosen for the selection of risk response strategies based on the output of the
optimization model. Finally, the effects of risk interdependence on project risk response
decisions are investigated, and the effects of key parameters have been evaluated.
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4. Proposed Risk Management Framework

According to recent studies in the field of project risk management and project manage-
ment body of knowledge (PMBOK) standards [43], risk management in this project consists
of seven stages, including risk management planning, risk identification, qualitative risk
analysis, quantitative risk analysis, risk response implementation using optimization, and
risk monitoring and control [44]. As shown in Figure 1, the proposed framework for
selecting risk response strategies are illustrated. The risks have been identified in the initial
stage of the framework. In this regard, qualitative analyses and the failure strictures have
been provided. In the next stage, some quantitative risk analyses are done by transforming
our qualitative metrics in the previous step. Then, we have considered the uncertainty for
our parameters and estimated the expected cost based on the decision tree method for the
average risk cost. In the next stage, the proposed risk response strategies to address our
risk factors have been provided. Next, the cost estimations of risk response strategies are
provided. In the next step, the interaction of risks and their responses are explained and
identified. Based on these relations, the strength of the interaction of risks is calculated in
the next step. Based on all these computations, our optimization model is provided. In
addition, the proposed utility function and our weighting method are explained. Finally,
this model is linearized to ease its computation by the CPLEX software. After selecting
appropriate risk response strategies, the actions are taken.
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Step 1: Identifying Project Risks, Qualitative Analysis, and Classification Based on Failure
Structures: Qualitative risk analysis provides a quick initial review of project risks as well
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as a quick assessment of project risk importance. Prioritizing risk response planning
necessitates a qualitative risk analysis. The main benefit of this process is that it focuses on
major risks. The important risks of the project are selected and identified based on previous
experiences with similar projects. Then, minor risks are eliminated through qualitative
analysis of the identified risks, and the remaining risks are classified according to the project
process for more specialized study.

Step 2: Quantitative Risk Analysis: Quantitative risk analysis is a numerical analysis
process based on the combination of individual risks [27]. Quantitative risk analysis is
used to examine an in-depth analysis of the risks’ effects identified and prioritized through
qualitative analysis. To evaluate effects, all of the project’s effective risks are used. The
desired loss is calculated as a cost over time by taking the minimum and maximum risk
costs into account. The maximum risk cost is calculated based on the chosen range and the
difference between the limits.

Step 3: Decision Tree Method for Average Risk Cost: The average cost of each risk is
calculated after calculating the minimum, maximum, and average cost of risk. The decision
tree method [27] is used to calculate the cost of each risk based on the three perspectives of
optimism, pessimism, and realism, from which its probability is determined. For example,
the optimistic case is the minimum cost ($1700). The realistic case is the average cost ($2300).
Finally, the pessimistic case is the maximum cost ($3100). Figure 2 depicts this example
of the expected risk cost for the Risk #1 project, which has a probability of 15% optimistic,
15% realistic, and 70% pessimistic, with a total cost of $2770 in the project.
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Step 4: Identifying Risk Response Strategies: Risk response refers to the developed,
selected, and implemented strategies to reduce project risk. Furthermore, risk response
plays an important role in mitigating the negative impacts of the project risks. In this step,
the goal is to identify our proposed risk strategies which are directly related to the details
of our construction project and our previously defined risks. Appropriate risk response
strategies should be developed to reduce losses that have previously been identified,
analyzed, and selected during project implementation. As a result, risk response analysis
can be an important factor in assessing project risk management. Initially, appropriate risk
response strategies are proposed for each risk. After thoroughly reviewing each of them,
approved strategies are finally selected.

Step 5: Estimating the Cost of Implementing Responses and Strategies and Their Effects:
Following the selection of the approved risk-response strategies, the cost of implementing
each strategy and its effects, i.e., the expected reduced loss, should be obtained [18–20].
The effect of strategy implementation on risk is shown by ahj which indicates the ef-
fect of risk response after implementing risk response strategy (Ah) to deal with Rj risk
event [21–25]. For example, a12 indicates the effect of response strategy 1 on risk 2, and its
number indicates the reduction in the average cost of the second risk after the implementa-
tion of the first strategy.

Step 6: Formation of Risk Interaction Matrix: The interaction between the risks and the
main factors is identified at first. After that, the model determines the interaction between
them and the effect of their power. Figure 3 shows an example of a cross-matrix of risks
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determining the probability for 5 risks in a given project. In this matrix, the interaction
between risks is determined, and if there is interaction, the value of one is allocated (a).
Then, according to the degree of mutual influence of the risks on each other, the relevant
weights are determined (b). Finally, the intensity of each risk (the main column of the
risk interaction table is calculated by the weighting function Wj according to the selected
weights (c) and set in the optimization model [27].
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Step 7: Calculate the Strength of the Interaction of Risks: Interaction between risks is used
by the model for the power of Ri’s interaction on Rj which means Dij, and it always has the
two properties in the calculations. The first characteristic is that the sum of the probabilities
of two affected risks is always equal to one (Dij + Dji = 1), while the second characteristic
is that these probabilities are always between 0 and 1 (0 < Dij < 1 and 0 < Dji < 1). The
mathematical reason for these relations is related to the definition of two complementary
probabilities, which states that if the case does not occur, the second case will certainly
occur. For example, if risk number one does not affect risk number two, risk number two
will certainly have a greater interaction than risk number one. As both risks complement
each other, the sum of the probabilities of these two will be equal to one. These two features
can be seen in all articles on risk response optimization.

Step 8: Proposed Optimization Model: It is necessary to optimize risk responses, control,
and evaluate for completing the risk management assessment in the proposed structure.
Therefore, a mixed-integer non-linear programming (MINLP) [45] is developed, which is
due to the utility function used in the non-linear model. Before introducing the model, the
sets, parameters, and decision variables of the proposed model are summarized as below:

Sets:
J Risks set
H Each risk response set
Parameters:
Dj Risk j losses
Rj Risk j
Ah Risk response h
Ch Cost of risk response h
ahj Effect of response h on risk j
B Budget of risks responses
Wj The weight or preference of each risk j
α Fixed coefficient of the utility function
θ The coefficient of the importance of each risk to its own loss
Decision variables:
Yhj 1, if the response is chosen for the volunteer risk, otherwise, 0.
Zh The maximum cost of the selected response for the risk response h

Assume that bj is the expected loss from the occurrence of Rj risk. Volunteer risk
response strategies should be proposed and selected to address the risks involved in project
implementation to decline the expected loss of each risk. When response strategies are
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formulated, the cost of implementing each strategy and the effect of responding to the
volunteer risk must be estimated after implementing the strategies. Assume that the set
A = {A1, A2, . . . , Am} present a set of volunteer risk response strategies, and Ch is the cost
of implementing the risk response Ah. The effect of strategy implementation on risk is
shown by ahj which indicates the effect of risk response after the implementation of Ah risk
response strategy to deal with the risk event Rj. Moreover, assume that B is the budget for
risk response strategies. Therefore, an optimization model is created as follows to select
risk response strategies according to risk interactions:

maxV(y) = E
[
U(y)

]
=

m

∑
h=1

n

∑
j=1

WjU
(

yhj

)
(1)

s.t
m

∑
h=1

ch × zh ≤ B (2)

n

∑
j=1

yhj ≤ zh ∀h (3)

yhj ∈ {0.1} (4)

zh ≥ 0 (5)

Variable Yhj is an integer variable of one and zero to decide the risk response strategy
Ah is chosen to deal with the risk event Rj or not. Moreover, variable Zh. is a positive
variable for the number of selected answers. The goal in phrase (1) is to maximize the
expected utility of the project manager. Constraint (2) ensures that the cost of implementing
risk response strategies meets budget needs. The sum number of selected answers is
determined in (3). The feasibility of the zero and one model variables is supported in
constraint (4), and the feasibility of the non-negative model variables is specified in (5).

Step 9: Determining Utility Function: In the model described above, the objective
function is to maximize the utility of the project manager. In this project, an exponential
utility function that shows risk aversion is used. The proposed exponential function using
the Boltzmann function will be between zero and one [27]. The intended function is
as follows:

U
(

yhj

)
= 1− e−α(yhjahj) (6)

The U
(

yhj

)
presents a subjective assessment of the risk response impact yhjahj. The

parameter coefficient α is an input parameter for evaluating the model. This coefficient is
generally determined according to the model setting, the proposed problem’s complexity,
and the user experience based on PMs’ criteria [27].

Step 10: Definition of Weight Function: The most important feature of the proposed
model is the effect of risk intensity in calculating the function of maximizing the utility
of risk response management. The weight function Wj shows the risk intensity Rj. Two
dimensions of risk interaction should be considered to calculate the probability transfer
matrix or the power of risks. The power Dj means that risk Rj affects other risks, and the
power Dj means other risks affect risk Rj. Therefore, the weighting function Wj is defined
as follows:

Wj = θ × Dj + (1− θ)× Dj (7)

θ is a vector of importance impact of weight Dj. In relation (7), it is used as parametric
mean logic to correlate the degree of importance of risk and its expected loss. In this type
of mean, a parameter weighs between two different criteria. For example, the weight of
each risk and its average effect are used parametrically using the parameter θ to determine
the degree of risk importance. This parameter is between zero and one [46].
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Step 11: Linearization of the Objective Function: The utility function is set to Vhj for
linearization. Therefore, the objective function is written as follows:

m

∑
h=1

n

∑
j=1

[(
θ × Dj

)
+ (1− θ)× Dj

]
×Vhj (8)

In addition, the non-negative integer variable V is entered as follows:

Vhj = Yhj + ahj (9)

Additionally, the rest of the constraints are repeater in the model.

5. A Case Study of a Construction Company in Iran

This study aims to identify and examine appropriate risk and response strategies
of the projects related to the field of information technology. This project belongs to the
enterprise resource planning (ERP) unit of the Petropars Company located in Tehran, Iran.

In the first step of the proposed approach, Identifying Project Risks and Qualitative
Analysis, the project’s significant risks are identified using failure structure and effect
concepts. Table 1 lists the risk factors.

Table 1. The main risk factors in the project.

Risks Number Explanation of Risk Factors

R1 Weakness of development and programming team
R2 Weakness of the analysis and design team before the start of producing product
R3 Weak knowledge of the project manager
R4 Weak knowledge of the consultant
R5 Weakness of required infrastructure (hardware, network, . . . )

R6
Low participation of main users of the organization to prepare the requirement
of the ERP project

R7 Lack of proper management in identifying user requirement
R8 Business environment changes (external changes) affecting ERP project
R9 Low participation of middle managers
R10 Weakness in the motivational system of the organization’s personal
R11 Failure to prepare Legacy software data to transfer to the new system
R12 Failure to pay staff salaries on time
R13 Hardware and machine failure

Quantitative Risk Analysis and Cost Interval Length Estimation are carried out follow-
ing the identification of the main risks. The process of numerically analyzing project risks
is known as quantitative risk analysis. Each risk’s loss is calculated as a cost. Because risks
arise from uncertainty, each risk does not have a specific cost; thus, this study calculates a
specific interval based on the minimum and maximum losses in the event of a risk. As a
result, the minimum and maximum risk costs for the 13 identified risk factors are estimated.
The length of the interval determines the average cost of each risk. Table 2 shows the
assessment results.

After calculating the minimum, maximum and average risk costs, the average risk
cost should be calculated according to the decision tree method and the three modes of
pessimistic, realistic, and optimistic. The calculated average risk costs are given in Table 3.

Appropriate risk response strategies should be selected to reduce the losses of risks that
were previously identified and analyzed in the implementation of the project. Therefore,
13 appropriate strategies were selected. The results are given in Table 4.

The next stage is estimating the cost of implementing strategies and their effects.
The implementing cost of each response strategy is determined. Then, the effects of the
implementation of each strategy on the risk, which is denoted by ahj are calculated. The
results are given in Table 5.
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Table 2. Estimated the risk cost.

Risks Minimum and Maximum Cost ($) Interval’s Length ($) Average Risk Cost ($)

R1 1–600 599 300.5
R2 50–300 250 175
R3 100–150 50 125
R4 1–500 499 250.5
R5 100–300 200 200
R6 5–80 75 42.5
R7 30–100 70 65
R8 60–400 340 230
R9 75–125 50 100
R10 1–40 39 20.5
R11 1–50 49 25.5
R12 10–45 35 27.5
R13 60–300 240 180

Table 3. The average cost of risks by the decision tree method.

Risks Probability of the
Pessimistic State

Probability of the
Realistic State

Probability of the
Optimistic State

The Average
Cost of Risk

R1 50% 20% 30% 360.4
R2 30% 40% 30% 175
R3 30% 50% 20% 127.5
R4 20% 60% 20% 250.5
R5 20% 80% 20% 240
R6 30% 35% 35% 40.625
R7 20% 20% 60% 51
R8 20% 20% 60% 162
R9 10% 80% 10% 100
R10 10% 80% 10% 20.5
R11 10% 80% 10% 25.5
R12 10% 80% 10% 27.5
R13 20% 60% 20% 180

Table 4. Response strategies.

Risk Response Description of Risk Response Strategy

A1 Training for the programming team and employing skilled members to develop the team

A2 Replacing the analysis and design team, hiring a new team or expert people

A3
Employing a business consultant who is familiar with the business in the organization as a technical consultant

or replacing the project manager

A4 Replacing the consultant or hiring a team along with the current consulting team

A5 Initial needs assessment of infrastructure requirements and hardware outsourcing and its implementation

A6 Holding meetings for the main members of the organization

A7 An experienced analyst who is familiar with user requirements and using management approaches

A8 Acceptance of changes and hiring a strategist

A9
Advising and motivating middle managers for greater understanding and rewards for more participating and

improvement in a project

A10 Implementation of appropriate punishment and incentive systems in the organization

A11 Providing sufficient resources proper scheduling to transfer data to the new system

A12
Agreement with the employer of the company at the time of preparing the contracts according to the time

of processing

A13 Providing preventive maintenance planning to protect hardware and machines
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Table 5. Cost of implementing strategies and their effects.

Response
Strategy

Cost of Implementing a
Response Strategy

Effect of
Response

Reduction of the
Risk Cost

A1 5 a1,1 250
A2 15 a2,2 120
A3 10 a3,3 80
A4 1 a4,4 200
A5 40 a5,5 210
A6 1 a6,6 30
A7 10 a7,7 40
A8 20 a8,8 140
A9 8 a9,9 75
A10 5 a10,10 15
A11 16 a11,11 20
A12 5 a12,12 15
A13 10 a13,13 130

Forming the risk interaction matrix is the next step. In evaluating the interaction of
these 13 risks, a set of qualitative languages including five terms is used, which is defined
as S0 is too weak, S1 is weak, S2 is medium, S3 is strong, and S4 is too strong. Therefore,
these estimated results are expressed using qualitative language in Table 6.

Table 6. Completed matrix of the interaction of risks qualitatively.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

R1 # S0 S0 S0 S0 S1 S0 S0 S1 S0 S1 S3 S3
R2 S4 # S0 S0 S2 S1 S1 S0 S1 S0 S3 S3 S4
R3 S4 S4 # S4 S4 S4 S4 S0 S3 S4 S4 S4 S4
R4 S4 S4 S0 # S4 S4 S4 S0 S4 S4 S4 S4 S4
R5 S4 S2 S0 S0 # S2 S2 S0 S2 S3 S3 S3 S3
R6 S3 S3 S0 S0 S2 # S1 S0 S0 S0 S3 S3 S3
R7 S4 S3 S0 S0 S2 S3 # S0 S0 S0 S3 S3 S3
R8 S4 S4 S4 S4 S4 S4 S4 # S4 S4 S4 S4 S4
R9 S3 S3 S1 S0 S2 S4 S4 S0 # S2 S0 S3 S4
R10 S4 S4 S0 S0 S1 S4 S4 S0 S2 # S4 S4 S4
R11 S3 S1 S0 S0 S1 S1 S1 S0 S4 S0 # S3 S2
R12 S1 S1 S0 S0 S1 S1 S1 S0 S1 S0 S1 # S2
R13 S1 S0 S0 S0 S1 S1 S1 S0 S0 S0 S2 S2 #

For calculating the strength of the interaction of risks, some expressions which refer to
the numerical linguistic criteria are used to calculate the interaction of risks, including S0 is
0, S1 is 0.25, S2 is 0.5, S3 is 0.75, and S4 is 1. Therefore, the risk interaction Dhj is expressed
in Table 7.

Table 7. Completed matrix of the interaction of risks quantitatively.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

R1 # 0 0 0 0 0.25 0 0 0.25 0 0.25 0.75 0.75
R2 1 # 0 0 0.5 0.25 0.25 0 0.25 0 0.75 0.75 1
R3 1 1 # 1 1 1 1 0 0.75 1 1 1 1
R4 1 1 0 # 1 1 1 0 1 1 1 1 1
R5 1 0.5 0 0 # 0.5 0.5 0 0.5 0.75 0.75 0.75 0.75
R6 0.75 0.75 0 0 0.5 # 0.25 0 0 0 0.75 0.75 0.75
R7 1 0.75 0 0 0.5 0.75 # 0 0 0 0.75 0.75 0.75
R8 1 1 1 1 1 1 1 # 1 1 1 1 1
R9 0.75 0.75 0.25 0 0.5 1 1 0 # 0.5 0 0.75 1
R10 1 1 0 0 0.25 1 1 0 0.5 # 1 1 1
R11 0.75 0.25 0 0 0.25 0.25 0.25 0 1 0 # 0.75 0.5
R12 0.25 0.25 0 0 0.25 0.25 0.25 0 0.25 0 0.25 # 0.5
R13 0.25 0 0 0 0.25 0.25 0.25 0 0 0 0.5 0.5 #
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5.1. A Comparative Study by Metaheuristic Algorithms

Many real-world optimization problems, particularly in the construction industry, are
complex [47]. For these challenging problems, metaheuristic algorithms may be used [48].
There are some benefits to using metaheuristic algorithms [49,50]. They can be applied to
any problem that can be expressed as a function optimization problem [51], are typically
easier to understand and implement [52], can solve larger problems faster [53], are simple
to design and implement [54], are very flexible [55,56], and can be combined with other
techniques [57]. The validation procedure and comparison of algorithms to solve the case
study are discussed in this section. Therefore, ten different metaheuristic are selected
including The ant lion optimizer (ALO) [58], dragonfly algorithm (DA) [59], grasshopper
optimization algorithm (GOA) [60], Harris hawks optimization (HHO) [61], moth-flame op-
timization algorithm (MFO) [62], multi-verse optimizer (MVO) [63], sine cosine algorithm
(SCA) [64], salp swarm Algorithm (SSA) [65], whale optimization algorithm (WOA) [66],
and grey wolf optimizer (GWO) [67]. We have tuned the algorithms’ parameters based on
their main sources to have an unbiased comparison. In this regard, the maximum number
of iterations is set to 200, and the number of populations is set to 100 for all metaheuristics.
Each algorithm is run 60 times, and the results, including the best (B), worst (W), mean
(A), and standard deviation (SD) of the answers, are recorded in Table 8. In addition, after
carefully solving the problem, the value of the mean response distance of each algorithm
from the best-found answer (GAP) is also given in the table. It should be noted that after
solving the problem accurately and the best answers obtained from the algorithms, it was
found that among the 13 existing strategies, due to the budget limitation, the company
considered ten strategies, which are given in Table 9. The coefficient of the utility function
(α) is also assumed to be 0.1. Finally, to select the best algorithm from the employed
methods, convergence analysis (Figure 4), distance from the best answer as mean (Figure 5),
and box and whisker plot (Figure 6) are presented. It is worth mentioning that because the
computational time of the algorithms is very small, about 1.32 s, and on average similar,
the comparison of the solving time of the algorithms has been omitted.

It should be noted that this issue has been considered experimentally and randomly.
For the case study, according to the results of Table 8, the ideal answer for the project’s
desirability is 5.638, which includes the ten answers listed in Table 9. Among the algorithms,
only the MFO has been able to achieve this value, and the rest of the algorithms have
reached a close answer.

Comparison of the convergence diagrams of the algorithms in Figure 4 is illustrated
for our case study with a size 13 risk response strategy. In this case, this diagram shows the
obvious superiority of the MFO as the best algorithm in this comparative study over the
other algorithms. It can be inferred that the convergence optimization behavior of MFO
has a similar performance in comparison with HHO. It should be noted that this trend can
be expressed with a few more phrases due to the greater variety of answers found for a
more large-size problem about the convergence process of algorithms.

Table 8. Outputs of the algorithms.

B W A SD GAP

The ant lion optimizer (ALO) [58] 5.638 4.867 5.505 0.205 1.3E-01
Dragonfly algorithm (DA) [59] 5.638 4.889 5.400 0.174 2.4E-01

Grasshopper optimization algorithm (GOA) [60] 5.492 4.516 5.002 0.253 6.4E-01
Harris hawks optimization (HHO) [61] 5.638 5.492 5.630 0.032 7.3E-03

Moth-flame optimization algorithm (MFO) [62] 5.638 5.638 5.638 0.000 0.0E+00
Multi-verse optimizer (MVO) [63] 5.638 5.250 5.562 0.108 7.6E-02
Sine cosine algorithm (SCA) [64] 5.638 4.894 5.421 0.166 2.2E-01
Salp swarm Algorithm (SSA) [65] 5.638 5.492 5.616 0.052 2.2E-02

The whale optimization algorithm (WOA) [66] 5.638 5.250 5.600 0.085 3.7E-02
Grey wolf optimizer (GWO) [67] 5.638 5.250 5.590 0.084 4.8E-02
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Table 9. Selected optimum strategies.

Optimum Responses Description of Risk Response Strategy

Response strategy #1 (A1) Training for the programming team and employing skilled members to develop the team

Response strategy #3 (A3) Employing a business consultant who is familiar with the business in the organization as a
technical consultant or replacing the project manager

Response strategy #4 (A4) Replacing the consultant or hiring a team along with the current consulting team

Response strategy #5 (A5) Initial needs assessment of infrastructure requirements and hardware outsourcing and its
implementation

Response strategy #6 (A6) Holding meetings for the main members of the organization

Response strategy #7 (A7) An experienced analyst who is familiar with user requirements and using management approaches

Response strategy #8 (A8) Acceptance of changes and hiring a strategist

Response strategy #9 (A9) Advising and motivating middle managers for greater understanding and rewards for more
participating and improvement in a project

Response strategy #10 (A10) Implementation of appropriate punishment and incentive systems in the organization

Response strategy #11 (A11) Providing sufficient resources proper scheduling to transfer data to the new system
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Figure 6. Box and whisker plot of the results obtained with different methods.

In Figure 5, the mean distance from the best answer obtained by the exact method
from CPLEX software is compared for the algorithms. In this criterion, it is clear that the
lower the value, the higher the quality of the algorithm solutions. In this comparison, the
MFO provides the best answer quality. Next to this algorithm, HHO, SSA, WOA, and GWO
are respectively better than other algorithms.

Finally, statistical analysis is used to show the accuracy of the algorithms in addition
to the quality criterion. The standard deviation values of the answers in each iteration
using the Box and whisker plot are used in Figure 6. The more compact and upper the
bars, the more accurate the algorithm. This diagram also testifies to the greater accuracy
of the metaheuristic algorithms like MFO, HHO, and SSA than other algorithms with
similar accuracy.

5.2. Sensitivity Analysis

After solving the model with the aforementioned data using CPLEX software, the final
results for our main decision variables are given in Tables 10 and 11.

Table 10. Chosen responses for the volunteer risks.

yhj R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

A1 0 0 1 1 1 0 0 1 1 1 0 0 0
A2 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 1 0 0 0 0 1 0 0 0 0 0
A4 1 1 1 1 1 1 1 1 1 1 1 1 1
A5 0 0 0 0 0 0 0 0 0 0 0 0 0
A6 1 1 1 1 1 1 1 1 1 1 1 1 1
A7 0 0 1 0 0 0 0 1 0 0 0 0 0
A8 0 0 0 0 0 0 0 0 0 0 0 0 0
A9 0 0 1 1 0 0 0 1 0 0 0 0 0
A10 0 0 1 1 1 0 0 1 1 1 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 0 0 0
A12 0 0 1 1 1 0 0 1 1 1 0 0 0
A13 0 0 1 0 0 0 0 1 0 0 0 0 0

Table 11. The final maximum cost of each risk response.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

zh 6 0 2 13 0 13 2 0 3 6 0 6 2
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The final solution for the objective value is equal to 8534.5. Here is a key parameter in
the validation model to express the model’s sensitivity to input values. The sensitivity of
budget B is measured to perform the sensitivity analysis on the model. According to the
initial tests and analysis, the impact of this factor is much greater than the other parameters
in the model. Therefore, four suggested values are used. Different values for B are given in
Table 12.

Table 12. Sensitivity analysis on the amount of budget.

B Objective Value Selected Optimal Responses

200 8534.5 A1, A3, A4, A6, A7, A9, A10, A12, A13
175 8507.5 A1, A3, A4, A6, A7, A9, A10, A12, A13
150 8478.25 A1, A3, A4, A6, A9, A10, A12
125 8448.25 A1, A4, A6, A9, A10, A12

Based on the mentioned results in Table 12, the object value of the project (Figure 7)
and the number of selected responses (Figure 8) have been decreased. This highlights the
importance of budget constraints on selecting appropriate risk response strategies. The PM
should take care of the budget constraint. For example, in our numerical example, the best
value for the budget is $175 million.
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6. Conclusions and Future Works

In today’s evolving society, the methods of projects that should be completed in the
assigned time and budget are among the most significant factors that must be taken to
compete with other companies. The budget constraints and uncertain cost factors are very
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important for construction projects to maximize the profit for PMs. In this study, we pro-
posed a risk management framework based on PMBOK standards for selecting suitable risk
response strategies for solving a case study in a construction company in Iran. In addition
to our contribution to the development of an optimization model, another novelty is to
provide a comparison among different recent and state of the art metaheuristic algorithms
including ALO, DA, GOA, HHO, MFO, MVO, SCA, SSA, WOA, and GWO. The main
finding in this comparison is the high performance of MFO compared to other metaheuristics.

To justify the steps of our framework, we first identified the potential risks in our
construction project. After that, project risks are analyzed quantitatively and qualitatively.
After identifying the proper risk response strategy for each risk, strategies implementation
costs and effects were determined. The optimization model was created, and its utility
function was determined. Based on our numerical example, we not only solve it by CPLEX
software, but also different metaheuristic algorithms as our optimization model was non-
linear and non-convex due to the utility function. The best risk responses were obtained
with the specific budget in the results. Therefore, the assigned strategies can be used easily
to improve the utility function. It goes without saying that in sensitivity analysis, it was
shown that when the budget decreases, the objective value will decline, and it is against
the model goal.

Although this study creates a significant contribution for risk management frame-
works, some limitations can be considered for our future works. First, the proposed model
can be formulated by robust optimization to tackle the uncertainty and compare it with
our model efficiently. Many other metaheuristic algorithms like the lion optimization
algorithm [68], the red deer algorithm [69], and the social engineering optimizer [70] can be
applied to our optimization model and compared with our results. Finally, more real-life
constraints like human resource constraints [71] and the criterion of lost workdays [72] can
be formulated and added to our proposed optimization model.
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Abbreviations
All abbreviations which have been used in the paper are defined as below:

PMBOK Project management body of knowledge
ALO Ant lion optimizer
DA Dragonfly algorithm
GOA Grasshopper optimization algorithm
HHO Harris hawks optimization
MFO Moth-flame optimization
MVO Multi-verse optimizer
SCA Sine cosine algorithm
SSA Salp swarm algorithm
WOA Whale optimization algorithm
GWO Grey wolf optimizer
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CPLEX C programming language for the simplex method
RRA Risk response action
ACO Ant colony optimization
MCDM Multi-criteria decision making
TOPSIS Technique for order of preference by similarity to the ideal solution
SPA Set pair analysis
CFCCP Credibility-based fuzzy chance-constrained programming
PM Project manager
ERP Enterprise resource planning
B Best solution
W Worst solution
A Average solution
GAP Gap deviation distance
SD Standard deviation
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28. Buganová, K.; Šimíčková, J. Risk management in traditional and agile project management. Transp. Res. Procedia 2019, 40, 986–993.
[CrossRef]

29. Shoar, S.; Nazari, A. An optimization framework for risk response actions selection using hybrid ACO and FTOPSIS. Sci. Iran.
2019, 26, 1763–1777. [CrossRef]

30. Zhang, Y.; Zuo, F.; Guan, X. Integrating case-based analysis and fuzzy optimization for selecting project risk response actions.
Phys. A Stat. Mech. Its Appl. 2020, 545, 123578. [CrossRef]

31. Chaouch, S.; Mejri, A.; Ghannouchi, S.A. A framework for risk management in Scrum development process. Procedia Comput. Sci.
2019, 164, 187–192. [CrossRef]

32. Beltrão, L.M.P.; Carvalho, M.T.M. Prioritizing Construction Risks Using Fuzzy AHP in Brazilian Public Enterprises. J. Constr. Eng.
Manag. 2019, 145, 05018018. [CrossRef]

33. Ahmadi-Javid, A.; Fateminia, S.H.; Gemünden, H.G. A Method for Risk Response Planning in Project Portfolio Management.
Proj. Manag. J. 2019, 51, 77–95. [CrossRef]

34. Zhang, Q.; Guo, H.; Liao, P.-C.; Fang, D.; Fu, M. Optimizing safety-measure combinations to address construction risks. Int. J.
Occup. Saf. Ergon. 2020, 26, 1–17. [CrossRef]

35. Wang, L.; Sun, T.; Qian, C.; Goh, M.; Mishra, V.K. Applying social network analysis to genetic algorithm in optimizing project risk
response decisions. Inf. Sci. 2020, 512, 1024–1042. [CrossRef]

36. Mokhtari, G.; Aghagoli, F. Project Portfolio Risk Response Selection Using Bayesian Belief Networks. Iran. J. Manag. Stud. 2020,
13, 197–219.

37. Boral, S.; Howard, I.; Chaturvedi, S.K.; McKee, K.; Naikan, V.N.A. An integrated approach for fuzzy failure modes and effects
analysis using fuzzy AHP and fuzzy MAIRCA. Eng. Fail. Anal. 2020, 108, 104195. [CrossRef]

38. Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Fathollahi-Fard, A.M.; Antucheviciene, J.; Nayeri, S. An integrated approach for a sustainable
supplier selection based on Industry 4.0 concept. Environ. Sci. Pollut. Res. 2021, 1–19. [CrossRef] [PubMed]

39. Guan, X.; Servranckx, T.; Vanhoucke, M. An analytical model for budget allocation in risk prevention and risk protection. Comput.
Ind. Eng. 2021, 161, 107657. [CrossRef]

40. Yan, P.; Liu, J.; Zhao, X.; Skitmore, M. Risk response incorporating risk preferences in international construction projects. Eng.
Constr. Archit. Manag. 2021. [CrossRef]

41. Zhang, Y.; Guan, X. Budget allocation decisions for project risk response. Kybernetes 2021, 50, 3201–3221. [CrossRef]
42. Parsaei Motamed, M.; Bamdad, S. A multi-objective optimization approach for selecting risk response actions: Considering

environmental and secondary risks. OPSEARCH 2021, 1–38. [CrossRef]
43. Institute, P.M. A Guide to the Project Management Body of Knowledge (PMBOK Guide); Project Management Institute: Newton Square,

PA, USA, 2017.
44. Habibi Rad, M.; Mojtahedi, M.; Ostwald, M.J. The Integration of Lean and Resilience Paradigms: A Systematic Review Identifying

Current and Future Research Directions. Sustainability 2021, 13, 8893. [CrossRef]
45. Sahinidis, N.V. Mixed-Integer Nonlinear Programming 2018; Springer: Berlin/Heidelberg, Germany, 2019; Volume 20, pp. 301–306.
46. Zhang, Y.; Zuo, F. Selection of risk response actions considering risk dependency. Kybernetes 2016, 45, 1652–1667. [CrossRef]
47. Yazdani, M.; Kabirifar, K.; Frimpong, B.E.; Shariati, M.; Mirmozaffari, M.; Boskabadi, A. Improving construction and demolition

waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. J. Clean. Prod. 2021,
280, 124138. [CrossRef]

48. Morasaei, A.; Ghabussi, A.; Aghlmand, S.; Yazdani, M.; Baharom, S.; Assilzadeh, H. Simulation of steel–concrete composite floor
system behavior at elevated temperatures via multi-hybrid metaheuristic framework. Eng. Comput. 2021, 1–16. [CrossRef]

49. Yazdani, M.; Jolai, F.; Taleghani, M.; Yazdani, R. A modified imperialist competitive algorithm for a two-agent single-machine
scheduling under periodic maintenance consideration. Int. J. Oper. Res. 2018, 32, 127–155. [CrossRef]

http://doi.org/10.1061/(ASCE)CO.1943-7862.0001486
http://doi.org/10.1080/15623599.2019.1624678
http://doi.org/10.1057/palgrave.jors.2601029
http://doi.org/10.1016/j.ins.2018.07.013
http://doi.org/10.1016/j.ijproman.2017.11.002
http://doi.org/10.1061/(ASCE)ME.1943-5479.0000603
http://doi.org/10.1016/j.dss.2019.05.002
http://doi.org/10.1016/j.trpro.2019.07.138
http://doi.org/10.24200/sci.2018.20225
http://doi.org/10.1016/j.physa.2019.123578
http://doi.org/10.1016/j.procs.2019.12.171
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001606
http://doi.org/10.1177/8756972819866577
http://doi.org/10.1080/10803548.2020.1847500
http://doi.org/10.1016/j.ins.2019.10.012
http://doi.org/10.1016/j.engfailanal.2019.104195
http://doi.org/10.1007/s11356-021-17445-y
http://www.ncbi.nlm.nih.gov/pubmed/34792774
http://doi.org/10.1016/j.cie.2021.107657
http://doi.org/10.1108/ECAM-03-2019-0132
http://doi.org/10.1108/K-03-2020-0188
http://doi.org/10.1007/s12597-021-00541-5
http://doi.org/10.3390/su13168893
http://doi.org/10.1108/K-05-2016-0096
http://doi.org/10.1016/j.jclepro.2020.124138
http://doi.org/10.1007/s00366-020-01228-z
http://doi.org/10.1504/IJOR.2018.092011


Buildings 2022, 12, 98 19 of 19

50. Sohani, A.; Naderi, S.; Torabi, F.; Sayyaadi, H.; Golizadeh Akhlaghi, Y.; Zhao, X.; Talukdar, K.; Said, Z. Application based
multi-objective performance optimization of a proton exchange membrane fuel cell. J. Clean. Prod. 2020, 252, 119567. [CrossRef]

51. Yazdani, M.; Ghodsi, R. Invasive weed optimization algorithm for minimizing total weighted earliness and tardiness penalties on
a single machine under aging effect. Int. Robot. Autom. J. 2017, 2, 1–5. [CrossRef]

52. Fathollahi-Fard, A.M.; Dulebenets, M.A.; Hajiaghaei–Keshteli, M.; Tavakkoli-Moghaddam, R.; Safaeian, M.; Mirzahosseinian, H.
Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry
under uncertainty. Adv. Eng. Inform. 2021, 50, 101418. [CrossRef]

53. Yazdani, M.; Aleti, A.; Khalili, S.M.; Jolai, F. Optimizing the sum of maximum earliness and tardiness of the job shop scheduling
problem. Comput. Ind. Eng. 2017, 107, 12–24. [CrossRef]

54. Yazdani, M.; Khalili, S.M.; Babagolzadeh, M.; Jolai, F. A single-machine scheduling problem with multiple unavailability
constraints: A mathematical model and an enhanced variable neighborhood search approach. J. Comput. Des. Eng. 2017, 4, 46–59.
[CrossRef]

55. Zhang, C.; Fathollahi-Fard, A.M.; Li, J.; Tian, G.; Zhang, T. Disassembly Sequence Planning for Intelligent Manufacturing Using
Social Engineering Optimizer. Symmetry 2021, 13, 663. [CrossRef]

56. Sohani, A.; Naderi, S.; Torabi, F. Comprehensive comparative evaluation of different possible optimization scenarios for a polymer
electrolyte membrane fuel cell. Energy Convers. Manag. 2019, 191, 247–260. [CrossRef]

57. Azadeh, A.; Seif, J.; Sheikhalishahi, M.; Yazdani, M. An integrated support vector regression–imperialist competitive algorithm
for reliability estimation of a shearing machine. Int. J. Comput. Integr. Manuf. 2016, 29, 16–24. [CrossRef]

58. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
59. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
60. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
61. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
62. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
63. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
64. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
65. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
66. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
67. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
68. Yazdani, M.; Jolai, F. Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2016, 3,

24–36. [CrossRef]
69. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. Red deer algorithm (RDA): A new nature-inspired

meta-heuristic. Soft Comput. 2020, 24, 14637–14665. [CrossRef]
70. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. The social engineering optimizer (SEO). Eng. Appl.

Artif. Intell. 2018, 72, 267–293. [CrossRef]
71. Yazdani, M.; Kabirifar, K.; Fathollahi-Fard, A.M.; Mojtahedi, M. Production scheduling of off-site prefabricated construction

components considering sequence dependent due dates. Environ. Sci. Pollut. Res. 2021, 1–17. [CrossRef]
72. Fathollahi-Fard, A.M.; Woodward, L.; Akhrif, O. Sustainable distributed permutation flow-shop scheduling model based on a

triple bottom line concept. J. Ind. Inf. Integr. 2021, 24, 100233. [CrossRef]

http://doi.org/10.1016/j.jclepro.2019.119567
http://doi.org/10.15406/iratj.2017.02.00006
http://doi.org/10.1016/j.aei.2021.101418
http://doi.org/10.1016/j.cie.2017.02.019
http://doi.org/10.1016/j.jcde.2016.08.001
http://doi.org/10.3390/sym13040663
http://doi.org/10.1016/j.enconman.2019.04.005
http://doi.org/10.1080/0951192X.2014.1002810
http://doi.org/10.1016/j.advengsoft.2015.01.010
http://doi.org/10.1007/s00521-015-1920-1
http://doi.org/10.1016/j.advengsoft.2017.01.004
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1007/s00521-015-1870-7
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.jcde.2015.06.003
http://doi.org/10.1007/s00500-020-04812-z
http://doi.org/10.1016/j.engappai.2018.04.009
http://doi.org/10.1007/s11356-021-16285-0
http://doi.org/10.1016/j.jii.2021.100233

	Introduction 
	Literature Review 
	Problem Definition 
	Proposed Risk Management Framework 
	A Case Study of a Construction Company in Iran 
	A Comparative Study by Metaheuristic Algorithms 
	Sensitivity Analysis 

	Conclusions and Future Works 
	References

