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Abstract—Effort estimation often requires generalizing from a small number of historical projects. Generalization from such limited

experience is an inherently underconstrained problem. Hence, the learned effort models can exhibit large deviations that prevent

standard statistical methods (e.g., t-tests) from distinguishing the performance of alternative effort-estimation methods. The

COSEEKMO effort-modeling workbench applies a set of heuristic rejection rules to comparatively assess results from alternative

models. Using these rules, and despite the presence of large deviations, COSEEKMO can rank alternative methods for generating

effort models. Based on our experiments with COSEEKMO, we advise a new view on supposed “best practices” in model-based effort

estimation: 1) Each such practice should be viewed as a candidate technique which may or may not be useful in a particular domain,

and 2) tools like COSEEKMO should be used to help analysts explore and select the best method for a particular domain.

Index Terms—Model-based effort estimation, COCOMO, deviation, data mining.

Ç

1 INTRODUCTION

EFFORT estimation methods can be divided into model-
based and expert-based methods. Model-based methods

use some algorithm to summarize old data and make
predictions about new projects. Expert-based methods use
human expertise (possibly augmented with process guide-
lines, checklists, and data) to generate predictions.

The list of supposed “best” practices for model and
effort-based estimation is dauntingly large (see Fig. 1). A
contemporary software engineer has little guidance on
which of these list items works best, which are essential,
and which can be safely combined or ignored. For example,
numerous studies just compare minor algorithm changes in
model-based estimation (e.g., [1]).

Why are there too few published studies that empirically
check which methods are “best”? The thesis of this paper is
that there is something fundamental about effort estimation
that, in the past, has precluded comparative assessment.
Specifically, effort estimation models suffer from very large
performance deviations. For example, using the methods
described later in this paper, we conducted 30 trials where
10 records (at random) were selected as a test set. Effort
models were built on the remaining records and then
applied to the test set. The deviations seen during testing
were alarmingly large. In one extreme case, the standard
deviation on the error was enormous (649 percent; see the
last row of Fig. 2).

These large deviations explain much of the contradictory
results in the effort estimation literature. Jorgensen reviews

15 studies that compare model-based to expert-based
estimation. Five of those studies found in favor of expert-
based methods, five found no difference, and five found in
favor of model-based estimation [2]. Such diverse conclu-
sions are to be expected if models exhibit large deviations,
since large deviations make it difficult to distinguish the
performance of different effort estimation models using
standard statistical methods (e.g., t-tests). If the large
deviation problem cannot be tamed, then the expert and model-
based effort estimation communities cannot comparatively assess
the merits of different supposedly best practices.

The rest of this paper offers a solution to the large
deviation problem. After a discussion of the external
validity and some of the background of this study, some
possible causes of large deviations will be reviewed. Each
cause will suggest operations that might reduce the
deviation. All these operations have been implemented in
our new COSEEKMO toolkit. The design of COSEEKMO is
discussed and its performance is compared with the Fig. 1
results. It will be shown that COSEEKMO’s operators
reduce large deviations and also improve mean errors for
model-based estimation.

2 EXTERNAL VALIDITY

As with any empirical study, our conclusions are biased
according to the analysis method. In our case, that bias
expresses itself in four ways: biases in the method, biases in
the model, biases in the data, and biases in the selection of
data miners (e.g., linear regression, model trees, etc.).

Biases in the method. The rest of this paper explores
model-based, not expert-based, methods. The comparative
evaluation of model-based versus expert-based methods
must be left for future work. Before we can compare any
effort estimation methods (be they model-based or expert-
based), we must first tame the large deviation problem. For
more on expert-based methods, see [2], [6], [9], [16]

Biases in the model. This study uses COCOMO data sets
since that was the only public domain data we could access.
Nevertheless, the techniques described here can easily be
generalized to other models. For example, here, we use
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COSEEKMO to select best parametric methods in the

COCOMO format [3], [4], but it could just as easily be used

to assess

. other model-based tools, like PRICE-S [17], SEER-
SEM [18], or SLIM [19], and

. parametric versus nonlinear methods, e.g., a neural
net or a genetic algorithm.

Biases in the data. Issues of sampling bias threaten any
data mining experiment; i.e., what matters there may not be
true here. For example, some of the data used here comes
from NASA and NASA works in a particularly unique
market niche. Nevertheless, we argue that results from
NASA are relevant to the general software engineering
industry. NASA makes extensive use of contractors. These
contractors service many other industries. These contractors
are contractually obliged (ISO-9001) to demonstrate their
understanding and usage of current industrial best prac-
tices. For these reasons, noted researchers such as Basili

et al. [20] have argued that conclusions from NASA data are
relevant to the general software engineering industry.

The data bias exists in another way: Our model-based
methods use historical data and so are only useful in
organizations that maintain this data on their projects. Such
data collection is rare in organizations with low process
maturity. However, it is common elsewhere, e.g., among
government contractors whose contract descriptions in-
clude process auditing requirements. For example, it is
common practice at NASA and the US Department of
Defense to require a model-based estimate at each project
milestone. Such models are used to generate estimates or to
double-check an expert-based estimate.

Biases in the selection of data miners. Another source of bias
in this study is the set of data miners explored by this study
(linear regression, model trees, etc.). Data mining is a large
and active field and any single study can use only a small
subset of the known data mining algorithms. For example,
this study does not explore the case-based reasoning
methods favored by Shepperd and Schofield [9]. Pragma-
tically, it is not possible to explore all possible learners. The
best we can do is to define our experimental procedure and
hope that other researchers will apply it using a different set
of learners. In order to encourage reproducibility, most of
the data used in this study is available online.1

3 BACKGROUND

3.1 COCOMO

The case study material for this paper uses COCOMO-
format data. COCOMO (the COnstructive COst MOdel)
was originally developed by Barry Boehm in 1981 [3] and
was extensively revised in 2000 [4]. The core intuition
behind COCOMO-based estimation is that, as a program
grows in size, the development effort grows exponentially.
More specifically,

effortðpersonmonthsÞ ¼ a $ KLOCb
! "

$
Y

j

EMj

 !

: ð1Þ
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1. See http://unbox.org/wisp/trunk/cocomo/data.

Fig. 1. Three different categories of effort estimation best practices:

(top) expert-based, (middle) model-based, and (bottom) methods

that combine expert and model-based.

Fig. 2. Some effort modeling results, sorted by the standard deviation of
the test error. Effort models were learned using Boehms’s COCOMO-I
“local calibration” procedure, described in Section 4.1 and Appendix D.



Here, KLOC is thousands of delivered source instructions.

KLOC can be estimated directly or via a function point

estimation. Function points are a product of five defined

data components (inputs, outputs, inquiries, files, external

interfaces) and 14 weighted environment characteristics

(data comm, performance, reusability, etc.) [4], [21]. A

1,000-line Cobol program would typically implement about

14 function points, while a 1,000-line C program would

implement about seven.2

In (1), EMj is an effort multiplier such as cplx (complexity)

or pcap (programmer capability). In order to model the

effects of EMj on development effort, Boehm proposed

reusing numeric values which he generated via regression

on historical data for each value of EMi (best practice #13 in

Fig. 1).
In practice, effort data forms exponential distributions.

Appendix B describes methods for using such distributions

in effort modeling.
Note that, in COCOMO 81, Boehm identified three

common types of software: embedded, semidetached, and

organic. Each has their own characteristic “a” and “b” (see

Fig. 3). COCOMO II ignores these distinctions. This study

used data sets in both the COCOMO 81 and COCOMO II

format. For more on the differences between COCOMO 81

and COCOMO II, see Appendix A.

3.2 Data

In this study, COSEEKMO built effort estimators using all

or some part of data from three sources (see Fig. 4). Coc81 is

the original COCOMO data used by Boehm to calibrate

COCOMO 81. CocII is the proprietary COCOMO II data set.

Nasa93 comes from a NASA-wide database recorded in the

COCOMO 81 format. This data has been in the public

domain for several years but few have been aware of it. It

can now be found online in several places including the

PROMISE (Predictor Models in Software Engineering) Web

site.3 Nasa93 was originally collected to create a NASA-

tuned version of COCOMO, funded by the Space Station

Freedom Program. Nasa93 contains data from six NASA

centers, including the Jet Propulsion Laboratory. Hence, it

covers a very wide range of software domains, develop-

ment processes, languages, and complexity, as well as

fundamental differences in culture and business practices

between each center. All of these factors contribute to the

large variances observed in this data set.

When the nasa93 data was collected, it was required that
there be multiple interviewers with one person leading the
interview and one or two others recording and checking
documentation. Each data point was cross-checked with
either official records or via independent subjective inputs
from other project personnel who fulfilled various roles on
the project. After the data was translated into the
COCOMO 81 format, the data was reviewed with those
who originally provided the data. Once sufficient data
existed, the data was analyzed to identify outliers and the
data values were verified with the development teams once
again if deemed necessary. This typically required from two
to four trips to each NASA center. All of the supporting
information was placed in binders, which we occasionally
reference even today.

In summary, the large deviation seen in the nasa93 data
of Fig. 2 is due to the wide variety of projects in that data set
and not to poor data collection. Our belief is that nasa93 was
collected using methods equal to or better than standard
industrial practice. If so, then industrial data would suffer
from deviations equal to or larger than those in Fig. 2.

3.3 Performance Measures

The performance of models generating continuous output
can be assessed in many ways, including PRED(30), MMRE,
correlation, etc. PRED(30) is a measure calculated from the
relative error, or RE, which is the relative size of the
difference between the actual and estimated value. One way
to view these measures is to say that training data contains
records with variables 1; 2; 3; . . . ; N and performance mea-
sures add additional new variables N þ 1; N þ 2; . . . .

The magnitude of the relative error, or MRE, is the
absolute value of that relative error:

MRE ¼ jpredicted& actualj=actual:

The mean magnitude of the relative error, or MMRE, is the
average percentage of the absolute values of the relative
errors over an entire data set. MMRE results are shown in
Fig. 2 in the mean% average test error column. Given T tests,
the MMRE is calculated as follows:

MMRE ¼
100

T

X

T

i

jpredictedi & actualij
actuali

:

PRED(N) reports the average percentage of estimates
that were within N percent of the actual values. Given
T tests, then

PREDðNÞ ¼
100

T

X

T

i

1 if MREi ' N
100

0 otherwise:

#

For example, PREDð30Þ ¼ 50% means that half the esti-
mates are within 30 percent of the actual.

Another performance measure of a model predicting
numeric values is the correlation between predicted and
actual values. Correlation ranges from þ1 to &1 and a
correlation of þ1means that there is a perfect positive linear
relationship between variables. Appendix C shows how to
calculate correlation.

All these performance measures (correlation, MMRE,
and PRED) address subtly different issues. Overall, PRED
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2. http://www.qsm.com/FPGearing.html.
3. http://promise.site.uottawa.ca/SERepository/ and http://unbox.

org/wisp/trunk/cocomo/data.

Fig. 3. Standard COCOMO 81 development modes.



measures how well an effort model performs, while MMRE

measures poor performance. A single large mistake can

skew the MMREs and not effect the PREDs. Shepperd and

Schofield comment that

MMRE is fairly conservative with a bias against over-
estimates while PRED(30) will identify those prediction
systems that are generally accurate but occasionally wildly
inaccurate [9, p. 736].

Since they measure different aspects of model perfor-

mance, COSEEKMO uses combinations of PRED, MMRE,

and correlation (using the methods described later in this

paper).

4 DESIGNING COSEEKMO

When the data of Fig. 4 was used to train a COCOMO effort

estimation model, the performance exhibited the large

deviations seen in Fig. 2. This section explores sources

and solutions of those deviations.

4.1 Not Enough Records for Training

Boehm et al. caution that learning on a small number of

records is very sensitive to relatively small variations in the

records used during training [4, p. 157]. A rule of thumb in

regression analysis is that 5 to 10 records are required for

every variable in the model [22]. COCOMO 81 has

15 variables. Therefore, according to this rule:

. Seventy-five to 150 records are needed for COCO-
MO 81 effort modeling.

. Fig. 2 showed so much variation in model perfor-
mance because the models were built from too few
records.

It is impractical to demand 75 to 150 records for training

effort models. For example, in this study and in numerous

other published works (e.g., [23], [4, p. 180], [10]), small

training sets (i.e., tens, not hundreds, of records) are the
norm for effort estimation. Most effort estimation data sets
contain just a few dozen records or less.4

Boehm’s solution to this problem is local calibration
(hereafter, LC) [3, pp. 526–529]. LC reduces the COCOMO
regression problem to just a regression over the two “a” and
“b” constants of (1). Appendix D details the local calibration
procedure.

In practice, LC is not enough to tame the large deviations
problem. Fig. 2 was generated via LC. Note that, despite the
restriction of the regression to just two variables, large
deviations were still generated. Clearly, COSEEKMO needs
to look beyond LC for a solution to the deviation problem.

4.2 Not Enough Records for Testing

The experiment results displayed in Fig. 2 had small test
sets: just 10 records. Would larger test sets yield smaller
deviations?

Rather than divide the project data into training and test
sets, an alternative would be to train and test on all
available records. This is not recommended practice. If the
goal is to understand how well an effort model will work on
future projects, it is best to assess the models via holdout
records not used in training. Ferens and Christensen [23]
report studies where the same project data was used to
build effort models with 0 percent and 50 percent holdouts.
A failure to use a holdout sample overstated a model’s
accuracy on new examples. The learned model had a
PRED(30) of 57 percent over all the project data but a
PRED(30) of only 28 percent on the holdout set.

The use of holdout sets is common practice [10], [24]. A
standard holdout study divides the project data into a
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4. Exceptions: In a personal communication, Donald Reifer reports that
his company’s databases contain thousands of records. However, this
information in these larger databases is proprietary and generally
inaccessible.

Fig. 4. Data sets (top) and parts (bottom) of the data used in this study.



66 percent training set and a 33 percent test set. Our project
data sets ranged in size from 20 to 200 and, so, 33 percent
divisions would generate test sets ranging from 7 to
60 records. Lest this introduced a conflating factor to this
study, we instead used test sets of fixed size.

These fixed test sets must be as small as possible.
Managers assess effort estimators via their efficacy in
some local situation. If a model fails to produce accurate
estimates, then it is soon discarded. The following principle
seems appropriate:

Effort estimators should be assessed via small test sets since that is
how they will be assessed in practice.

Test sets of size 10 were chosen after conducting the
experiment of Fig. 5. In that figure, 30 times,X records were
selected at random to be the holdout set and LC was
applied to the remaining records. As X increased, the
standard deviation of the PRED(30) decreased (and most of
that decrease occurred in the range X ¼ 1 to X ¼ 5). Some
further decrease was seen up toX ¼ 20, but, in adherence to
the above principle (and after considering certain prior
results [10]), COSEEKMO used a fixed test set of size 10.

4.3 Wrong Assumptions

Every modeling framework makes assumptions. The wrong
assumptions can lead to large deviation between predicted
and actual values (such as those seen in Fig. 2) when the
wrong equations are being forced to fit the project data.

In the case of COCOMO, those assumptions come in two
forms: the constants and the equations that use the
constants. For example, local calibration assumes that the
values for the scale factors and effort multipliers are correct
and we need only to adjust “a” and “b.” In order to check
this assumption, COSEEKMO builds models using both the
precise values and the simpler proximal values (the precise
unrounded values and the proximal values are shown in
Appendix E).

Another COCOMO assumption is that the development
effort conforms to the effort equations of (1) (perhaps
linearized as described in Appendix B). Many regression
methods make this linear assumption, i.e., they fit the
project data to a single straight line. The line offers a set of
predicted values; the distance from these predicted values
to the actual values is a measure of the error associated with
that line. Linear regression tools, such as the least squares
regression package used below (hereafter, LSR), search for
lines that minimize that sum of the squares of the error.

Linearity is not appropriate for all distributions. While
some nonlinear distributions can be transformed into linear
functions, others cannot. A linear assumption might suffice

for the line shown in the middle of Fig. 6. However, for the
square points, something radically alters the “Y ¼ fðXÞ”
around X ¼ 20. Fitting a single linear function to the white
and black square points would result in a poorly fitting
model.

A common method for handling arbitrary distributions
to approximate complex distributions is via a set of
piecewise linear models. Model tree learners, such as
Quinlan’s M5P algorithm [25], can learn such piecewise
linear models. M5P also generates a decision tree describing
when to use which linear model. For example, M5P could
represent the squares in Fig. 6 as two linear models in the
model tree shown on the right of that figure.

Accordingly, COSEEKMO builds models via LC (local
calibration) and LSR (least squares linear regression), as
well as M5P (model trees), using either the precise
(unrounded) or proximal COCOMO numerics.

4.4 Model Too Big

Another way to reduce deviations is to reduce the number
of variables in a model. Miller makes a compelling
argument for such pruning: Decreasing the number of
variables decreases the deviation of a linear model learned
by minimizing least squares error [14]. That is, the fewer the
columns, the more restrained the model predictions. In
results consistent with Miller’s theoretical results, Kirsopp
and Shepperd [15] and Chen et al. [12] report that variable
pruning improves effort estimation.

COSEEKMO’s variable pruning method is called the
“WRAPPER” [26]. The WRAPPER passes different subsets
of variables to some oracle (in our case, LC/LSR/M5P) and
returns the subset which yields best performance (for more
details on the WRAPPER, see Appendix F). The WRAPPER
is thorough but, theoretically, it is quite slow since (in the
worst case) it has to explore all subsets of the available
columns. However, all the project data sets in this study are
small enough to permit the use of the WRAPPER.

4.5 Noise and Multiple-Correlations

Learning an effort estimation model is easier when the
learner does not have to struggle with fitting the model to
confusing “noisy” project data (i.e., when the project data
contains spurious signals not associated with variations to
projects). Noise can come from many sources such as
clerical errors or missing variable values. For example,
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Fig. 5. Effects of test set size on PRED(30) for nasa93.

Fig. 6. Linear and nonlinear distributions shown as a line and squares

(respectively).



organizations that only build word processors may have
little project data on software requiring high reliability.

On the other hand, if two variables are tightly correlated,
then using both diminishes the likelihood that either will
attain significance. A repeated result in data mining is that
pruning some correlated variables increases the effective-
ness of the learned model (the reasons for this are subtle
and vary according to which particular learner is being
used [27]).

COSEEKMO handles noise and multiple correlations via
the WRAPPER. Adding a noisy or multiply correlated
variable would not improve the performance of the effort
estimator, so the WRAPPER would ignore them.

4.6 Algorithm

COSEEKMO explores the various effort estimation methods
described above. Line 03 of COSEEKMO skips all subsets of
the project data with less than 20 records (10 for training, 10
for testing). If not skipped, then line 08 converts symbols
like “high” or “very low” to numerics using the precise or
proximal cost drivers shown in Appendix E.

The print statements from each part are grouped by the
experimental treatment, i.e., some combination of

treatment ¼< Datum;Numbers; Learn; Subset > :

. line 01 picks the Datum,

. line 08 picks the Numbers,

. line 21 picks the Learner, and

. line 18 picks the size of the variables Subset
ðjSubsetjÞ.

For the COCOMO 81 project data sets, if jSubsetj ¼ 17,
then the learner used the actual effort, lines of code, and all
15 effort multipliers. Smaller subsets (i.e., jSubsetj < 17)
indicate COCOMO 81 treatments where the WRAPPER
reported that some subset of the variables might be worth
exploring. For the COCOMO II project data sets, the
analogous thresholds are jSubsetj ¼ 24 and jSubsetj < 24.

In Experimental Methods for Artificial Intelligence, Cohen
advises comparing the performance of a supposedly more
sophisticated approach against a simpler “straw man”
method [28, p. 81]. The rules of Fig. 7 hence include “straw
man” tests. First, COSEEKMO is superfluous if estimates
learned from just lines of code perform as well as any other
method. Hence, at line 17, we ensure that one of the variable
subsets explored is just lines of code and effort. Results
from this “straw man” are recognizable when the variable
subset size is 2; i.e., jSubsetj ¼ 2.

Secondly,COSEEKMOis superfluous if it is outperformed
by COCOMO 81. To check this, off-the-shelf COCOMO 81
(i.e., (1)) is applied to theCOCOMO81project data, assuming
that the software is an embedded system (line 12), a
semidetached system (line 13), or an organic (line 14) system.
For these assumptions, (1) is applied using the appropriate
“a” and “b” values taken from Fig. 3. In order to distinguish
these results from the rest, they are labeledwith a Learn set as
“e,” sd,” or “org” for “embedded,” ”semidetached,” or
“organic” (this second “straw man” test was omitted for
COCOMO II since “embedded, semidetached, organic” are
only COCOMO 81 concepts).

4.7 Rejection Rules

COSEEKMO collects the data generated by the print

statements of Fig. 7’s rejection rules and sorts those results

by treatment. The values of different treatments are then

assessed via a set of rejection rules.
The rejection rules act like contestants in a competition

where “losers” must be ejected from the group. Treatments

are examined in pairs and, each time the rules are applied,

one member of the pair is ejected. This process repeats until

none of the rules can find fault with any of the remaining

treatments. When the rules stop firing, all the surviving

treatments are printed.
The five rules in our current system appear in the worse

function of Fig. 8:

. Rule1 is a statistical test condoned by standard
statistical textbooks. If a two-tailed t-test reports that
the means of two treatments are statistically differ-
ent, then we can check if one mean is less than the
other.

. Rule2 checks for correlation, i.e., what treatments
track best between predicted and actual values.

. Rule3 checks for the size of the standard deviation
and is discussed below.

. Rule4 was added because PRED is a widely used
performance measure for effort models [6].

. Rule5 rejects treatments that have similar perfor-
mance but use more variables.

Since these rules are the core of COSEEKMO, we wrote

them with great care. One requirement that we had was that

the rules could reproduce at least one historical expert effort

estimation study. As discussed below, the current set of

rejection rules can reproduce Boehm’s 1981 COCOMO 81

analysis (while an earlier version of the rules favored

treatments that were radically different from those used by

Boehm).
The ordering of tests in Fig. 8’s worse function imposes a

rule priority (lower rules can fire only if higher rules fail).
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Fig. 7. COSEEKMO: generating models. For a definition of the project

data parts referred to on line 2, see Fig. 4.



Well-founded statistical tests are given higher priority than

heuristic tests. Hence, rule1 is listed first and rule4 and rule5

are last. Rule2was made higher priority than rule3 since that

prioritization could still reproduce Boehm’s 1981 result for

embedded and organic systems.
This prioritization influences how frequently the differ-

ent rules are applied. As shown in Fig. 9, lower priority

rules (e.g., rule5) fire far less frequently that higher priority

rules (e.g., rule1) since the lower priority rules are only

tested when all the higher priority rules have failed.

5 EXPERIMENTS

Fig. 10 shows the survivors after running the rejection rules

of Fig. 8 on those parts of coc81, nasa93, and cocII with 20 or

more records. Several aspects of that figure are noteworthy.

First, COSEEKMO’s rejection rules were adjusted till they

concurred with Boehm’s 1981 analysis. Hence, there are no

surprises in the coc81 results. Coc81 did not require any of

COSEEKMO’s advanced modeling techniques (model trees,

or the WRAPPER); i.e., this study found nothing better than

the methods published in 1981 for processing the COCO-

MO 81 project data. For example:

. The embedded and organic “a” and “b” values
worked best for coc81 embedded and organic
systems (rows 4 and 5).

. Local calibration was called only once for coc81.all
(row 6) and this is as expected. Coc81.all is a large
mix of different project types so it is inappropriate to
use canned values for embedded, semidetached, or
organic systems.

Since COSEEKMO’s rules were tuned to reproduce
Boehm’s COCOMO 81 analysis, it is hardly surprising that
the COCOMO II results also use Boehm techniques: lines 20
to 28 of Fig. 10 all use Boehm’s preferred local calibration
(LC) method.

Second, COSEEKMO can reduce both the standard
deviation and the mean estimate error. For example,
COSEEKMO reduces the {min, median, max} MRE mean
results from {43, 58, 188} percent (in Fig. 2) to {22, 38,
64} percent (in Fig. 10). But the reductions in standard
deviation are far larger and, given the concerns of this
paper, far more significant. Fig. 2 showed that Boehm’s
local calibration method yielded models from nasa93 with
{min, median, max} MRE standard deviations of
{45,157,649} percent (respectively). However, using CO-
SEEKMO, Fig. 10 shows that the nasa93 {min, median, max}
MRE standard deviations were {20, 39, 100} percent.

Third, in 14 cases (rows 8, 9, 12, 13, 15, 16, 17, 18, 21, 22,
23, 26, 27, and 28) the WRAPPER discarded, on average,
five to six variables and sometimes many more (e.g., in
rows 9, 13, 22, and 27, the surviving models discarded
nearly half the variables). This result, together with the last
one, raises concerns for those that propose changes to
business practices based on the precise COCOMO numerics
published in the standard COCOMO texts [3], [4]. Before
using part of an estimation model to make a business case
(e.g., such as debating the merits of sending analysts to
specialized training classes), it is advisable to check if that
part of the standard COCOMO model is culled by better
effort models.

Fourth, many of the results in Fig. 10 use nonstandard
effort estimation methods. As mentioned above, in 14 ex-
periments, the WRAPPER was useful; i.e., some of the
standard COCOMO attributes were ignored. Also, in four
cases, the best effort models were generated using linear
regression (rows 12, 15, and 16) or model trees (row 13).
Further, in six cases (rows 9, 10, 12, 16, 22, and 28),
COSEEKMO found that the precise COCOMO numerics
were superfluous and that the proximal values sufficed.
That is, reusing regression parameters learned from prior
projects was not useful. More generally, standard effort
estimation methods are not optimal in all cases.

Fifth, even though COSEEKMO has greatly reduced the
variance in NASA project data, the deviations for the NASA
data are much larger than with COCOMO. As discussed in
Section 3.2, the nasa93 data set comes from across the NASA
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Fig. 8. COSEEKMO’s current rejection rules. Error refers to the MMRE.

Correlation refers to the connection of the expected to actual effort (see

Appendix C). Worse’s statistically difference test compares two MMREs

x and y using a two-tailed t-test at the 95 percent confidence interval;

i.e., jmeanðxÞ&meanðyÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsdðxÞ2=ðnðxÞ&1ÞÞþsdðyÞ2=ðnðyÞ&1Þ
p > 1:96.

Fig. 9. Percent frequency of rule firings.



enterprise and, hence, is very diverse (different tools,
domains, development cultures, and business processes).
Consequently, nasa93 suffers greatly from large deviations.

Sixth, looking across the rows, there is tremendous
variation in what treatment proved to the “best” treatment.
This pattern appears in the general data mining literature:
Different summarization methods work best in different
situations [29] and it remains unclear why that is so. This
variation in the “best” learner method is particularly
pronounced in small data sets (e.g., our NASA and
COCOMO data), where minor quirks in the data can
greatly influence learner performance. However, we can
speculate why methods Learners other than LC predomi-
nate for non-COCOMO data such as nasa93. Perhaps
fiddling with two tuning parameters may be appropriate
when the variance in the data is small (e.g., the cocII results
that all used LC) but can be inappropriate when the
variance is large (e.g., in the nasa93 data).

Last, and reassuringly, the “straw man” result of
jSubsetj ¼ 2 never appeared. That is, for all parts of our
project data, COSEEKMO-style estimations were better than
using just lines of code.

6 APPLICATIONS OF COSEEKMO

Applications of COSEEKMO use the tool in two subtly
different ways. Fig. 10 shows the surviving treatments after
applying the rejection rules within particular project data
sets. Once the survivors from different data sets are
generated, the rejection rules can then be applied across
data sets; i.e., by comparing different rows in Fig. 10 (note
that such across studies use within studies as a pre-
processor).

Three COSEEKMO applications are listed below:

. Building effort models uses a within study like the one
that generated Fig. 10.

. On the other hand, assessing data sources and
validating stratifications use across studies.

6.1 Building Effort Models

Each line of Fig. 10 describes a best treatment (i.e., some
combination of hDatum;Numbers; Learn; Subseti) for a
particular data set. Not shown are the random number
seeds saved by COSEEKMO (these seeds control how
COSEEKMO searched through its data).

Those recommendations can be imposed as constraints
on the COSEEKMO code of Fig. 7 to restrict, e.g., what
techniques are selected for generating effort models. With
those constraints in place, and by setting the random
number seed to the saved value, COSEEKMO can be re-
executed using the best treatments to produce 30 effort
estimation models (one for each repetition of line 5 of
Fig. 7). The average effort estimation generated from this
ensemble could be used to predict the development effort of
a particular project.

6.2 Assessing Data Sources

Effort models are generated from project databases. Such
databases are assembled frommultiple sources. Experienced
effort modelers know that some sources are more trust-
worthy than others. COSEEKMO can be used to test if a new
data source would improve a database of past project data.

To check the merits of adding a new data source Y to a
existing data of past project data X, we would:

. First run the code of Fig. 7 within two data sets: 1) X
and 2) X þ Y .

. Next, the rejection rules would be executed across the
survivors fromX andX þ Y . The new data source Y
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Fig. 10. Survivors from Rejection Rules 1, 2, 3, 4, and 5. In the column labeled “Learn,” the rows e, sd, and org denote cases where using COCOMO

81 with the embedded, semidetached, organic effort multipliers of Fig. 3 proved to be the best treatment.



should be added to X if X þ Y yields a better effort
model than X (i.e., is not culled by the rejection
rules).

6.3 Validating Stratifications

A common technique for improving effort models is the

stratification of the superset of all data into subsets of related

data [1], [4], [9], [10], [23], [30], [31], [32], [33]. Subsets

containing related projects have less variation and so can be

easier to calibrate. Various experiments demonstrate the

utility of stratification [4], [9], [10].
Databases of past project data contain hundreds of

candidate stratifications. COSEEKMO across studies can

assess which of these stratifications actually improve effort

estimation. Specifically, a stratification subset is “better”

than a superset if, in an across data set study, the rejection

rules cull the superset. For example, nasa93 has the

following subsets:

. all the records,

. whether or not it is flight or ground system,

. the parent project that includes the project expressed
in this record,

. the NASA center where the work was conducted,

. etc.

Some of these subsets are bigger than others. Given a record

labeled with subsets fS1; S2; S3; . . .g then we say a candidate

stratification has several properties:

. It contains records labeled fSi; Sjg.

. The number of records in Sj is greater than Si; i.e., Sj

is the superset and Si is the stratification.
. Sj contains 150 percent (or more) the number of

records in Si.
. Si contains at least 20 records.

Nasa93 contains 207 candidate stratifications (including one

stratification containing all the records). An across study

showed that only the four subsets Si shown in Fig. 11 were

“better” than their large supersets Sj. That is, while

stratification may be useful, it should be used with caution

since it does not always improve effort estimation.

7 CONCLUSION

Unless it is tamed, the large deviation problem prevents the
effort estimation community from comparatively assessing
the merits of different supposedly best practices. COSEEK-
MO was designed after an analysis of several possible
causes of these large deviations. COSEEKMO can compara-
tively assess different model-based estimation methods
since it uses more than just standard parametric t-tests
(correlation, number of variables in the learned model, etc.).

The nasa93 results from Fig. 2 and Fig. 10 illustrate the
“before” and “after” effects of COSEEKMO. Before, using
Boehm’s local calibration method, the effort model MRE
errors were {43,58,188} percent for {min,median,max}
(respectively). After, using COSEEKMO, those errors had
dropped to {22, 38, 64} percent. Better yet, the MRE
standard deviation dropped from {45, 157, 649} percent to
{20, 39, 100} percent. Such large reductions in the deviations
increases the confidence of an effort estimate since they
imply that an assumption about a particular point estimate
is less prone to inaccuracies.

One advantage of COSEEKMO is that the analysis is
fully automatic. The results of this paper took 24 hours to
process on a standard desktop computer; that is, it is
practical to explore a large number of alternate methods
within the space of one weekend. On the other hand,
COSEEKMO has certain restrictions, e.g., input project data
must be specified in a COCOMO 81 or COCOMO-II
format.5 However, the online documentation for COCOMO
is extensive and our experience has been that it is a
relatively simple matter for organizations to learn
COCOMO and report their projects in that format.

A surprising result from this study was that many of the
best effort models selected by COSEEKMO were not
generated via techniques widely claimed to be “best
practice” in the model-based effort modeling literature.
For example, recalling Fig. 1, the study above shows
numerous examples where the following supposedly “best
practices” were outperformed by other methods:

. Reusing old regression parameters (Fig. 1, number 13).
In Fig. 10, the precise COCOMO parameters some-
times were outperformed by the proximal para-
meters.

. Stratification (Fig. 1, number 16). Only four (out of
207) candidate stratifications in Nasa93 demonstra-
bly improved effort estimation.

. Local calibration (Fig. 1, number 17). Local calibration
(LC) was often not the best treatment seen in the
Learn column of Fig. 10.

Consequently, we advise that 1) any supposed “best
practice” in model-based effort estimation should be
viewed as a candidate technique which may or may not be
useful in a particular domain, and 2) tools like COSEEKMO
should be used to help analysts explore and select the best
practices for their particular domain.
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5. For example, http://sunset.usc.edu/research/COCOMOII/expert_
cocomo/drivers.html.

Fig. 11. Supersets of nasa rejected in favor of subset stratifications.



8 FUTURE WORK

Our next step is clear. Having tamed large deviations in
model-based methods, it should now be possible to
compare model-based and expert-based approaches.

Also, it would be useful see how COSEEKMO behaves
on data sets with less than 20 records.

Further, there is much growing literature on combining
the results from multiple learners (e.g., [34], [35], [36], and
[37]). In noisy or uncertain environments (which seems to
characterize the effort estimation problem), combining the
conclusions from committees of automatically generated
experts might perform better than just relying on a single
expert. This is an exciting option which needs to be explored.

APPENDIX A

COCOMO I VERSUS COCOMO II

In COCOMO II, the exponential COCOMO 81 term b was
expanded into the following expression:

bþ 0:01 $
X

j

SFj; ð2Þ

where b is 0.91 in COCOMO II 2000, and SFj is one of five
scale factors that exponentially influence effort. Other
changes in COCOMO II included dropping the develop-
ment modes of Fig. 3 as well as some modifications to the
list of effort multipliers and their associated numeric
constants (see Appendix E).

APPENDIX B

LOGARITHMIC MODELING

COCOMO models are often built via linear least squares
regression. To simplify that process, it is common to
transform a COCOMO model into a linear form by taking
the natural logarithm of (1):

lnðeffortÞ ¼ lnðaÞ þ b $ lnðKLOCÞ þ lnðEM1Þ þ . . . : ð3Þ

This linear form can handle COCOMO 81 and COCOMO II.
The scale factors of COCOMO II affect the final effort
exponentially according to KLOC. Prior to applying (3) to
COCOMO II data, the scale factors SFj can be replaced with

SFj ¼ 0:01 $ SFj $ lnðKLOCÞ: ð4Þ

If (3) is used, then before assessing the performance of a
model, the estimated effort has to be converted back from a
logarithm.

APPENDIX C

CALCULATING CORRELATION

Given a test set of size T , correlation is calculated as follows:

!p ¼

PT
I predictedi

T
; !a ¼

PT
I actuali
T

;

Sp ¼

PT
i ðpredictedi & !pÞ2

T & 1
; Sa ¼

PT
i ðactuali & !aÞ2

T & 1
;

Spa ¼

PT
i ðpredictedi & !pÞðactuali & !aÞ

T & 1
;

corr ¼ Spa=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sp $ Sa

p

:

APPENDIX D

LOCAL CALIBRATION

This approach assumes that a matrix Di;j holds

. the natural log of the KLOC estimates,

. the natural log of the actual efforts for projects
i ' j ' t, and

. the natural logarithm of the cost drivers (the scale
factors and effort multipliers) at locations 1 ' i ' 15

(for COCOMO 81) or 1 ' i ' 22 (for COCOMO-II).

With those assumptions, Boehm [3] shows that, for

COCOMO 81, the following calculation yields estimates

for “a” and “b” that minimize the sum of the squares of

residual errors:

EAFi ¼
PN

j Di;j;
a0 ¼ t;
a1 ¼

Pt
i KLOCi;

a2 ¼
Pt

iðKLOCiÞ
2;

d0 ¼
Pt

i actuali & EAFið Þ;

d1 ¼
Pt

i ðactuali & EAFiÞ $KLOCið Þ;
b ¼ ða0d1 & a1 $ d0Þ=ða0a2 & a21Þ;
a3 ¼ ða2d0 & a1d1Þ=ða0a2 & a21Þ;
a ¼ ea3 :

9
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APPENDIX E

COCOMO NUMERICS

Fig. 12 shows the COCOMO 81 EMj (effort multipliers).

The effects of those multipliers on the effort are shown in

Fig. 13. Increasing the upper and lower groups of variables

will decrease or increase the effort estimate, respectively.
Fig. 14 shows the COCOMO 81 effort multipliers of

Fig. 13, proximal and simplified to two significant figures.
Fig. 15, Fig. 16, and Fig. 17 show the COCOMO-II values

analogies to Fig. 12, Fig. 13, and Fig. 14 (respectively).

APPENDIX F

THE WRAPPER

Starting with the empty set, the WRAPPER adds some

combinations of columns and asks some learner (in our

case, the LC method discussed below) to build an effort

model using just those columns. The WRAPPER then grows

the set of selected variables and checks if a better model
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Fig. 12. COCOMO 81 effort multipliers.



comes from learning over the larger set of variables. The
WRAPPER stops when there are no more variables to select
or there has been no significant improvement in the learned
model for the last five additions (in which case, those last
five additions are deleted). Technically speaking, this is a
forward select search with a “stale” parameter set to 5./
ip1>COSEEKMO uses the WRAPPER since experiments by
other researchers strongly suggest that it is superior to
many other variable pruning methods. For example, Hall
and Holmes [27] compare the WRAPPER to several other
variable pruning methods including principal component

analysis (PCA—a widely used technique). Column pruning
methods can be grouped according to

. whether or not they make special use of the target
variable in the data set, such as “development cost”
and

. whether or not pruning uses the target learner.

PCA is unique since it does notmake special use of the target
variable. The WRAPPER is also unique, but for different
reasons: Unlike other pruning methods, it does use the target
learner as part of its analysis. Hall and Holmes found that
PCA was one of the worst performing methods (perhaps
because it ignored the target variable), while the WRAPPER
was the best (since it can exploit its special knowledge of the
target learner).
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