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Next-generation sequencing has emerged as an essential technology for the quantitative

analysis of gene expression. In medical research, RNA sequencing (RNA-seq) data are

commonly used to identify which type of disease a patient has. Because of the discrete

nature of RNA-seq data, the existing statistical methods that have been developed

for microarray data cannot be directly applied to RNA-seq data. Existing statistical

methods usually model RNA-seq data by a discrete distribution, such as the Poisson,

the negative binomial, or the mixture distribution with a point mass at zero and a Poisson

distribution to further allow for data with an excess of zeros. Consequently, analytic

tools corresponding to the above three discrete distributions have been developed:

Poisson linear discriminant analysis (PLDA), negative binomial linear discriminant analysis

(NBLDA), and zero-inflated Poisson logistic discriminant analysis (ZIPLDA). However, it

is unclear what the real distributions would be for these classifications when applied to

a new and real dataset. Considering that count datasets are frequently characterized

by excess zeros and overdispersion, this paper extends the existing distribution to a

mixture distribution with a point mass at zero and a negative binomial distribution and

proposes a zero-inflated negative binomial logistic discriminant analysis (ZINBLDA) for

classification. More importantly, we compare the above four classification methods from

the perspective of model parameters, as an understanding of parameters is necessary

for selecting the optimal method for RNA-seq data. Furthermore, we determine that the

above four methods could transform into each other in some cases. Using simulation

studies, we compare and evaluate the performance of these classification methods in

a wide range of settings, and we also present a decision tree model created to help

us select the optimal classifier for a new RNA-seq dataset. The results of the two real

datasets coincide with the theory and simulation analysis results. The methods used

in this work are implemented in the open-scource R scripts, with a source code freely

available at https://github.com/FocusPaka/ZINBLDA.
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1. INTRODUCTION

RNA sequencing (RNA-seq), which involves directly sequencing
complementary DNAs and aligning the sequences to the
reference genome or transcriptome, has emerged as a powerful
technology for measuring gene expression (Mardis, 2008;
Morozova et al., 2009; Wang et al., 2009). In recent years, the
affordability and effectiveness of RNA-seq has resulted in its
application in biological and medical studies, such as genomics
research (Nagalakshmi et al., 2008; Trapnell et al., 2010) and
clinical use (Berger et al., 2010; Biesecker et al., 2012). Unlike
microarray technology, RNA-seq allows for the detection of novel
transcripts with low background signals. One of the biological
applications of RNA-seq is inferring differential expression (DE)
genes between different conditions or tissues. Existing popular
methods include edgeR (Robinson and Smyth, 2008; Robinson
et al., 2010), DESeq2 (Love et al., 2014), and LFCseq (Lin
et al., 2014). Another important application is the diagnosis of
diseases. Numerous discriminant methods have been proposed
for the diagnosis of diseases using microarray data, such as
diagonal linear discriminant analysis and diagonal quadratic
discriminant analysis in Dudoit et al. (2002). In previous RNA-
seq experiments, the read counts (the number of short reads
mapped to the reference genome) have been used to measure the
expression level. However, because the expression matrix entries
are non-negative integers, classification methods that follow a
Gaussian distribution may not perform well for RNA-seq data.

Classification methods based on different discrete

distributions have been proposed for RNA-seq data. Witten
(2011) assumed RNA-seq data follow a Poisson distribution
and proposed a Poisson linear discriminant analysis (PLDA)
method. Comparison studies (Tan et al., 2014) have shown
that PLDA performs much better than the method used for
microarray data when classifying RNA-seq data. Considering
the overdispersion of RNA-seq data, Dong et al. (2016) assumed
that data follow a negative binomial distribution and developed

a negative binomial linear discriminant analysis (NBLDA)

method. Zhou et al. (2018) found excess zeros in real RNA-seq
data and proposed a zero-inflated Poisson logistic discriminant
analysis (ZIPLDA) method, which assumes RNA-seq data
follow a mixture distribution with a point mass at zero and a
Poisson distribution.

Due to the shallow sequence depth and dispersed biological
replicates, there may be excess zeros and overdispersion in a real
RNA-seq dataset, which should be considered when conducting
data analysis. For instance, the real dataset TCGA-LIHC, which
includes a cancerous and normal group, contains about 43.24%
zeros of all numerical values, and the estimated dispersion
parameter is 1.12. Therefore, a natural assumption would be to
extend the existing discrete distribution to a mixture distribution
with a point mass at zero and a negative binomial distribution.
We call this method zero-inflated negative binomial logistic
discriminant analysis (ZINBLDA). To obtain the model, which
is similar to ZIPLDA, we built a mixture distribution with a
point mass at zero and a negative binomial distribution for
the remaining data. We then estimated the parameters in the
model. Finally, we obtained a classifier by Bayes rule to predict

for a future observation. We also analyzed the relationship
between the above four classification methods, and the resulting
discriminant scores for the four classification methods showed
that they can transform into each other in some cases. We
examined these four methods from the perspective of their
parameters and determined how the parameters provide the link
between the selected optimal method and themodel classification
performance. In addition, we built a decision tree to help us select
the optimal classifier from these four methods for a new dataset.

The remainder of the article is organized as follows. In section
2, we review the existing three classificationmethods and propose
the ZINBLDA method for overdispersion RNA-seq data with an
excess of zeros. We also give the estimation of the parameters
in the model in detail. We further discuss the transformation
relations between the four methods. Section 3 discusses the
results of the simulation studies that were conducted to evaluate
the performance of the four methods in a wide range of settings.
This section also presents a decision tree that was built to
select the optimal classifier from these four methods for a new
dataset. In section 4, we employ the four methods to analyze two
real RNA-seq datasets and evaluate their performance. Finally,
we conclude the work with a discussion of the findings and
future directions.

2. CLASSIFICATION METHODS

There are three existing classification methods for RNA-seq data:
PLDA (Witten, 2011), NBLDA (Dong et al., 2016), and ZIPLDA
(Zhou et al., 2018). We propose a new discriminant analysis
method to model overdispersion RNA-seq data with excess zeros.
We examined these four methods from the perspective of their
parameters and analyzed the transformation relations between
the methods.

Before introducing the methods, we must first specify some
notations used in this work. In this paper, K is the number of
classes, and Xkikg denotes the number of read counts that are
mapped to gene g in sample ik of class k, where k = 1, · · · ,K;
ik = 1, · · · , nk; and g = 1, · · · ,G. Specifically, there are nk
samples in class k, and n =

∑K
k=1 nk denotes the total number

of samples for all classes.

2.1. Principle of the Classifiers
The principle of the classifiers is applicable for the following four
classifiers. Suppose that for the training set {(xxxi, yi)}

n
i=1 we wished

to classify a new observation xxx∗ = (X∗
1 , · · · , X

∗
G)

T . If y∗ is the
unknown label of xxx∗, by Bayes’ rule

P(y∗ = k|xxx∗) ∝ fk(xxx
∗)πk, (1)

where fk is the probability density function of an observation
in class k, and πk is the prior probability that an observation
belongs to class k. In general, we can use πk = nk/n to satisfy
∑K

k=1 πk=1.We define a discriminant score function as dk(xxx
∗) =

log[P(xxx∗|y∗ = k)πk] on the basis of formula (1) and assign a
new observation to the class for which the discriminant score is
the highest.
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2.2. Poisson Linear Discriminant Analysis
For PLDA, Witten (2011) assumed that RNA-seq data follow a
Poisson distribution, that is,

Xkikg |yik = k ∼ Poisson(µkikg), µkikg = dkgsikλg , (2)

where µkikg is the expectation for gene g in sample ik of class k,
sik is the size factor used to identify individuals in the kth class,
λg is the total number of read counts for gene g, and dkg allows
for the differential expression of gene g between the different
classes. Following the expression of (2), the probability density
function is

P(Xkikg = xkikg) =
µ
xkikg

kikg

(xkikg)!
e
−µkikg .

Thus, according to formula (1), the discriminant score of PLDA
is obtained by

dk(xxx
∗) =

G
∑

g=1

X∗
g log(dkg)− s∗

G
∑

g=1

λgdkg + logπk + C, (3)

where s∗ is the size factor of test observation, and C represents a
constant that is unrelated to the class label.

2.3. Negative Binomial Linear Discriminant
Analysis
Modeling RNA-seq data with a negative binomial distribution
instead of a Poisson distribution is a natural extension. Dong
et al. (2016) proposed NBLDA to allow for cases where variance
is greater than or equal to the mean, and they also demonstrated
that NBLDA is more suitable when biological replicates are
available. The negative binomial distribution is expressed as

Xkikg |yik = k ∼ NB(µkikg ,φg), µkikg = dkgsikλg , (4)

where φg is a non-negative dispersion parameter, and the rest of
parameters are the same as for PLDA. Therefore, the probability
density function of Xkikg = xkikg in model (4) is

P(Xkikg = xkikg) =
Ŵ(xkikg + φ−1

g )

(xkikg)!Ŵ(φ
−1
g )

(
µkikgφg

1+ µkikgφg
)
xkikg

(
1

1+ µkikgφg
)φ

−1
g .

Similarly, the discriminant score can be obtained by

dk(xxx
∗) =

G
∑

g=1

X∗
g [log(dkg)− log(1+ s∗λgdkgφg)]

−

G
∑

g=1

φ−1
g log(1+ s∗λgdkgφg)+ logπk + C.

(5)

2.4. Zero-Inflated Poisson Logistic
Discriminant Analysis
Considering data with excess zeros due to missing records or
no observation signal, Zhou et al. (2018) proposed ZIPLDA
method, which assumes that data follow a zero-inflated Poisson
distribution. The distribution is expressed as

Xkikg ∼

{

δ{0}, pkikg ,

Poisson(µkikg), (1− pkikg),

where δ{0} denotes the point mass at zero, pkikg is the probability
of δ{0} in gene g of sample ik in class k, and µkikg is same as in the
former two classifiers. Thus, the probability of Xkikg is written as

P(Xkikg) =











pkikg + (1− pkikg)e
−µkikg , Xkikg = 0,

(1− pkikg)
µ
Xkikg

kikg

(Xkikg
)!
e
−µkikg , Xkikg > 0.

Additionally, the probability density function of Xkikg = xkikg is

P(Xkikg = xkikg) =
[

pkikg + (1− pkikg)e
−µkikg

]I(xkikg
=0)



(1− pkikg)
µ
xkikg

kikg

(xkikg)!
e
−µkikg





I(xkikg
>0)

.

Finally, the discriminant score dk(x
∗) is,

dk(xxx
∗) =

G
∑

g=1

I(X∗
g=0) log

(

p̂∗kg + (1− p̂∗kg)e
−dkg s

∗λg
)

−

G
∑

g=1

I(X∗
g >0)dkgs

∗λg +

G
∑

g=1

I(X∗
g >0) log(1− p̂∗kg)

+

G
∑

g=1

I(X∗
g >0)X

∗
g log(dkg)+ logπk + C. (6)

2.5. Zero-Inflated Negative Binomial
Logistic Discriminant Analysis
2.5.1. Model

In this section, we extend the zero-inflated Poisson distribution
to the zero-inflated negative binomial distribution and propose
ZINBLDA to model overdispersion data with excess zeros. The
distribution is expressed as

Xkikg ∼

{

δ{0}, pkikg ,

NB(µkikg ,φ
′

g), (1− pkikg).

Thus, the probability of Xkikg is written as

P(Xkikg) =























pkikg + (1− pkikg)(
1

1+µkikg
φ′

g
)φ

′−1
g , Xkikg = 0,

(1− pkikg)
Ŵ(Xkikg

+φ
′−1
g )

Xkikg
!Ŵ(φ

′−1
g )

(
µkikg

φ′
g

1+µkikg
φ′

g
)
Xkikg ( 1

1+µkikg
φ′

g
)φ

′−1
g , Xkikg > 0.
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The probability density function of Xkikg = xkikg is

P(Xkikg = xkikg)=
[

(1− pkikg)
Ŵ(xkikg + φ

′−1
g )

xkikg !Ŵ(φ
′−1
g )

(
µkikgφ

′
g

1+ µkikgφ
′
g
)
xkikg

(
1

1+ µkikgφ
′
g
)φ

′−1
g

]I(xkikg
>0)

(7)

[

pkikg + (1− pkikg)(
1

1+ µkikgφ
′
g
)φ

′−1
g

]I(xkikg
=0)

.

(8)

By Bayes’ rule, we obtain the discriminant score dk(xxx
∗) of

ZINBLDA using

dk(xxx
∗) =

G
∑

g=1

I(X∗
g=0) log

[

(1− p̂∗kg)(
1

1+ s∗λgdkgφ′
g
)φ

′−1
g

+p̂∗kg

]

+

G
∑

g=1

I(X∗
g >0) log(1− p̂∗kg)

+

G
∑

g=1

I(X∗
g >0)X

∗
g [log dkg − log(1+ s∗λgdkgφ

′

g)]

−

G
∑

g=1

I(X∗
g >0)φ

′−1
g log(1+ s∗λgdkgφ

′

g)

+ logπk + C. (9)

2.5.2. Parameters Estimation

Next, we estimate the parameters in the ZINBLDA model, which
includes the class difference parameter dkg , size factors sik and
s∗, dispersion parameter φ′

g , and the probability of excess zeros
pkikg .

2.5.2.1. Class Difference Parameter Estimation
Similar to the former three methods, to estimate dkg we

first obtain the maximum likelihood estimation d̂kg =

(
∑nk

ik=1 Xikg)/(
∑nk

ik=1 sikλg) and then take a Gamma(β ,β) prior

in case of
∑nk

ik=1 Xikg = 0. Therefore, the posterior mean

d̂kg = (

nk
∑

ik=1

Xikg + β)/(

nk
∑

ik=1

sikλg + β)

is our estimation. For convenience and due to the small influence
of β on the estimation result, we assume β=1 in this work.

2.5.2.2. Size Factor Estimation
The total number of reads between samples differs due to
various sequencing depths. Generally, data must be normalized
by their size factor. The three existing classification methods
(PLDA, NBLDA, and ZIPLDA) use three different normalization
methods: total count (Dillies et al., 2013), median ratio (Love
et al., 2014), and quantile (Bullard et al., 2010). Note that there
is little difference in the performance of classification among
the three normalization methods. In this work, we use total

count to estimate the size factor for convenience. Therefore, the
estimation of size factor ŝik for the training data is

ŝik =

∑G
g=1 Xikg

∑K
k=1

∑nk
ik=1

∑G
g=1 Xikg

,

and the estimation of size factor ŝ∗ for the testing data is

ŝ∗ =

∑G
g=1 X

∗
g

∑K
k=1

∑nk
ik=1

∑G
g=1 Xikg

.

2.5.2.3. Dispersion Parameter Estimation
Since ZINBLDA assumes that data follow a mixture distribution
rather than a negative binomial distribution, the method used to
estimate the dispersion parameter in NBLDA is not applicable
in this case. Therefore, we used the maximum likelihood to
estimate φ′

g . Based on equation (8), the log likelihood function
of ZINBLDA is

L=

G
∑

g=1

{I(xkikg=0) log[p̂kikg + (1− p̂kikg))(
1

1+ µ̂kikgφ
′
g
)φ

′−1
g ]

+I(xkikg>0)[log(1− p̂kikg)+ logŴ(xkikg + φ
′−1
g )

− logŴ(φ
′−1
g )− logŴ(xkikg !)

+xkikg log µ̂kikgφ
′
g − xkikg log(1+ µ̂kikgφ

′
g)

−φ
′−1
g log(1+ µ̂kikgφ

′
g)]}. (10)

Because the parameter pkikg must also be estimated, we cannot
directly take the partial derivatives and let the result equal zero
to get the estimation of dispersion parameter φ̂′

g in formula (10).
Therefore, we first set an initial value for parameters pkikg and
φg , and then we used the PORT routines optimization method

(David, 1990) to get the estimation value φ̂′
g .

2.5.2.4. The Probability of Excess Zeros Estimation
Assuming the data for the classifier follow a zero-inflated mixture
distribution, we needed to estimate the probability of excess
zeros in the distribution. Based on the process proposed by
Zhou et al. (2018), we assumed that the probability of zeros, the
mean of the genes, and the sequencing depth have the following
logistic relation:

log{
P(Xkikg = 0)

1− P(Xkikg = 0)
} = α + β1(

Nkik

N1i1

)+ β2µkikg . (11)

Replacing P(Xkikg = 0) in model (11) with pkikg + (1 −

pkikg)(
1

1+µkikg
φ
′
g

)φ
′−1
g , we get

p̂kikg =

p1 − (1+ p1)(
1

1+µkikg
φ̂
′
g

)φ̂
′−1
g

(1+ p1)[1− ( 1

1+µkikg
φ̂
′
g

)φ̂
′−1
g ]

,

where p1=exp{α + β1(
Nkik
N1i1

)+ β2µkikg}; Nkik =
∑G

g=1 Xkikg ; and

α, β1, and β2 are coefficients in the logistic model (11).
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FIGURE 1 | The transformation relation between the four methods. Given a

sufficient sample size, the four models can transform into one another

according to the value of dispersion parameter φ and the average probability

of excess zeros p0.

2.6. Transformation Relation
Note that the above four models can transform into one another
under some conditions.

(1) From the discriminant score function of NBLDA
(formula 5), we found that if s∗λgdkg is bounded and φg → 0,

then log(1 + s∗λgdkgφg) → 0 and φ−1
g log(1 + s∗λgdkg) →

s∗λgdkg . Therefore, the discriminant score of NBLDA approaches
that of PLDA (formula 3). That is, the NBLDA classifier reduces
to the PLDA classifier when the dispersion value tends to zero.

(2) For the discriminant score function of ZIPLDA
(formula 6), when p̂∗

kg
→0, then log(p̂∗

kg
+(1 − p̂∗

kg
)e−dkg s

∗λg ) →

−dkgs
∗λg , and the discriminant score of ZIPLDA approaches

that of PLDA. Thus, with the probability of zeros decreased to
zero, the ZIPLDA score reduces to the PLDA score.

(3) Similarly, for the discriminant score of ZINBLDA

(formula 9), when φ′
g → 0, then φ

′−1
g log(1 + s∗λgdkgφ

′
g) →

dkgs
∗λg and (1 + s∗λgdkgφ

′
g)

−φ
′−1
g → exp{−dkgs

∗λg}. That
is, when dispersion tends to zero, the discriminant score of
ZINBLDA reduces to that of the ZIPLDA. Furthermore, if p̂∗

kg
→

0, then log[(1 − p̂∗
kg
)( 1

1+s∗λgdkgφ
′
g
)φ

′−1
g + p̂∗

kg
] → −φ

′−1
g log(1 +

s∗λgdkgφ
′
g). Therefore, when the probability of δ{0} tends to zero,

the ZINBLDA classifier reduces to the NBLDA classifier.
Figure 1 shows the above transformation relations, where φ

denotes the dispersion parameter, and p0 denotes the average
probability of excess zeros. Starting at the bottom right of the
figure and going clockwise, ZINBLDA reduces to ZIPLDA as
φ → 0, and ZIPLDA reduces to PLDA as p0 → 0. Likewise,
starting at the bottom right corner and going counterclockwise,
ZINBLDA reduces to NBLDA as p0 → 0, and NBLDA reduces
to PLDA as φ → 0. The transformation relationship between
the four classification methods indicates that for data without
dispersed biological replicates and excess zeros, PLDA may
perform better than the other methods. However, NBLDA is
good at dealing with overdispersion data, while ZIPLDA is
designed to handle data with excess zeros. For data with excess

zeros and dispersed biological replicates, ZINBLDA may be the
optimal choice.

3. SIMULATION STUDIES

We evaluated the performance of the four methods by
conducting simulations in various scenarios. We also built a
decision tree to help us select the optimal classifier from the four
methods for a new dataset.

3.1. Simulation Design
To ensure a fair comparison between the four classifiers,
we followed the same process as Zhou et al. (2018) and
generated simulation data from the following negative
binomial distribution:

Xkikg ∼ NB(dkgsikλg ,φ).

We set K = 2 to illustrate the binary classification, and
each class included about n/2 samples. We also considered
multiple classifications with K = 3, with each class including
approximately n/3 samples. The rest of the distribution
parameters were as follows: the size factors sik had a uniform
distribution at [0.2, 2.2], the λg values had an exponential
distribution with an expectation of 25, and the log dkg values
had a normal distribution with a location of 0 and scale of
σ 2 (where σ = 0.2). In the simulation studies, the DE rate
represented the proportion of differentially expressed genes, and
p was the number of genes in the samples. For simplicity, we
denoted p0 as the probability of excess zeros. In each simulation
study, we changed one parameter and fixed the others, then
compared the misclassification rates of the four classifiers. We
specified the values for p,DE rate, p0, φ, and n in each simulation
study. Each simulation was repeated 1,000 times, and the average
misclassification rates were calculated for the four methods.

3.2. Simulation Results
Study 1 investigated the impact of the dispersion parameter on
the performance of the four classification methods. Considering
a binary classification, we set the probability of excess zeros of
data to 0 and generated 50 training and 50 testing samples.
Each sample included 100 genes, 20% of which were DE genes.
Figure 2 shows the average misclassification rates of the four
methods with different dispersions. Overall, the misclassification
rates of the four classifiers decreased when the dispersion
parameters changed from 1 to 0. PLDA and ZIPLDA showed
similar performance, and both were slightly worse than NBLDA
and ZINBLDA in different dispersion settings. However, when
the dispersion was reduced to zero, the misclassification rates
of all four methods tended to zero. From the expressions of the
negative binomial and Poisson distributions, the former reduced
to the latter when the dispersion parameter was reduced to zero,
which indicates that NBLDA and ZINBLDA (which are based on
negative binomial distribution) are more suitable for classifying
overdispersion data. In addition, we changed the probability
of excess zeros of simulation data from 0 to 0.1, and the
other parameters remained the same. Supplementary Figure 1
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FIGURE 2 | The misclassification rates of the four methods with different

dispersions (Study 1). Here, σ = 0.2, p = 100, n = 50, p0 = 0, and

DE rate = 0.2.

FIGURE 3 | The misclassification rates of the four methods with different

probabilities of excess zeros (Study 2). Here, σ = 0.2, p = 100, n = 50, φ = 0,

and DE rate = 0.2.

shows that when dispersion changed the value from 0 to 1,
ZINBLDA outperformed the other methods. However, NBLDA
and PLDA performed worse than ZINBLDA and ZIPLDA when
the dispersion tended to zero. This result indicates that the
probability of excess zeros has a major effect on the performance
of the four methods.

Study 2 investigated the performance of the four methods
with different probabilities of excess zeros. In this study, we set
the dispersion parameter to 0, and p0 ∈ [0.1, 0.3]; the rest of
the parameters were the same as in Study 1. Figure 3 shows
that the average misclassification rates of the four classifiers

FIGURE 4 | The misclassification rates of the four methods with different

sample sizes (Study 3). Here, σ = 0.2, p = 100, φ = 0, p0 = 0.3, and

DE rate = 0.2.

FIGURE 5 | The misclassification rates of the four methods with different

numbers of genes (Study 4). Here, σ = 0.2, n = 50, φ = 0, p0 = 0.1, and

DE rate = 0.2.

increased as the probability of excess zeros increased. ZIPLDA
performed slightly better than ZINBLDA when p0 tended to
0. The performance of these two classifiers was far better than
the other two classifiers, and PLDA performed the worst with
different probabilities of excess zeros. This result demonstrates
that ZIPLDA and ZINBLDA (which are designed for excess
zeros) have a clear advantage over the other two methods
when classifying data with excess zeros. Setting φ = 0 could
explain why ZIPLDA performed slightly better than ZINBLDA.
In addition, when we reduced the sample size from 50 to 8,
the result (Supplementary Figure 2) showed that ZIPLDA still
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performed the best out of the four classifiers; however, ZINBLDA
performed the worst in this case, which indicates that the sample
size has a major effect on the performance of ZINBLDA.

Figure 4 shows the performance of the four classification
methods when the sample size changes. In Study 3, we set
the probability of excess zeros to 0.3, and the sample size was
gradually changed from 8 to 300. The rest of the parameters

FIGURE 6 | The misclassification rates of the four methods with different

probabilities of differential expression genes (Study 5). Here, σ = 0.2, p = 100,

n = 8, φ = 0.5, and p0 = 0.

were the same as in Study 2. The overall misclassification rates
gradually declined to nearly a constant value for all four classifiers
when the sample size increased. ZIPLDA showed superiority
over the other methods when the sample size was less than 130,
and ZINBLDA attained a lower misclassification rate when the
sample size was over 150. The same pattern existed between
NBLDA and PLDA.When the sample size was less than 20, PLDA

FIGURE 8 | The misclassification rates of the four classifiers for the GSE86507

dataset.

FIGURE 7 | The decision tree model used to choose an optimal classifier.
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FIGURE 9 | The misclassification rates of the four classifiers for the LIHC

dataset.

had a lower misclassification rate; however, NBLDA yielded a
lower value when the sample size increased. The results illustrate
that sample size has a huge impact on the performance of
ZINBLDA and NBLDA, and ZINBLDA outperformed the other
methods when a sufficient sample size was available. The reason
for this may be that ZINBLDA requires a minimal number of
samples to estimate the parameters in the model.

In the above three studies, we fixed the gene number at 100. In
Study 4, we changed the number of selected genes and evaluated
the performance of the four classifiers. The parameters were the
same as in the former studies except φ = 0 and p0 = 0.1. Figure 5
shows that the misclassification rates of the four methods
declined as the number of genes selected increased. ZINBLDA
and ZIPLDA showed similar performance and outperformed
the other two methods, and PLDA performed the worst of the
four methods. In Supplementary Figure 3, we changed the data
dispersion from 0 to 0.2. A lower misclassification rate was
obtained by ZINBLDA and NBLDA, and PLDA again performed
the worst of the four methods. This result agrees with the
conclusion that dispersion affects the performance of PLDA
and ZIPLDA.

Study 5 investigated the influence of the probability of
differential expression in the selected genes on the performance
of the four classifiers. In this study, we set the dispersion
parameter to 0.5, the probability of excess zeros was set at
0, and 100 genes were selected for all eight samples. Figure 6
shows that the overall misclassification rates of the four methods
decreased as the DE rate increased. PLDA and ZIPLDA showed
similar performances, and both performed better than NBLDA
and ZINBLDA with different DE rates. ZINBLDA and NBLDA
performed nearly same with different probabilities of DE genes.
This result demonstrates that the sample size has a marked
impact on the performance of the four classifiers. In addition,

Supplementary Figure 4 shows that when the dispersion was set
to 0.2 and the probability of zeros to 0.1, ZIPLDA performed
remarkably better than the other methods with an increasing
number of DE rates, followed by PLDA and then NBLDA,
ZINBLDA performed the worst. This indicates that excess zeros
in the data enable ZIPLDA to perform better than PLDA, and the
sample size affects the performance of ZIPLDA notably.

We also conducted Simulation Studies 1–5 using multiple
classifications (K = 3). Supplementary Figures 5–9 show
the performance of the four methods. The parameters
were the same as in Studies 1–5 except for the sample
sizes. We set n = 75 in Supplementary Figures 5, 6,
8; n = 12 in Supplementary Figure 9; and n = 450 in
Supplementary Figure 7 and compared the results with those of
Studies 1–5. The performance of the four classifiers remained the
same as in the binary classification.

In the simulation studies conducted above, the performance
of the four classifiers was related to the attributes of the
dataset, including sample size n, dispersion parameter φ, and
the probability of excess zeros p0. In the final simulation study,
we considered a binary classification with three changeable
parameters and compared the performance of the four methods
for different combinations of those three parameters. We still
selected 100 genes, 40% of which were DE genes. The probability
of excess zeros was set at 0.001, 0.1, or 0.3, and the sample size was
8, 50, or 100. The dispersion parameters changed from 0.001 to
0.1 to 1 with every 0.2 steps. The average misclassification rates
of the four methods are shown in Supplementary Figure 10.
To clarify display the result, Supplementary Table 1 shows the
concrete values of each misclassification rate. Comparing the
results of the three panels in each column, we found that for
the first column (sample size of 8), the overall misclassification
rates of the four methods increased when the probability of
excess zeros increased from 0.001 to 0.3. When the probability
of excess zeros was equal to 0.3, the misclassification rates
approached 50%. When p0 = 0.001, the performance of ZIPLDA
and PLDA was better than NBLDA and ZINBLDA. However,
when p0 = 0.1, ZIPLDA outperformed the other methods,
which indicates that ZIPLDA is more suitable for handling
data with a small probability of excess zeros, and the sample
size has less of an impact on it. When the sample size was
increased to 50 (the second column), the overall performance
of ZINBLDA was slightly better than that of ZIPLDA except
when φ was small and p0 = 0.3. The reason for this may be
that there were not enough samples to estimate the parameters
of ZINBLDA. Therefore, when the sample size increased to 100
(the third column), that ZINBLDA yielded a lower or equal
misclassification rate compared to the other methods, which
indicates that ZINBLDA can achieve the best classification result
as long as enough samples are available. The performance of
ZIPLDA also improved when p0 increased from 0.1 to 0.3 due
to the increase in the probability of excess zeros.

3.3. Optimal Classifier Selection
To select an optimal classification method for different datasets,
we built a decision tree and a random forest. A decision tree
is a machine learning algorithm that is widely used in many
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scenarios because of its accuracy for the current algorithms. As
its name implies, a decision tree is a decision support tool that
uses a tree-like model. It is comprised of nodes and branches,
and each sample is tested on an internal node. The outcome of
the test determines which branch is followed, and this procedure
continues until the leaf node that holds the class label of this
sample is reached. Random forest is an ensemble of a decision
tree, and it can achieve a more stable result than a decision tree.

To employ a tree-like model to select the optimal classifier,
the chosen features were the sample number n, dispersion φ,
and probability of excess zeros p0, and y was regarded as the
optimal classification method. The parameter region was divided
to assign the value of the feature vector. The values of sample
size n ranged from 8 to 100 with a step size of 8. The dispersion
parameter ranged from 0.001 to 1.001 at intervals of 0.1. The
probability of excess zeros p0 ranged from 0 to 0.6 with a
step size of 0.05. For each calculation, we took one value from
each parameter set to generate the simulation data, allowing for
multiple combinations of these three parameters. This procedure
was repeated 1,000 times, and the classifier corresponding to the
smallest value of the average misclassification rate was regarded
as the optimal classification method. We used the obtained data
to train a decision tree, and Figure 7 displays the classification
result. This model fits the data very well, with a misclassification
rate of only 7.4%. To use this model, we only need to know
or estimate the values of the three parameters, then use the
conditional control statements in the decision tree to distinguish
in each internal node, which will result in the optimal method
when the leaf node is reached. In this way, this model can be used
to help choose the optimal classification method. Similarly, we
can obtain a random forest with a lower misclassification rate
(2.2%). The classification results of decision tree and random
forest are saved in R scripts, which could be used to choose the
optimal classifier when inputting the parameters of dataset.

4. APPLICATION TO REAL DATA

We further compared the four methods by analyzing two
real datasets: GSE86507 and TCGA-LIHC (Liver Hepatocellular
Carcinoma). The details of these two RNA-seq datasets are
as follows.

Woo et al. (2017) created the GSE86507 dataset to compare
gene expression between two mouse models, Pkd1f/f: HoxB7-
cre mice and Pkd2f/f: HoxB7-cre mice. Each group includes 18
samples, and there are a total of 29,996 transcripts in this dataset.
It contains about 17.74% zeros of all numerical values.

The dataset TCGA-LIHC contains two groups of samples:
the normal group (340 samples) and the cancerous group (50
samples). There are 60,487 genes in this dataset, which contains
about 43.24% zeros of all numerical values.

We chose to classify parts of genes since the majority of
genes in a dataset are not differentially expressed and thus
do not contribute to the sample classification. Including entire
genes in the model would reduce the classification accuracy and
increase the computational complexity. Thus, selecting parts of
genes not only improves the accuracy of classification but saves

computation time. Following the steps outlined by Dudoit et al.
(2002), we selected genes by first calculating the ratio of the
sum of the squares between groups and within groups for each
gene, then sorted all of the genes according to the ratio from
greatest to least, and finally selected a certain number of genes
for downstream analysis.

We randomly split the data into a training set and test
set, with both datasets containing all classes. We selected the
300 most differentially expressed genes to train the model.
This procedure was repeated 1,000 times, and the average
misclassification rates for each method were recorded. The
left panels of Figures 8, 9 show that for the test data, the
average misclassification rates of the four methods decreased
as the number of training data gradually increased. For the
GSE86507 dataset, the misclassification rates of PLDA and
ZIPLDA were lower than NBLDA and ZINBLDA, both of
which were close to zero. However, for the TCGA-LIHC dataset,
PLDA and ZIPLDA were superior to NBLDA and ZINBLDA
when the sample size was small. As the training sample size
increased, the misclassification rates of NBLDA and ZINBLDA
decreased remarkably, and ZINBLDA outperformed the other
three methods for a large sample size. We also evaluated the
classification performance of the four methods by fixing 30
training sets and gradually increasing the number of selected DE
genes. The right panel of Figure 8 shows that PLDA and ZIPLDA
outperformed the other two methods, whereas the right panel
of Figure 9 shows the superiority of ZINBLDA over the other
methods in this case.

To assess the efficiency of the decision tree model, we
estimated the dispersion and probability of excess zeros for
the two datasets. The estimated dispersion of GSE86507 was
φ = 0.12, and the probability of excess zeros was 0.5%,
which indicates that the dataset has slight overdispersion and
almost no excess zeros. The estimated dispersion of TCGA-LIHC
was φ = 1.12, and the probability of excess zeros was 8%,
which indicates that the dataset has high overdispersion and
many excess zeros. According to the conclusions in section 2.6,
PLDA should perform better with the GSE86507 dataset, and
ZINBLDA should be the optimal method to classify the TCGA-
LIHC dataset. We used the estimated parameters to select the
optimal method according to the conditional control statements
in the decision tree model (Figure 7). Based on the result, we
recommend selecting ZIPLDA for the GSE86507 dataset and
ZINBLDA for the TCGA-LIHC dataset, which coincides with the
real analysis results.

5. DISCUSSION

RNA-seq data classification is vital to the diagnosis of diseases.
In this work, we extended the existing classification methods
and proposed a ZINBLDA method for overdispersion RNA-seq
data with an excess of zeros. Concretely, we built a mixture
distribution with a point mass at zero and a negative distribution
to model the data, and a logistic regression was used to build a
relation between the probability of zeros, the mean of the genes,
and the sequencing depth. Most importantly, we examined four
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classification methods from the perspective of their parameters,
and we found that these four methods can transform into each
other in some cases.

In the simulation studies, we evaluated the performance of
the four methods in a wide range of settings. The simulation
results showed that different methods perform better for different
applications. In addition, we found that the application region
of each method is associated with the attributes of the dataset,
such as the dispersion, sample size, and probability of excess
zeros. Therefore, we built a decision tree to help us select the
optimal classification methods in different cases. In the real
data analysis, we analyzed two real, next-generation sequencing
datasets, and the results further confirmed the theory and
simulation conclusions.

Although each of the four methods performed well in certain
scenarios, there are numerous issues that remain to be solved,
such as single cell RNA-seq data being particularly prone to
dropout events due to the relatively shallow sequencing depth
per cell. In this case, the existing classification methods may not
provide a good result in practice. Therefore, we plan to develop a
new classification method that employs deep learning technology
to model scRNA-seq data to further improve our current work.
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