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Abstract In climate change impact research it is crucial to carefully select the meteorolog-

ical input for impact models. We present a method for model selection that enables the user

to shrink the ensemble to a few representative members, conserving the model spread and

accounting for model similarity. This is done in three steps: First, using principal component

analysis for a multitude of meteorological parameters, to find common patterns of climate

change within the multi-model ensemble. Second, detecting model similarities with regard

to these multivariate patterns using cluster analysis. And third, sampling models from each

cluster, to generate a subset of representative simulations. We present an application based

on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a

variety of climate impact studies. We find that the two most dominant patterns of climate

change relate to temperature and humidity patterns. The ensemble can be reduced from 25

to 5 simulations while still maintaining its essential characteristics. Having such a represen-

tative subset of simulations reduces computational costs for climate impact modeling and

enhances the quality of the ensemble at the same time, as it prevents double-counting of

dependent simulations that would lead to biased statistics.

1 Introduction

Currently, an increasing societal demand to anticipate the future impacts and costs of

climate change challenges the climate research community, since projections of climate

change impacts should be based on a robust and reliable climatological input. To estimate
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the bandwidth of possible future impacts, a balanced and unbiased estimate of the entire

distribution of possible future changes is required. This bandwidth is often estimated by

driving impact models with few selected climate scenarios, the selection being largely

subjective or determined by practical reasoning such as availability. This work presents a

method for selecting the climate input for climate change impact assessments in a more

objective way, which aims to avoid sampling biases, to properly account for uncertainties

and to save computational resources.

The most detailed information on future climate is provided by General Circulation Mod-

els (GCMs), often refined with regional climate models (RCMs) and empirical-statistical

post-processing methods (e.g. Maraun 2013; Themeßl et al. 2011). However, as with any

future scenario, they are subject to considerable uncertainties (e.g. Tebaldi and Knutti 2007)

originating from the chaotic behavior of the climate system and the unknown future evo-

lution of greenhouse gas concentrations and other forcing agents of the climate system,

as well as simplifications and errors in climate models. Those inherent uncertainties are

often investigated using multi-model ensembles (MMEs), which challenges climate change

impact assessments to base their investigations on multi-model climatological input.

Assuming an unbiased MME, the model selection should conserve the statistical proper-

ties of the original MME as far as possible. A further complication arises if MMEs cannot be

regarded as unbiased, which is usually due to sampling and model interdependence issues,

as discussed in the next section. A sensible selection of climate simulations as input for

climate change impact studies is needed in any case, either to limit computational demand

and/or to mitigate biases in the ensemble statistics. Currently, such selection is often done

“by opportunity” based on the ease of access to climate simulations or by subjective cri-

teria. Only few systematic methods for model selection have been published so far (Smith

and Hulme 1998; Knutti et al. 2010a; McSweeney et al. 2012; Whetton et al. 2012; Evans

et al. 2013; Cannon 2015). Our study adds to this field by describing a multivariate method

to select representative RCM or GCM simulations from a larger MME for impact inves-

tigations based on cluster analysis. The basic aim of the method is to provide a flexible

tool for model selection, that can easily be adapted to different applications in climate

change impact research. The method mitigates sampling and interdependence-biases, and

effectively reduces the ensemble size with a minimal loss of information.

2 Design of multi-model ensembles

According to Masson and Knutti (2011) the goal of ensemble design should be to maximize

model diversity in order to capture model uncertainty properly while ensuring good model

performance . The same criteria are valid for the selection of a sub-ensemble from a larger

ensemble for applications in climate change impact research.

As MMEs usually do not systematically sample components of model uncertainty (e.g.

parameterizations), and thus do not stem from an experimental design in a statistical sense,

they cannot be expected to represent unbiased distributions of possible future climate states

(Knutti et al. 2010b). For example, interdependence between models may induce biases,

since interdependent models gain too much weight in ensemble statistics if they are counted

as independent ones. Studies by Pennell and Reichler (2010) and Masson and Knutti (2011)

showed that GCM ensembles feature considerable model dependence, leading to a smaller

effective ensembles size than the number of models in the ensemble. Such dependencies

can lead to biased estimations of both mean and width of the distribution.
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This problem is even worse in GCM-RCM MMEs, where an additional layer of uncer-

tainty is introduced by nesting regional models into global models. Frequently some GCMs

are used to provide boundary conditions for several RCMs in the ensemble, while others

are used only once. Similar boundary conditions generate substantial interdependencies

between the results of RCMs, leading to an unbalanced ensemble. Some methods to mit-

igate this problem by statistically reconstructing RCM simulations in order to obtain an

ensemble in which each GCM-RCM combination appears exactly once are described in the

literature (e.g. Déqué et al. 2011; Heinrich et al. 2014).

A somewhat different approach to obtain a balanced ensemble is suggested by Whetton

et al. (2012). They recommend shrinking the ensemble to a set of representative simulations

that capture certain characteristics of the whole sample. This subset should then be used

as a consistent forcing for various impact models. Methods to conduct such a selection are

discussed in the next section.

3 Review of existing selection methods

For climate impact modelers dealing with climate simulations, certain objective criteria

need to be fulfilled in order to make a smooth study possible. Such criteria include model

performance in the past, spread of climate change signals and independence.

One of the first published approaches tackling GCM model selection with formal criteria

stems from Smith and Hulme (1998). They propose several criteria such as vintage (consid-

ering the latest generation of climate simulations only), resolution (the higher the resolution,

the better), validity (model performance in the past), and representativeness (picking sim-

ulations from the high and low end of the range of climate change signals of temperature

and precipitation to obtain a representative sub-sample). This method has been adopted

by the IPCC guidelines for climate scenarios (IPCC-TGICA 2007). Such a selection of

GCMs has been applied by e.g. Murdock and Spittlehouse (2011) focusing on the region of

British Columbia by analyzing the models based on the spread of change in temperature and

precipitation. A discussion of sub-selecting climate simulations for hydrology studies has

been published by Salathe et al. (2007). They propose sampling driving climate simulations

by considering the projected model spread for hydrology-relevant parameters (temperature

and precipitation change) to find groups of similar simulations and selecting representative

climate models. A generalization to a multivariate setup has recently been presented by Can-

non (2015). His proposed method maximizes model diversity by selecting the most extreme

simulations. All those studies have a non-probability sampling scheme in common: instead

of assigning probabilities to the simulations and sampling them randomly, the selection is

based on qualitative characteristics which are relevant for the researcher (Mays and Pope

1995). The aim is to maximize diversity of these characteristics.
The Good Practice Guidance Paper on Assessing and Combining Multi Model Cli-

mate Projections (Knutti et al. 2010a) gives some more recent recommendations for model

selection, also addressing the issue of model dependence. Knutti et al. (2010a) argue that

agreement between models may arise due to the fact that models use similar simplifications

and may feature similar errors. This means that models do not represent independent infor-

mation and should be down-weighted in order to avoid biases in the statistical analysis of the

ensemble, which are induced by double-counting similar models (Pirtle et al. 2010). Model

selection can be regarded as a binary 0–1 weighting that should address these issues. Sev-

eral impact studies address this problem of double-counting (e.g. Finger et al. 2012). Evans
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et al. (2013) presents a selection method taking into account model performance and inde-

pendence in climate change signals. This method selects models that are most independent

from the rest of the entire ensemble.

In the literature, models are often selected based only on their performance in the past,

without regarding spread in the climate change signals, with the aim to use only the “best”

models. However, correlations between past performance and future climate change signals

are known to be very weak (Knutti et al. 2010b), which means that there is no clear indi-

cation that the best performing models in the past are most realistic with regard to climate

change signal. In addition, the ranking of models with regard to performance in the past is

highly dependent on the definition of the performance measure (e.g. Jury et al. 2015), which

leads to a very subjective ranking. Therefore it seems reasonable that model performance in

the past should rather be used to detect and remove severely unrealistic models that cannot

be trusted in their future projections for some clearly argued reasons, but not to select a few

“best performing” models, since there is no indication that they are more realistic in their

future projections than other reasonably performing models.

This leads to a further model selection criterion, namely the conservation of statistical

properties of the climate change signals: the sub-sample of the selected simulations should

properly represent uncertainties. Recently, methods have been published based on this idea,

partly combined with some pre-selection based on model performance (e.g. McSweeney

et al. 2012; Bishop and Abramowitz 2013).

4 Method

The following model selection method samples one representative climate simulation out

of groups of models with similar characteristics, to obtain a sub-set of independent simula-

tions that cover the multi-model ensemble spread. These groups are found using clustering

techniques. The model spread and the similarity measure can be defined using an arbitrary

number of climate parameters and indicators. In addition, multiple spatial regions and sea-

sons of interest can be freely defined. Therefore, this method is not limited to the commonly

used temperature and precipitation changes of a single region, but is rather a multivariate

extension.

Having such a complex set-up, it is necessary to decrease the dimensionality of the cli-

mate parameters to eliminate collinearities and to reduce random noise. This is done by

using Principal Component Analysis (PCA) to identify patterns of climate change as step

(1) (Jolliffe 2002). Step (2) finds model similarities with a hierarchical clustering algorithm

(Huth et al. 2008) and finally, step (3) involves sampling the simulations from each clus-

ter detected. We assume that unrealistic simulations have been sorted out in advance of the

study. The next sections explain these steps in more detail.

4.1 Common patterns of climate change: PCA

First, all area-averaged climate change signals of the meteorological parameters (like tem-

perature and precipitation) have to be standardized, as different variables may have different

units and variabilities. Then, with a PCA for each simulation, we transform the climate

change signals to a linear combination of those variables. Those transformed meteorolog-

ical variables are formally called principal components (PCs) and they form the common
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patterns of climate change (see Fig. 1). The transformations, which are the coefficients

of the linear combinations, are called loadings and they describe which meteorological

variables are combined to form a particular pattern of climate change. The PCs of each

simulation (i.e. patterns of climate change) are treated in the same way as meteorologi-

cal variables, but they differ in being stochastically independent of each other, which is

necessary for the subsequent cluster analysis.

In the next step the most dominant patterns of climate change signals have to be detected

in order to reduce noise and make the subsequent cluster analysis more robust. We use the

broken-stick method (Jolliffe 2002), which compares the variances of individual PCs of the

used dataset with the theoretical variances of a randomly generated dataset. If those random

variances are equal or larger than the observed ones, the corresponding PC can be regarded

as noise and should be excluded (Fig. 2).

4.2 Model similarity: cluster analysis

The aim here is to find groups of simulations based on their behavior with regard to the

common climate change patterns obtained from the PCA. Those groups of simulations are

found based on a hierarchical clustering algorithm which works like this: first, each simula-

tion is assigned to its own cluster, and then the algorithm proceeds by iteratively joining the

two closest clusters in each agglomeration step until one cluster remains. The measure of

distance is based on Ward’s criterion, which finds new clusters with minimal variance. This

Fig. 1 The coefficients of the linear combinations (loadings) yielding the first 2 dominant patterns of climate

change (PCs) of the ENSEMBLES RCMs across Europe. Blue boxes indicate increase and red boxes decrease

of the corresponding parameter
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Fig. 2 Scree plot depicting the variances explained by the individual PCs (patterns of climate change, black

line). The red line represents the variances which would occur in a randomly generated dataset with same

dimensionality. PCs with variances close to this red line can be regarded as noise and are excluded from the

analysis

procedure tends to find compact and spherical groups of data. Hierarchical clustering results

in a tree-like similarity structure, which is meaningful if we believe that some clusters might

be more closely related to other clusters.

Having obtained a tree-like structure of the dependence of the simulations (Fig. 3), the

open question of how many simulations to actually select from the ensemble still remains.

There is no unique and best solution to this problem, but there are some criteria for how

to obtain an optimal number of clusters. Our approach is to consider the distance criterion

for each agglomeration step, which in the case of Ward’s criterion is the variance increase

of the newly merged two clusters. We cut the tree where this increase of variance does not

change considerably (Fig. 3).

4.3 Model selection: sampling

We extend the idea of non-probability sampling (see Section 3) by sampling one simulation

out of each group of similar models obtained from the cluster analysis. This approach is

also known as quota sampling, where one selects members out of each group using key

information or characteristics relevant to the phenomenon being studied. This can be done

by picking simulations from the scatter plot of the PCs (Fig. 4). Another way would be to

look at the distribution of the PCs for each simulation individually, which can be displayed

with a bar-chart denoting their location within the scatter plots (Fig. 5). One starts with an

average simulation where all bars/PCs are close to 0 and then selects one simulation with

distinct extreme characteristics from each cluster.
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Fig. 3 Cluster dendrogram for the first 3 PCs showing 5 clusters. The boxes on the bottom show the driving

GCM of the corresponding RCM. The barplot on the top right shows the dissimilarity measure for each

agglomeration step when merging the two closest clusters. The largest 4 dissimilarities, leading to this 5

cluster partition, are marked gray

5 Case study: model selection for the European domain

We apply the methods explained above within an example case study to select regional

climate models for climate impact studies. The study is motivated by the EU-FP7 project

IMPACT2C (e.g. Vautard et al. 2014) to seek driving data for multiple diverse impact
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Fig. 4 Climate change signals of the ENSEMBLES RCMs within the principal component space, showing

the 75 % variance ellipsoid within each cluster. The selected models are highlighted

models spread across the whole European continent. The large number of different impact

modeling groups drastically increases the number of meteorological variables that need to

be considered. The analysis for this example, including the R code and the data, can be

found in the Electronic supplementary material online.

5.1 Data

The MME used here is the multi-model dataset from the ENSEMBLES project. The 27

ENSEMBLES regional climate model simulations are driven by 6 different GCMs which

are all forced by the SRES A1B emission scenario (Nakicenovic et al. 2000). The ECHAM5

GCM appears three times using different initializations and the HadCM3 GCM also shows

up with three different parameterization schemes (Q0, Q3 and Q16). One RCM (KNMI-

RACMO) has been forced by all three ECHAM5 realizations, but with a coarser horizontal

resolution of 50 km. One other simulation has been driven with this resolution as well, while

the remaining 23 simulations have a 25 km resolution. As one simulation (GKSS-CCLM4.8-

IPSL) lacks the variables HURS and RSDS, it has been omitted in this study. In addition

one simulation (OURANOS-CRCM-CGCM3) shows very noticeable biases and has been

excluded as well, leaving n = 25 regional climate simulations for the analysis. The baseline

Fig. 5 Climate change signals for each RCM simulation in the principal component space. The simulations

are split according to their clustering. The suggested selections are highlighted



Climatic Change (2016) 135:381–393 389

period for the climate change signal (CCS) is the 30 years average of 1971 to 2000. The

future scenario period to determine the climate change signal is chosen to be 2021 to 2050.

The most important meteorological drivers for climate change impacts in the European

study have been defined on the basis of a user survey among project partners, and experi-

ence from previous projects. In total, ppar = 5 parameters have been selected: mean air

temperature (TAS), precipitation amount (PR), relative humidity (HURS), global radiation

(RSDS) and wind speed (WSS). The climate change signals of these variables are standard-

ized and analyzed in subregions of Europe (as in Christensen and Christensen 2007) by

aggregating spatially over pspat = 8 domains for the pseas = 4 seasons summer (JJA), win-

ter (DJF), spring (MAM) and autumn (SON). All subregions are equally weighted, however

a weighting scheme according to each area would be possible as well. In total, this gives

160 different parameters. We obtained the climate change signals using the R package wux

(Mendlik et al. 2015).

5.2 Common patterns of climate change

We use PCA to reduce the dimensionality p = ppar ×pseas ×pspat = 5 ·4 ·8 = 160 of the

n = 25 climate models. The broken-stick method detects 3–4 robust PCs (Fig. 2), exclud-

ing the remaining PCs as being random noise. We decided to reduce the dimensionality to

pred = 3 PCs.

The most dominant climate change pattern (PC1) is largely linked to the temperature

change along all four seasons for all European subregions. PC2 shows a negative rela-

tionship between relative humidity (HURS) and global radiation (RSDS). This means that

simulations projecting a higher change in HURS than others tend to project a lower change

in RSDS. This anti-correlation seems to hold for the entire European region in winter (DJF)

and for the northern and eastern parts of Europe in the remaining seasons, especially in

spring (MAM) and autumn (SON). A positive correlation of humidity and precipitation can

be detected for the Scandinavian region over the whole year and in winter for mid- and

eastern Europe and the Alpine region. PC3 shows a humidity-precipitation pattern for the

southern regions for MAM (not shown).

5.3 Model similarity

Based on the first pred = 3 PCs we performed a hierarchical cluster analysis as described

in Section 4.2.

The tree-like dependency structure is visualized by a dendrogram in Fig. 3. The height

of the branches depicts the measure of dissimilarity between simulations and clusters with

regard to the common patterns of climate change. To detect the optimal number of clusters,

we observe the dissimilarity measure at each step when incrementally merging the clos-

est pair of clusters into a single one. Before the dissimilarity significantly increases, we

stop merging to obtain a set of dissimilar clusters each obtaining similar simulations. The

dissimilarity measure at each increment is shown as a bar plot in Fig. 3.

We show partitions with 5 clusters to visualize the range of reasonable clustering.

Notably, simulations driven by the lateral boundary conditions of the GCMs ECHAM5-r3,

BCM and ARPEGE show very strong GCM-specific clustering, meaning that those RCMs

driven by the same GCM behave rather similarly with regard to the common patterns of

climate change. Further, ECHAM5-r3 and BCM-driven simulations tend to be more sim-

ilar than ARPEGE models. Interestingly, the 50 km versions of the RCM KNMI-RACMO

driven by ECHAM5-r1 and by ECHAM5-r2 behave rather differently than the ECHAM5-r3-
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driven version and are spread among different clusters. Also forced with ECHAM5-r3, the

simulations KNMI-RACMO and SMHI-RCA both have identical set-ups using both a 25 km

and a 50 km resolution. In each case, the similarity is very high. On the other hand, RCMs

driven by the three HadCM3 GCMs show quite some heterogeneity: On the one hand they

are split among two clusters of different sizes. On the other hand, RCMs driven by differ-

ent HadCM3 GCMs can be found in either cluster. Also, the MIROC-driven KNMI-RACMO

does not form a cluster of its own but behaves similarly to HadCM3-driven RCMs.

5.4 Model selection

Our model selection approach identifies 5 groups of similar simulations. As shown in Fig. 3,

these groups also show dependencies, some more than others, but by far not as strong

as between the individual simulations. By selecting one simulation from each cluster, we

definitely reduced the model dependency and obtained a more independent ensemble. We

decided to select an average climate simulation and 4 extreme simulations to span the

uncertainty range.

Figure 4 depicts the climate change signals of the regional climate simulations in the

principal component space of the first three PCs. Simulations close to 0 can be interpreted

as having an “average pattern” of the climate change induced by the corresponding principal

component. The sign and order of magnitude in the scatter plot (Fig. 4) corresponds to

the pattern described in the corresponding PC from the loadings plot in Fig. 1. For PC1

(warming pattern), simulations within cluster 1 show the highest changes, whereas clusters

2 and 5 tend to have cooler projections and cluster 3 is average. For PC2 (humidity pattern)

cluster 4 and cluster 3 show distinct behavior. PC3 (precipitation and humidity pattern)

mostly distinguishes between clusters 2, 3 and 5.

The individual locations within the scatter plots can be visualized with barplots (Fig. 5),

which makes sampling easier. We started by choosing one average simulation closest

to 0 along all PC axes. Then, out of each cluster, we took one extreme representa-

tive to obtain maximum diversity of our sub-sample. One possible model selection could

be the following: KNMI-ECHAM5-r2-50 km (average behavior), C4I-HadCM3Q16 (low

PC2), DMI-ARPEGE (high PC2, low PC3), ICTP-ECHAM5-r3 (high PC1, high PC3) and

HCQ16-HadCM3Q16 (low PC1, high PC3). This selection is marked in Figs. 3, 4 and 5.

Here, some driving GCMs appear two times, such as ECHAM5 and HadCM3Q16, as

the corresponding RCMs project very different patterns of climate change. However, other

constellations capturing the extreme characteristics are also possible.

6 Summary and discussion

In order to provide sound meteorological input for climate change impact studies, it is

important to address the uncertainty induced by climate simulations. We present a simple

tool to aid users in selection of appropriate climate simulations (either GCMs or RCMs) as

input for their studies. The aim of the proposed method is to sample the climate model uncer-

tainty, find model similarities, and sub-select models that are as independent as possible

while conserving the spread of the full ensemble.

Our method generalizes the pragmatic approach of finding the model spread of climate

change signals of, say, temperature against precipitation (IPCC-TGICA 2007). It allows

for simultaneous analysis of an arbitrary number of meteorological parameters over several

spatial regions of interest, and brings forth dominant patterns of climate change. Model
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similarities are detected based entirely on those patterns of projected change. This stands in

contrast to most other studies, which find similarities in the 20th century historical runs (e.g.

Abramowitz and Gupta 2008; Pennell and Reichler 2010; Bishop and Abramowitz 2013).

An interesting aspect for further research would be the question of how model similarities

in historical runs and dependencies in future projections relate over time.

The sub-ensemble of selected simulations conserves the main climate change character-

istics of the entire ensemble, but it might not share identical statistical properties like mean

and standard deviation. This is a desirable property, as unbalanced ensemble designs often

lead to biased estimates due to double-counting induced by model dependencies. For balan-

ced and thus unbiased ensembles, like for reconstructed datasets (Heinrich et al. 2014), the

statistical properties are conserved, as the sample size is decreased equally in each cluster.

We do not discuss model selection based on performance, as different models show dif-

ferent strengths and weaknesses depending on the metric (Knutti et al. 2010a). We tend to

the pragmatic approach of excluding only simulations with severe and clearly demonstrated

deficiencies and keeping as many simulations as possible as input for the model selection

procedure.

It should be noted that the proposed method does not deliver one single and unique

subset. Instead the user has to decide on how to select one simulation out of each cluster.

This can be done with probabilistic (random) sampling or non-probabilistic sampling. We

do not recommend any type of random sampling as it is vulnerable to random sampling

error: the randomness of the selection can result in a subset which is not representative for

the ensemble. The probability of such a misspecification increases with decreasing sample

size. For such small sample sizes it is more advisable to take most extreme simulations so

as to sample the entire model spread.

Cannon (2015) proposes a very interesting alternative model selection algorithm,

addressing the same problems as are presented in this work (multivariate set-up and model

dependency). However, in contrast to the method proposed in this work, in Cannon’s method

the selected models are uniquely identified. This surely makes model selection simpler, but

there is no flexibility for the user to add some subjective selection criteria when sampling,

like the inclusion of an extremely well-performing simulation.

We demonstrate the presented model selection procedure with the ENSEMBLES multi-

model dataset (Section 5). Our results show that the first two most dominant patterns of

change relate to temperature and humidity and that the dataset can be split into 5 groups

of similar simulations. An important factor for model similarity in this setting is the

GCM forcing of the RCM. Interestingly, some GCM forcings lead to very dense clusters

(ECHAM5-r3), while others are very heterogeneous and may even be split among differ-

ent groups of similarity. This is particularly the case for the different initial conditions of

ECHAM5 (r1, r2 and r3), each of which induces a distinct behavior of the RCMs. On the

other hand, some driving GCMs do not create their own clusters at all (e.g. MIROC). In our

example application this leads to a selection where two GCMs appear twice, while others

are omitted entirely. Selecting simulations from each GCM would not necessarily span the

entire uncertainty range.

Note that our method is not restricted to the selection of RCMs, and can also be used to

select suitable GCMs.

In summary, we present a flexible method to select models from an ensemble of simula-

tions conserving the model spread and accounting for model similarity. This method reduces

computational costs for climate impact modeling and enhances the quality of the ensemble

at the same time, as it prevents double-counting of dependent simulations that would lead

to biased statistics.
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