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Introduction

In machine learning problems, high dimensional data, especially in terms of many fea-

tures, is increasingly these days [1]. Many researchers focus on the experiment to solve 

these problems. Besides, to extract important features from these high dimensional of 

variables and data. �e statistical techniques were used to minimize noise and redun-

dant data. Nevertheless, we do not use all the features to train a model. We may improve 

our model with the features correlated and non-redundant, so feature selection plays an 

important role.
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Moreover, it not only supports in training our model faster but also lowers the com-

plexity of the model, makes it easier to understand and improves the metric perfor-

mance in accuracy, precision, or recall. �ere are four important reasons why feature 

selection is essential. First, spare the model to reduce the number of parameters. Next 

to decrease the training time, to reduce overfilling by enhancing generalization, and 

to avoid the curse of dimensionality. In the field of data processing and analysis, the 

dataset may be large of variables or attributes which determine the applicability and 

usability of the data [2]. Also, the challenge for classification is to pay attention to bal-

ance and imbalance data [3]. Another motivation is to get the best model with high 

predictions and small errors [4, 5].

�e reduction of the original feature that set to a smaller one is preserving the rel-

evant information while discarding the redundant one, and it is referred to feature 

selection (FS) [6, 7].To solve this issue, we have to use a smaller number of training 

samples. �e use of feature selection and extraction techniques would be the high-

light of this case. Feature selection methods are often used to increase the generaliza-

tion potential of a classifier [8, 9]. In this paper, we compare the result of the dataset 

with and without important features selection by RF methods varImp(), Boruta, and 

RFE to get the best accuracy. In the heart of machine learning, it requires lots of data, 

features, and variables to make predictions and reach high accuracy. More than that, 

selecting the feature is more important than designing the prediction model. Further-

more, using the dataset without pre-processing will only make the prediction result 

worse.

Related to the previous research, [10] performs feature importance in classification 

models for colorectal cancer cases phenotype in Indonesia. Besides, these features as 

covariates in future genetic association studies of colorectal cancer [11] conduct fea-

ture importance on emotion classification and emotional speech synthesis. Also [12, 

13], performs feature importance analysis for the industrial recommendation system 

with promising results. In this paper, we show how significant the features selection in 

Bank Marketing dataset, car evaluation dataset, and Human Activity Recognition using 

smartphones dataset.

�e main contributions of this research summarize as follows. First, it analyses vari-

ous features to find out which features are useful, particularly for the classification data 

analysis. �ese studies have been implemented with Random Forest. Some discussions 

are presented to get several concepts into the selection of the critical metric. Second, 

the system shows the comparison of the different machine learning models, such as 

RF, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Linear Discrimi-

nant Analysis (LDA) based on the critical features. Different models will have various 

strengths in data classification that will affect the classification performance. Besides, we 

use multiple features selection methods, RF varImp(), Boruta, and RFE, to get the best 

accuracy. Further, we mainly review the features selection application, provide a descrip-

tion, analysis, and future research suggestions.

�e remainder of the paper is organized as follows. “Material and method” section 

provides a review of the Materials and methods. “Results and discussion” section pre-

sents our results and discussion. Finally, conclusions and future research directions are 

indicated in “Conclusion and future work” section.
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Material and method

Important features study

Variable importance analysis with RF has received a lot of attention from many research-

ers, but there remain some open issues that need a satisfactory answer. For instance, 

Andy Liaw and Matthew Wiener using RF for classification and regression problems, 

they use R language to solve the problem [14]. Other research combines RF and KNN 

on the HAR dataset using Caret [15]. Moreover, in [16] introduced RF methods to 

Diabetic retinopathy (DR) classification analyses. �ese research results suggest that 

RF methods could be a valuable tool to diagnose DR diagnosis and evaluate their pro-

gression. Hence, Grömping [17] compares the two approaches (linear model and ran-

dom forest) and finds both striking similarities and differences, some of which can be 

explained whereas others remain a challenge. �e investigation improves understanding 

of the nature of variable importance in RF. RF has been discussed as a robust learner 

in several domains [18, 19]. Feature selection aims at finding the most relevant features 

of a problem domain. It is beneficial in improving computational speed and prediction 

accuracy [20]. In [21], a comparative analysis using Human Activity Recognition (HAR) 

dataset based on machine learning methods with different characteristics is conducted 

to select the best classifier among the models. �is study showed that the RF approach 

has high precision from each category and is considered the best classifier [22]. Further, 

the combination of RF, SVM (Support Vector Machine), and tune SVM regression to 

improve the model performance could be found in [23]. �e experiment describes that 

the best features to improve model performance are essential [24]. �e feature selection 

is handy for all disciplines, more instance in ecology, climate, health, and finance. How-

ever, Table 1 describes in detail the application of feature selection.

�e evaluation of function in variable and feature importance is dependent by model 

use information, or the model does not use information. �e advantage of using a 

Table 1 Description application of feature selection

Subject Description

Climate, Ecology, 
and Environ-
mental

The analysis of noisy ecological data [25], variables in ecology modelling [26], number of 
counts termites [27], community ecology and integrating species, traits, environmental, 
space [28], parameter in rainfall forecasting [29, 30], global climate zone [31], local climate 
zone [32], environmental noise pollution [33], urban pollution [34, 35], rainfall spatial 
temporal [36], flash flood hazard [37, 38], landslide [39], earthquake damage detection 
using curvilinear features [40], earthquake classifiers using stochastic reconstruction [41] 
and tsunami [42]

Health Future genetic association studies of colorectal cancer [11], Aortic Anatomy on Endovascular 
Aneurysm Repair (EVAR) [43], colorectal cancer cases phenotype [10], identify a wide range 
of predictors that could enhance prediabetes prediction and clinical decision-making 
[44], the classification of diabetes mellitus [45], type 2 diabetes within 2 years in an obese, 
hypertensive population [46], the principal purpose of coronary illness [47], heart disease 
[48], cardiovascular disease [49], ovarian cancer patients [50], gene expression RNA-Seq 
data [51, 52], adjuvant chemotherapy effectiveness assessment in non-small cell lung 
cancer [53], and Alzheimer’s disease [54]

Finance Mineral prospect [12], Industrial recommendation system [13], financial crisis [55], indus-
trial coal mine [56], poverty classification [57], spatiotemporal poverty [58], potential tax 
fraudsters [59], risk control in financial marketing [60], electrical load consumption [61], 
price forecast of electrical power systems [62], electrical load data [63], electrical circuits 
[64], stochastic modelling [65], dynamic financial distress [66], Household indebt [67], social 
vulnerability [68], construction of social vulnerability index [69], financial statement fraud 
[70], insurance fraud [71], macroeconomic Influencers [72], stock markets [73]
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model-based approach is more closely tied to the model performance and that it may be 

able to incorporate the correlation structure between the predictors into the importance 

calculation. In brief, the importance is calculated. Each predictor will have a separate 

variable of importance for each class. Next, all the important measurements are scaled 

to have a maximum value of 100, unless the scale argument of varImp()should be set to 

FALSE.

In this experiment, the model-specific metrics Random Forest from the R package 

were used. For each tree, the prediction accuracy on the portion of the data is regis-

tered. �en the same is finished after permuting each predictor variable. �e difference 

between the two accuracies is then averaged over all trees, and normalized by the stand-

ard error. We use train()function the desired model using the caret package. �en, use 

the varImp()function to determine the feature importance by RF.

Recursive Feature Elimination (RFE) offers an accurate way to define the prominent 

variables before we input them into a machine learning algorithm. Guyon et al. [74] pro-

posed RFE, which is applied to cancer classification by using SVM. RFE employs all fea-

tures to build an SVM model. Next, it ranks the collaboration of each feature in the SVM 

model into a ranked feature list. RFE then finally eliminates the unrelated features that 

have a meaningless contribution to the SVM model. Moreover, RFE is a powerful algo-

rithm for feature selection, which depends on the specific learning model [75, 76].

Boruta is a feature selection algorithm and feature ranking based on the RF algorithm. 

Boruta’s benefits are to decide the significance of a variable and to assist the statistical 

selection of important variables. Besides, we can manage the strictness of the algorithm 

by adjusting the p value that defaults to 0.01. maxRun is the number of times the algo-

rithm is run. �e higher the maxRun, the more selective we get in choosing the vari-

ables. �e default value is 100. For the confirmation of feature selection, our experiment 

has followed the Boruta package in the R programming language [77]. �is package is 

based on the wrapper, which builds around the RF classification algorithm, and works 

on the RF method to determine significant features. It tries to capture all the interesting 

and important features in each dataset that have an outcome variable. �is algorithm 

performs a top-down approach for relevant features with the comparison on the set of 

original attributes.

Classi�ers method

Random Forests (RF) consists of a combination of decision-trees. It improves the clas-

sification performance of a single tree classifier by combining the bootstrap aggregating 

method and randomization in the selection of data nodes during the construction of a 

decision tree [78]. A decision tree with M leaves divides the feature space into M regions 

Rm, 1 ≤ m ≤ M. For each tree, the prediction function f(x) is defined as:

where M is the number of regions in the feature space, Rm is a region appropriate to m; 

cm is a constant suitable to m:

(1)f (x) =

M∑

m=1

cmΠ(x,Rm)
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�e last classification conclusion is made from the majority vote of all trees.

K-Nearest Neighbor (KNN) [79, 80] works based on the assumption that the instances 

of each class are surrounded mostly by instances from the same class. �erefore, it is 

given a set of training instances in the feature space and a scalar k. A given unlabelled 

instance is classified by assigning the label, which is most frequent among the k training 

samples nearest to that instance. According to many different measures that are used 

for the distance between instances, the Euclidean distance is the most frequently worn 

for this purpose [81]. Some of the previous researches about KNN could be found in 

[82–84]. �e type of distance metric used in this method is Euclidean distance described 

in the equation below:

Linear Discriminant Analysis (LDA) [85] usually used as a dimensionality decrease 

technique in the pre-processing step for classification and machine learning applica-

tions. �e goal is to project a dataset into lower dimensional space with good separable 

class—to avoid over-fitting and to reduce computational costs. LDA is usually used to 

discover a linear combination of features or variables. �e combination is beneficial for 

dimensionality reduction. LDA yields scattered classes from the fixed dataset. It is due to 

the distance between the training data in a class that is made shorter [86]. �e purpose 

of LDA is maximizing the between-class measure while minimizing the within-class 

measure. Let Ci be the class containing the state binary vectors x corresponding to the ith 

activity class. �en the linear discriminant features are performed in the following way. 

It consists of solving the generalized eigenvalue problem:

With the between-class scatter matrix, SB and within-class scatter matrix S−1

W
 are cal-

culated [87]. �e number of reduced variables will be at most N-1 because there only N 

points to estimate SB.

Support Vector Machines (SVM) is a machine learning algorithm. In recent years, 

there has been plenty of researches introduce SVM as a powerful method for classifica-

tion. An overview can be found in [88–91] and can be used to regression [30, 92]. �e 

other research describes that SVM uses a high dimension space to find a hyperplane in 

order to perform binary classification where the error rate is minimal [93, 94]. �e prob-

lem with SVM is to separate the two classes with a function obtained from the available 

training data [36, 95, 96]. �e aim is to produce classifiers that will work well on other 

problems. �e input vectors are maximal to separate two regions that are the hyperplane 

function in SVM. SVM is not limited to separate two kinds of objects and that there are 

several alternatives to dividing lines that arrange the set of objects into two classes. �is 

technique seeks to find an optimal classifier function that can separate two sets of data 

from two different categories. In this case, the separating function aimed is linear.

(2)Π(x,Rm) =

{

1, if xǫRm
0, otherwise

(3)L
�

xi, xj
�

=





n
�

i,j=1

(
��

�xi − xj
�

�

�

)2





1
2

X ∈ Rn

(4)L = Eig (S−1

W SB)
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With f (x) = w
T
x + b,w, x ∈ R

n and b ∈ R , w and b are the parameters for which 

value is sought. �e best hyperplane is located in the middle between two sets of objects 

from two classes. Finding the best hyperplane is equivalent to maximizing the margin 

or distance between two sets of objects from two categories. Samples located along a 

hyperplane are called support vectors. In this technique, it is attempted to find the best 

classifier/hyperplane function among functions.

Classi�cation and Regression Training (Caret) Package

�e Caret package has several functions that arrange to streamline the model building 

and evaluation process. �is package consists of 30 packages and contains functions to 

shorten the model training process for classification and complex regression problems. 

Moreover, Caret will execute packages as needed and assumes that they are installed. If a 

modelling package is missing, there is a prompt to install it. �e package accommodates 

tools for data splitting, pre-processing, feature selection, model tuning using resampling, 

variable importance estimation, as well as other functionality [97, 98]. A classification 

tree algorithm is a nonparametric approach. �is method is a one classification method 

that does not depend on certain assumptions and able to explore complex data struc-

tures with many variables. �e data structure can be seen visually [99]. Moreover, the 

classification tree algorithm also enables it to interpret the results easily.

Random Forest is divided into two, regression trees and classification trees. When 

an RF is used for classification, it is more accurate to call it a classification tree. When 

it is used for regression, it is known as a regression tree. �e classification tree in the 

response variable is categorical data, whereas, in the regression tree, the response vari-

able is continuous data. Classification trees are rules for predicting the class of an object 

from the values of predictor variables. Trees are formed through repeated data sealing, 

in which the level and benefits of the predictor variables of each observation in the sam-

ple data are known. Each partition (split) data is expressed as a node in the tree formed.

Research work�ow

Figure  1 describes the workflow of this research. �e experiment consists of several 

steps. First, collecting the dataset from the University of California Irvine (UCI) machine 

learning repository. Further, this work uses three popular datasets (Bank Marketing, Car 

Evaluation Database, Human Activity Recognition Using Smartphones) to conduct the 

experiment. Second, our work applies features selection method RF, Boruta, and RFE to 

select essential features. �e next is the comparison of different machine learning models 

such as RF, SVM, KNN, and LDA methods for classification analysis. �e determination 

of an ideal subset of highlights from a list of capabilities is a combinatorial issue, which 

cannot be understood when the measurement is high without the association of specific 

suspicions or bargain that results in just problematic arrangements. Here our experi-

ment utilizes a recursive methodology to move toward the issue. Different models will 

have different strengths in classification data analysis. We will compare four classifiers 

method with various features to select the best classifiers method based on the accuracy 

(5)g(x) = sign
(

f (x)
)
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of each classifier. �e whole work has been done in R [97, 98] a free software program-

ming language that is specially developed for statistical computing and graphics.

Model performance evaluation

�e performance is evaluated based on the calculation of accuracy. Accuracy is how 

often the model trained is correct, which depicted by using the confusion matrix. A con-

fusion matrix is the summary of prediction results on a classification problem [100]. A 

classification system is expected to be able to classify all data sets correctly, but the per-

formance of a classification system is not entirely spared error. �e form of error is in 

classifying new objects into a class (misclassification). �e confusion matrix is a table 

recording the results of classification work.

�e confusion matrix in Table  2 has the following four results [101]. True positive 

is a condition when the observations coming from positive classes are predicted to be 

positive. �en, False-negative is a condition when the actual observation comes from a 

positive but in positive negative predicted class. False-positive is a condition when the 

actual observation coming from negative classes but predicted to be positive. Lastly, 

True negative is a condition when observations from negative classes are predicted to 

be negative. �e performance evaluation in classification can be justified by precision 

Fig. 1 The workflow of this research

Table 2 Confusion Matrix

Original class Prediction class

Class A Class B

Class A TP FN

Class B FP TN
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and recall. Recall/True Positive Rate can be defined as the level of accuracy of predic-

tions in positive classes and the percentage of the number of predictions that are right 

on the positive observations. Moreover, accuracy is the percentage of overall predictions 

that are right on all observations in the data group. Apart from looking at the confusion 

matrix, the assessment of the goodness of a classifier’s prediction can be seen from the 

Receiver Operating Characteristic (ROC) [102, 103] and Area Under the Curve (AUC) 

curves [104].

Based on the contents of the confusion matrix, it can be seen the amount of data from 

each class is correctly predicted and classified incorrectly. �en calculate the accuracy 

and prediction error rates using the equation below: [105] 

where: TP = True positive; FP = False positive; TN = True negative; FN = False negative.

Cohen’s Kappa evaluation is an evaluation method to determine the reliability or level 

of similarity in two or more variables. �e equation from the Cohen’s Kappa evaluation 

can be written in Eq. (9) as follows:

With: k = kappa coefficient value,p0 = total main diagonal proportion of the obser-

vation frequency, pe = total marginal proportion of the observation frequency. �e 

value of the cohen’s kappa coefficient can be interpreted with the strength of agree-

ment: First, poor ≤ 0.20; fair = 0.21–0.40; moderate = 0.41–0.60; good = 0.61–0.80; very 

good = 0.81–1.00.

Results and discussion

Dataset descriptions

�is experiment uses three datasets publicly available from the UCI machine learning 

repository. Moreover, the three datasets belong to classification data that have different 

total instances and features. �e description of each dataset could be found in Table 3.

Table  3 describes a dataset that belongs to classification data. In this experiment, we 

use the Bank marketing dataset published in 2012 with 45,211 instances and 17 features. 

Next, the car evaluation database in 1997 with 1728 instances and six features, and Human 

(6)Accuracy = (TP + TN )/(TP + TN + FP + FN )

(7)Precision = (TP)/(TP + FP)

(8)Recall = (TP)/(TP + FN )

(9)k =

p0 − pe

1 − pe

Table 3 Dataset descriptions

No Dataset Instance Features Year

1 Bank marketing 45,211 17 2012

2 Car evaluation database 1728 6 1997

3 Human activity recognition using smart-
phones dataset

10,299 561 2012
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Activity Recognition Using Smartphones Dataset in 2012 with 10,299 instances and 561 

features. �e ability to mine intelligence from these data more generally, big data has 

become highly crucial for economic and scientific gains [106, 107]. Further, feature descrip-

tions and explanations for each dataset could be seen in Tables 4, 5, 6, and 7.

�e set of variables estimated from the 3-Axial signal in the X, Y, and Z can be seen in 

Table 6. Additional vectors obtained by averaging the signals in a signal window sample can 

be seen in Table 7.

Features selection by RF, Boruta, and RFE for Bank Marketing Dataset displayed in Figs. 2, 

3, 4, and 5. First, in RF, the process of solving at each parent node is based on the goodness 

of split criterion, which is based on the function of impurity. �e solving rule used is the 

towing criterion. �e goodness of split is an evaluation of solving by s at node t. A split s 

in node t is divided into tR with the proportion of the number of objects. �en, i function 

with tR has probability PR and with tL has probability PL . In addition, PL with the number of 

Table 4 Feature description bank marketing dataset

No Feature Value

1 Age Numeric

2 Job Type of job categorical: admin, unknown, unemployed, management, housemaid, entrepre-
neur, student, blue-collar, self-employed, retired, technician, services

3 Marital Marital status categorical: married, divorced, single (note: divorced means divorced or wid-
owed)

4 Education Categorical: unknown, secondary, primary, tertiary

5 Default Has credit in default? (binary: yes, no)

6 Balance Average yearly balance, in euros (numeric)

7 Housing Has housing loan? (binary: yes, no)

8 Loan Has a personal loan? (binary: yes, no)

9 Contact Contact communication type categorical: unknown, telephone, cellular

10 Day Last contact day of the month (numeric)

11 Month Last contact month of the year category: Jan, Feb, Mar,…, Nov, Dec

12 Duration Last contact duration, in seconds (numeric)

13 Campaign Number of contacts performed during this campaign and for this client (numeric)

14 Pdays Number of days that passed by after the client was last contacted from a previous campaign 
(numeric, − 1 means the client was not previously contacted)

15 Previous Number of contacts performed before this campaign and for this client (numeric)

16 Poutcome The outcome of the previous marketing campaign categorical: unknown, other, failure, success

17 Y Has the client subscribed a term deposit? (binary: yes, no)

Table 5 Feature description car evaluation dataset

No Feature Value

1 Buying v-high, high, med, low

2 Maint v-high, high, med, low

3 Doors 2, 3, 4, 5-more

4 Persons 2, 4, more

5 Lug_boot Small, med, big

6 Safety Low, mid, high

7 Class Unacc, acc, good, v-good
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objects in tL can be defined as PL(decreasing impurity). It means that the solution is done 

to make two new vertices with a smaller (homogeneous) diversity when compared to the 

initial node (parent node). Solving the t node using split s will produce a new classification 

tree that has a tree impurity. �is value is smaller than the tree impurity from the previous 

classification tree.

Table 6 Feature description human activity recognition using smartphones dataset 

(3-axial signal in the X, Y, Z)

No Features

1 tBodyAcc-XYZ

2 tGravityAcc-XYZ

3 tBodyAccJerk-XYZ

4 tBodyGyro-XYZ

5 tBodyGyroJerk-XYZ

6 tBodyAccMag

7 tGravityAccMag

8 tBodyAcc-XYZ

9 tGravityAcc-XYZ

10 tBodyAccJerk-XYZ

11 tBodyGyro-XYZ

12 tBodyGyroJerk-XYZ

13 tBodyAccMag

14 tGravityAccMag

15 tBodyAccJerkMag

16 tBodyGyroMag

17 tBodyGyroJerkMag

Table 7 Feature description human activity recognition using smartphones dataset 

(variables from the signal)

No Variables

1 Mean value

2 Standard deviation

3 Median absolute deviation

4 The largest value in an array

5 The smallest value in an array

6 Signal magnitude area

7 Energy measure

8 Interquartile range

9 Signal entropy

10 Auto regression coefficients

11 Correlation coefficient

12 Index of the frequency component with the largest magnitude

13 Weighted average

14 The skewness of the frequency domain signal

15 Kurtosis of the frequency domain signal

16 The energy of a frequency interval within the 64 bins of the 
FFT of each window.

17 Angle between vector
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�e breakdown criteria are based on the greatest value of the goodness of split 

[ Φ(s, t)] . Discrete attributes only have two branches for each node, so that every pos-

sible value for the node must be partitioned into two parts. Each combination forms 

a candidate splits an alternative that will be selected to compile partition initials on 

root nodes and other nodes based on the highest goodness of split values. Before per-

forming the goodness of split in continuous attributes type, the attribute must find 

the threshold to calculate the goodness of split in attributes. Split-points are obtained 

by looking for the average value of 2 attribute values that have been sorted first. On 

a continuous type attribute, the case is labelled with an attribute value less than or 

equal to the threshold value (A ≤ v) and attribute, which has a more significant value 

than the threshold value (A > v).

(10)Φ(s, t) = �i(s, t) = i(t) − PRi(tR) − PLi(tL)

Fig. 2 The important measure for each variable of Bank marketing Dataset using Random Forest
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Bank marketing datasets

�is dataset uses seven predictors and two classes (No and Yes) with 36,170 samples. 

Fig. 3 The important measure for each variable of Bank marketing Dataset using Recursive Features 
Elimination

Fig. 4 The important measure for each variable of Bank marketing Dataset using Boruta
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In Random Forest, re-sampling is used by using cross-validation ten folds, and the best 

accuracy is at mtry = 2. It means that we take two random variables from our data set 

and examine them for one tree. �erefore, from the next tree would be taken two more 

random variables, examine them, so on and so forth until it runs through the numbers 

that we specify and then return the average estimates for the best/most important vari-

ables and justify by kappa (0.3444818).

Figure  2 explains that seven variables are important to be used, including duration, 

balance, age, poutcomesucess, pdays, campaign, and housingyes. �en the variable will 

be used to form the model. Our research operates cross-validation to see the accuracy 

of each of these variables, which can be seen in Fig. 3 and perform the Boruta in Fig. 4.

Moreover, these experiments perform KNN, -tested with k = 5, 7, and 9, which resam-

pling using cross-validation tenfold. It obtained k = 9 is best used with an accuracy value 

of 0.8841308 and kappa 0.2814066. �en do the same thing in SVM by comparing the C 

cost (0.25,0.50, and 1) obtained the best accuracy value at C = 1 with sigma 0.2547999 

reach the accuracy 0.8993641 and kappa 0.355709. Finally, we perform LDA with tenfold 

cross-validation that obtained accuracy 0.898037, and kappa 0.4058678. �ese experi-

mental results are fully explained in Tables 8 and 9.

Figure  5 displays the selection of 7 features based on RF + RF, RF + SVM, and 

RF + KNN. �e KNN accuracy will increase when using neighbors values that are get-

ting bigger. �en in the random selection of predictors, the best is the predictor with a 

large number. Furthermore, in RF + SVM, the best accuracy is to use a cost that is close 

to 1.

Fig. 5 Feature selection and classification method combination for Bank Marketing Dataset a RF + RF, b 
RF + SVM and c RF + KNN
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Car dataset

At the simulation stage of the Car Dataset in Random Forest, we apply 1384 samples, 4 

predictors, and 4 classes (acc, good, unacc, vgood). Next, the resampling stage was mtry 

(2, 7, and 12). Besides, the best result is mtry = 7, with an accuracy of 0.9436328 and 

kappa 0.8784367. Moreover, In modeling with KNN, the optimal model is obtained by 

k = 5 with an accuracy of 0.7969389 and kappa 0.5683084. Furthermore, the SVM resa-

mpling cross-validation 10 fold and the tuning parameter “sigma” was held constantly 

at a value of 0.07348688, C = 0.5 reach the accuracy 0.8346161, and kappa 0.6319634. 

Lastly, LDA achieves accuracy = 0.8431124, and kappa = 0.6545901 are fully explained in 

Tables 10 and 11. Features selection by RF, Boruta, and RFE for Car Evaluation Dataset 

could be seen in Figs. 6, 7, and 8.

Figure  9 portrays the selection of 4 features based on RF + RF, RF + SVM, and 

RF + KNN. In this case, the greater choice of the attribute does not guarantee to 

reach high accuracy. �is is proven by the final value used for the model RF + RF was 

mtry = 7. However, in RF + SVM tuning parameter, sigma was held constant at a value of 

0.07348688. Accuracy was used to select the optimal model using the largest value. �e 

final values used for the model were sigma = 0.07348688 and C = 0.5.

Table 8 Classi�cation accuracy of di�erent classi�ers with bank marketing dataset

Method Accuracy Features

SVM 0.902 16

Boruta + SVM 0.9024 7

RFE + SVM 0.9024 7

RF + SVM 0.89 7

LDA 0.8993 16

Boruta + LDA 0.9002 7

RFE + LDA 0.9002 7

RF + LDA 0.9 7

KNN 0.8877 16

Boruta + KNN 0.8874 7

RFE + KNN 0.8875 7

RF + KNN 0.886 7

RF 0.9088 16

Boruta + RF 0.9061 7

RFE + RF 0.9079 7

RF + RF 0.9099 7

Table 9 Statistics by the class of di�erent classi�ers with bank marketing dataset

Method Accuracy Precision Recall Features

RF + SVM 0.89 0.9137 0.9791 7

RF + LDA 0.9 0.9226 0.9679 7

RF + KNN 0.886 0.9080 0.9691 7

RF + RF 0.9099 0.9122 0.9810 7
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Table 10 Classi�cation accuracy of di�erent classi�ers with car evaluation dataset

Method Accuracy Features

SVM 0.933 6

Boruta + SVM 0.8866 4

RFE + SVM 0.8895 4

RF + SVM 0.8401 4

LDA 0.8808 6

Boruta + LDA 0.843 4

RFE + LDA 0.8372 4

RF + LDA 0.843 4

KNN 0.8634 6

Boruta + KNN 0.8663 4

RFE + KNN 0.8808 4

RF + KNN 0.8227 4

RF 0.9331 6

Boruta + RF 0.8792 4

RFE + RF 0.8779 4

RF + RF 0.9336 4

Table 11 Statistics by class of Di�erent Classi�ers with Car Evaluation Dataset (4 features)

Evaluation Class: 
acc

Class: 
good

Class: 
unacc

Class: 
vgood

Evaluation Class: 
acc

Class: 
good

Class: 
unacc

Class: 
vgood

RF + SVM Accuracy: 0.8401 RF + LDA Accuracy: 0.843

 Precision 0.6095 NA 0.9646 0.53846 Precision 0.6111 NA 0.9731 0.53846

 Recall 0.8421 0.00000 0.9008 0.53846 Recall 0.8684 0.00000 0.8967 0.53846

RF + KNN Accuracy: 0.8227 RF + RF Accuracy: 0.9336

 Precision 0.5810 0.000000 0.9518 0.55556 Precision 0.9054 0.55000 0.9832 0.75000

 Recall 0.8026 0.000000 0.8967 0.38462 Recall 0.8816 0.84615 0.9669 0.69231

Fig. 6 The important measure for each variable of the Car Evaluation dataset using Random Forest
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Human activity recognition using Smartphones dataset

In this session, we perform HAR dataset by Random Forest, KNN, SVM, and LDA 

by 5884 samples, six classes (Laying, Sitting, Walking, Walking Downstairs, Walk-

ing Upstairs). �e best model in Random Forest selects the largest value mtry = 2 

with accuracy = 0.9316768 and kappa = 0.9177446. Features selection by RF, Boruta, 

and RFE for Human Activity Recognition Using Smartphones Dataset could be 

seen in Figs.  10, 11, and 12. Random Forest restores a few proportions of variable 

significance. �e most dependable measure depends on the diminishing of arrange-

ment exactness when estimations of the variable in a hub of the tree are permuted 

Fig. 7 The important measure for each variable of the Car Evaluation dataset using RecursiveFeatures 
Elimination

Fig. 8 The important measure for each variable of the Car Evaluation dataset using Boruta
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haphazardly. To choose highlights, we iteratively fit irregular Random Forest, at every 

emphasis fabricating another iteration disposing of those factors with the littlest vari-

able significance.

Figure 11 illustrates the Random Forest for creating a classification tree. �is pro-

cessing is recursive partitioning, which means the solving process is repeated for each 

child node as a result of previous solutions. �is solving process will continue until 

Fig. 9 Feature selection and classification method combination for Car Evaluation Dataset a RF + RF, b 
RF + SVM and c RF + KNN

Fig. 10 The important measure for each variable of Human Activity Recognition Using Smartphones Dataset 
using Random Forest
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there is no chance to do the next solution. �e term partition means that the sample 

data owned is broken down into smaller parts or partitions.

Figure  12 describes the important measure for each variable of the HAR data-

set. Boruta performed 99 iterations in 1.04146  h. In this process, 404 attributes 

confirmed important: V1, V10, V100, V101, V103, and 399 more, 58 attributes 

confirmed unimportant: V102, V107, V111, V128, V148 and 53 more, and 100 tenta-

tive attributes left: V104, V105, V110, V112, V115 and 95 more. �is work employ 

varImp(fit.rf ) function to generate important features by RF. Next, to select impor-

tant features by RFE, our experiment uses RFE function with various parameters 

such as rfeControl(functions = rfFuncs, method = ”cv”, number = 10). Moreover, we 

Fig. 11 The important measure for each variable of Human Activity Recognition Using Smartphones Dataset 
using Recursive Features Elimination

Fig. 12 The important measure for each variable of Human Activity Recognition Using Smartphones Dataset 
using Boruta
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use TentativeRoughFix(boruta_output) function to select significant features by 

Boruta. Besides, in KNN, we perform (k = 5,7,and9). �e final value used for the 

model was k = 7 with accuracy = 0.9036328 and kappa = 0.8839572. SVM resam-

pling results across tuning parameters (C = 0.25, 0.50 and 1). Tuning parameter 

‘sigma’ was held constantly at a value of 1.194369, and accuracy was applied to select 

the optimal model using the largest value. �e final values used for the model were 

sigma = 1.194369, C = 1 with accuracy = 0.8708287, and kappa = 0.8444160. Lastly, 

LDA resampling cross-validation10-fold reached the accuracy = 0.8303822 and 

kappa = 0.7955373. Tables 12 and 13 describe the full experiment result with Human 

Activity Recognition Using Smartphones Dataset.

Table 12 Classi�cation accuracy of  di�erent classi�ers with  human activity recognition 

using smartphones dataset

Method Accuracy Features

SVM 0.9796 561

Boruta + SVM 0.8692 6

RFE + SVM 0.8331 6

RF + SVM 0.8685 6

LDA 0.9823 561

Boruta + LDA 0.7786 6

RFE + LDA 0.705 6

RF + LDA 0.8297 6

KNN 0.9748 561

Boruta + KNN 0.864 6

RFE + KNN 0.8385 6

RF + KNN 0.904 6

RF 0.9857 561

Boruta + RF 0.8924 6

RFE + RF 0.9394 6

RF + RF 0.9326 6

Table 13 Statistics by  the  class of  di�erent classi�ers with  human activity recognition 

using smartphones dataset (6 features)

Evaluation Class: LAYING Class: SITTING Class: 
STANDING

Class: 
WALKING

Class: 
WALKING_
DOWNSTAIRS

Class: 
WALKING_
UPSTAIRS

RF + SVM Accuracy: 0.8685

 Precision 1.0000 0.8604 0.8910 0.7527 0.8966 0.8030

 Recall 1.0000 0.8872 0.8650 0.8571 0.7919 0.7617

RF + LDA Accuracy: 0.8297

 Precision 0.9860 0.8791 0.7949 0.7128 0.8182 0.78107

 Recall 1.0000 0.7354 0.9051 0.8408 0.8223 0.61682

RF + KNN Accuracy: 0.904

 Precision 1.0000 0.9125 0.9366 0.8083 0.8783 0.8657

 Recall 1.0000 0.9339 0.9161 0.8776 0.8426 0.8131

RF + RF Accuracy: 0.9326

 Precision 1.0000 0.9240 0.9478 0.8984 0.9031 0.9019

 Recall 1.0000 0.9455 0.9270 0.9020 0.8985 0.9019
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Figure 13 represents the selection of 6 features on RF + RF, RF + SVM, and RF + KNN. 

Exactly similar to the car dataset, the best predictor is 2 in the HAR dataset, so the selec-

tion of many predictors does not guarantee high accuracy. �e RF + SVM result is the 

selection of cost = 1, which will improve accuracy accordingly. Finally, for RF + KNN, the 

selection of the best neighbor appears to be 7.

Evaluation performance and discussion

�e contributions of the simulation paper are to see the different insights in each experi-

mental data such as Bank Marketing dataset in Tables  8 and 9, car evaluation dataset 

in Tables  10, and 11 as well as human activity recognition using smartphones dataset 

in Tables  12 and 13. We perform 80% of training data and 20% testing data in each 

experiment. To compare the accuracy, this work is following metric=”Accuracy.”At the 

same time, we are comparing the accuracy from different classifiers method by follow-

ing trainControl(method = ”cv”, number = 10), and different method parameter to do the 

experiment (method = ”lda”, method = ”knn”, method = ”svmRadial”, and method = ”rf ”). 

�e determination of the hyperplane function for classification in this study is done by 

optimizing margins.

Additionally, the problem is formulated into Quadratic Programming (QP) by com-

pleting an optimization function. Optimization function is simplified by transforma-

tion into the Lagrange function. �is function creates a hyperplane that separates data 

according to every class. �e calculation is intended to find the value of Lagrange Mul-

tiplier (α) and b value. �e error values are obtained in each classification performance 

measurement with several pairs of parameter values (C parameters and kernel parame-

ters). �e values tried to determine which pair of parameter values is best in the classifi-

cation of this study. �e following is the error value obtained for each pair of amounts of 

Fig. 13 Feature selection and classification method combination for Human Activity Recognition Using 
Smartphones Dataset a RF + RF, b RF + SVM and c RF + KNN
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the cost (C) parameter and kernel parameters that have been predetermined. Other than 

including determination methodology, in [107] additionally portrayed the best approach 

to error rates. Furthermore, in [108] investigate the use of random forest for classifica-

tion of microarray data (including multi-class problems) and propose a new method of 

gene selection in classification problems based on random forest. To evaluate the expec-

tation mistake error of all methods we use the bootstrap strategy as proposed by Efron 

and Tibshirani [109]. �eir experiment shows that a particular bootstrap method sub-

stantially outperforms cross-validation in a catalogue of 24 simulation experiments. 

Besides providing point estimates, it also considers estimating the variability of an error 

rate estimate [110]. �e bootstrap strategy utilizes a weighted normal of the re-substi-

tution mistake (the blunder when a classifier is applied to the preparation information) 

and the mistake on tests is not used to prepare the indicator.

Tables 8, 10, and 12 describe the result of the classification accuracy of different classi-

fiers with different features selection method Boruta, RFE, and RF. �e result shows that 

the RF method has high accuracy in all experiment groups. According to Table 8, the RF 

method has a high accuracy of about 90.88% with all features (16 features) and 90.99% 

accuracy with 7 features. Moreover, in Table 10, the RF method leads to 93.31% accuracy 

with 6 features and 93.36% accuracy with 4 features. In regards to the next experiment 

result in Table 12, the RF method gained 98.57% accuracy with 561 features and 93.26% 

accuracy with only 6 features. In general, the trend of accuracy will decrease because of 

features limitation. We could get good accuracy if we select the important features by 

the feature’s selection method. Random Forest in data mining is prediction models that 

are applied to describe the forms of classification and regression models. Decision trees 

are utilized to identify the most likely strategies to achieve their goals. �e use of the 

Random Forest is a widespread technique in data mining in addition to get high accu-

racy RF + RF. �e favors of using decision trees as a classification tool include: (1) RF is 

easy to understand. (2) �e RF can handle both nominal and continuous attributes. (3) 

�e RF represents enough discrete classification values. (4) RF is included in nonpara-

metric methods, so they do not require distribution assumptions.

Lately, the fame of big data exhibits some difficulties for the traditional feature selec-

tion task. Meanwhile, some unique characteristics of big data also bring about new pos-

sibilities for feature selection research [111]. �e latest advances in feature selection are 

a combination of feature selection with deep learning especially the Convolutional Neu-

ral Networks (CNN) for classification tasks, such as applications in bioinformatics neu-

rodegenerative disorders classification using the Principal Components Analysis (PCA) 

algorithm [112, 113], brain tumor segmentation [114] using three planar super pixel 

based statistical and textural features extraction. Next, remote sensing imagery classi-

fication using a fusion of CNN and RF [115], and software fault prediction [116] using 

enhanced binary moth flame optimization as a feature selection, and text classification 

based on independent feature space search [117].
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Conclusions and future work

In this paper, we compare four classifiers method Random Forest (RF), Support Vec-

tor Machines (SVM), K-Nearest Neighbors (KNN), and Linear Discriminant Analysis 

(LDA). We combine those classifiers method with different features selection method 

RF, RFE, and Boruta to select the best classifiers method based on the accuracy of each 

classifier. Feature selection is essential for classification data analysis and proves in the 

experiment. Besides, Tables  8, 10, and 12 demonstrate that the RF method has high 

accuracy in all experiment groups.

Regarding the performance evaluation in our experiment, it is undoubtedly accurate 

that Random Forest it the best classifier. Furthermore, in all experiments with three 

different dataset method, varImp()by RF become the best features selection method 

compared to Boruta and RFE. Besides, RF methods are extremely useful and efficient 

in selecting the important features, so we should not use all the features in the data-

set. Consequently, it will affect the processing time, it could give the best accuracy, and 

more features which are the higher dimension of data. Based on our evaluation result, 

our proposed model has a better result compare to other methods in each dataset. For 

instance, in Table 12, the RF method got 98.57% accuracy with 561 features and 93.26% 

accuracy with only 6 features.

In the future, we would like to set up our dataset or different data repositories and use 

a different method. At the same time, future research can try a QUEST. QUEST stands 

for Quick, Unbiased, and Efficient Statistical Tree. QUEST is one of the classification 

tree methods that produce two nodes per block. �e variable that used as a node blocker 

is the variable with the smallest p value. �e variable selected as a node blocker is uti-

lized to define a block as a data split into two nodes. Also, future research can try the 

Gradient boosting, and the other boosted algorithm family can improve the predictive 

accuracy of the model. Some different boosting algorithms, such as XGBoost [45], Ada-

Boost [118], and Gentle Boost [119, 120] has its mathematical formula and varied. �e 

concept of Gradient Boosting lies in its development which has expansion adds to the 

criterion fitting.
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