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Abstract. This paper describes a method for selecting training examples for a partial memory learning system.
The method selects extreme examples that lie at the boundaries of concept descriptions and uses these examples with
new training examples to induce new concept descriptions. Forgetting mechanisms also may be active to remove
examples from partial memory that are irrelevant or outdated for the learning task. Using an implementation of the
method, we conducted a lesion study and a direct comparison to examine the effects of partial memory learning
on predictive accuracy and on the number of training examples maintained during learning. These experiments
involved the STAGGER Concepts, a synthetic problem, and two real-world problems: a blasting cap detection
problem and a computer intrusion detection problem. Experimental results suggest that the partial memory learner
notably reduced memory requirements at the slight expense of predictive accuracy, and tracked concept drift as
well as other learners designed for this task.
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1. Introduction

Partial memory learners are on-line systems that select and maintain a portion of the past
training examples, which they use together with new examples in subsequent training
episodes. Such systems can learn by memorizing selected new facts, or by using selected
facts to improve the current concept descriptions or to derive new concept descriptions.
Researchers have developed partial memory systems because they can be less susceptible
to overtraining when learning concepts that change or drift, as compared to learners that use
other memory models (Salganicoff, 1993; Maloof, 1996; Widmer & Kubat, 1996; Widmer,
1997).

The key issues for partial memory learning systems are how they select the most relevant
examples from the input stream, maintain them, and use them in future learning episodes.
These decisions affect the system’s predictive accuracy, memory requirements, and ability
to cope with changing concepts. A selection policy might keep each training example that
arrives, while the maintenance policy forgets examples after a fixed period of time. These
policies strongly bias the learner toward recent events, and, as a consequence, the system
may forget about important but rarely occurring events. Alternatively, the system may
attempt to select prototypical examples and keep these indefinitely. In this case, the learner
is strongly anchored to the past and may perform poorly if concepts change or drift.
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This paper presents a method for selecting training examples for a partial memory learner.
Our approach extends previous work by using induced concept descriptions to select training
examples that lie at the extremities of concept boundaries, thus enforcing these boundaries.
The system retains and uses these examples during subsequent learning episodes. This
approach stores a nonconsecutive collection of past training examples, which is needed for
situations in which important training events occur but do not necessarily reoccur in the input
stream. Forgetting mechanisms may be active to remove examples from partial memory
that no longer enforce concept boundaries or that become irrelevant for the learning task.
As new training examples arrive, the boundaries of the current concept descriptions may
change, in which case the training examples that lie on those boundaries will change. As a
result, the contents of partial memory will change. This continues throughout the learning
process.

After surveying relevant work, we present a general framework for partial memory learn-
ing and describe an implementation of such a learner, called AQ-Partial Memory (AQ-PM),
which is based on the AQ-15c inductive learning system (Wnek et al., 1995). We then
present results from alesion study(Kibler & Langley, 1990) that examined the effects
of partial memory learning on predictive accuracy and on memory requirements. We also
make a direct comparison to IB2 (Aha, Kibler, & Albert, 1991), since it is similar in spirit to
AQ-PM. In applying the method to the STAGGER Concepts (Schlimmer & Granger, 1986),
a synthetic problem, and two real-world problems—the problems of blasting cap detection
in X-ray images (Maloof & Michalski, 1997) and computer intrusion detection (Maloof
& Michalski, 1995)—experimental results showed a significant reduction in the number
of examples maintained during learning at the expense of predictive accuracy on unseen
test cases. AQ-PM also tracks drifting concepts comparably to STAGGER (Schlimmer &
Granger, 1986) and the FLORA systems (Widmer & Kubat, 1996).

2. Partial memory learning

On-line learning systems must have a memory model that dictates how to treat past training
examples. Three possibilities exist (Reinke & Michalski, 1988):

1. full instance memory, in which the learner retains all past training examples,
2. partial instance memory, in which it retains some of the past training examples, and
3. no instance memory, in which it retains none.

Researchers have studied and described learning systems with each type of memory model.
For example, STAGGER (Schlimmer & Granger, 1986) and Winnow (Littlestone, 1991)
are learning systems with no instance memory, while GEM (Reinke & Michalski, 1988)
and IB1 (Aha, Kibler, & Albert, 1991) are learners with full instance memory. Systems
with partial instance memory appear to be the least studied, but examples include LAIR
(Elio & Watanabe, 1991), HILLARY (Iba, Woogulis, & Langley, 1988), IB2 (Aha, Kibler,
& Albert, 1991), DARLING (Salganicoff, 1993), AQ-PM (Maloof & Michalski, 1995),
FLORA2 (Widmer & Kubat, 1996), and MetaL(B) (Widmer, 1997).
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On-line learning systems must also have policies that deal withconcept memory, which
refers to the store of concept descriptions. Researchers have investigated a variety of strate-
gies in conjunction with different models of instance memory. For example, IB1 (Aha,
Kibler, & Albert, 1991) maintains all past training examples but does not store generalized
concept descriptions. In contrast, GEM (Reinke & Michalski, 1988) keeps all past training
examples in addition to a set of concept descriptions in the form of rules. And finally, as
an example of a system with no instance memory, ID5 (Utgoff, 1988) uses a new training
example to incrementally refine a decision tree before discarding the instance.

For systems with concept memory, learning can occur either in an incremental mode
or in a temporal batch mode. Incremental learners modify or adjust their current concept
descriptions using new examples in the input stream. If the learner also maintains instance
memory, then it uses these examples to augment those arriving from the environment.
FLORA2, FLORA3, and FLORA4 (Widmer & Kubat, 1996) are examples of systems that
learn incrementally with the aid of partial instance memory.

Temporal batch learners, on the other hand, replace concept descriptions with new ones
induced from new training examples in the input stream and any held in instance memory.
DARLING (Salganicoff, 1993) and AQ-PM are examples of temporal batch learners with
partial instance memory. Any batch learning algorithm, such as C4.5 (Quinlan, 1993) or
CN2 (Clark & Niblett, 1989), can be used in conjunction with full or no instance memory.
However, this choice depends greatly on the problem at hand. Figure 1 displays a classi-
fication of selected learning systems based on concept memory and the various types of
instance memory. Having described the role of instance and concept memory in learning,
we will now discuss partial memory learning systems that have appeared in the literature.

Figure 1. Learning systems classified by concept and instance memory.
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2.1. A survey of partial memory learning systems

LAIR (Watanabe & Elio, 1987; Elio & Watanabe, 1991) appears to be one of the first partial
memory systems. In some sense, it has a minimal partial memory model because the system
keeps only the first positive example. Consequently, it always learns from the one positive
example in partial memory and the arriving training examples.

HILLARY (Iba, Woogulis, & Langley, 1988) maintains a collection of recent negative
examples in partial instance memory. Positive examples may be added to a concept de-
scription as disjuncts but are generalized in subsequent learning steps. HILLARY retains
negative examples if no concept description covers them; otherwise, it specializes the con-
cept description. Negative examples that are retained may be forgotten later if they are
covered by a positive concept description.

IB2 (Aha, Kibler, & Albert, 1991), an instance-based learning method, uses a scheme
that, like AQ-PM, keeps a nonconsecutive sequence of training examples in memory. When
IB2 receives a new instance, it classifies the instance using the examples currently held
in memory. If the classification is correct, the instance is discarded. Conversely, if the
classification is incorrect, the instance is retained. The intuition behind this is that if an
instance is correctly classified, then we gain nothing by keeping it. This scheme tends to
retain training examples that lie at the boundaries of concepts. IB3 extends IB2 by adding
mechanisms that cope with noise.

DARLING (Salganicoff, 1993) uses a proximity-based forgetting function, as opposed
to a time-based or frequency-based function, in which the algorithm initializes the weight
of a new example to one and decays the weights of examples within a neighborhood of the
new example. When an example’s weight falls below a threshold, it is removed. DARLING
is also an example of a partial memory learning system, since it forgets examples and
maintains only a portion of the past training examples.

The FLORA2 system (Widmer & Kubat, 1996) selects a consecutive sequence of training
examples from the input stream and uses a time-based scheme to forget those examples
in partial memory that are older than a threshold, which is set adaptively. This system
was designed to track drifting concepts, so during periods when the system is performing
well, it increases the size of the window and keeps more examples. If there is a change in
performance, presumably due to some change in the target concepts, the system reduces the
size of the window and forgets the old examples to accommodate the new examples from
the new target concept. As the system’s concept descriptions begin to converge toward the
target concepts, the size of the window increases, as does the number of training examples
maintained in partial memory.

FLORA3 extends FLORA2 by adding mechanisms to cope with changes in context. The
change of seasons, for instance, is a changing context, and the concept of warm is different
for summer and for winter. Temperature is the contextual variable that governs which warm
concept is appropriate. FLORA4 extends FLORA3 by adding mechanisms for coping with
noise, similar to those used in IB3 (Aha, Kibler, & Albert, 1991).

Finally, the MetaL(B) and MetaL(IB) systems (Widmer, 1997) are based on the naive
Bayes and instance-based learning algorithms, respectively. These systems, like FLORA3
(Widmer & Kubat, 1996), can cope with changes in context and use partial memory mech-
anisms that maintain a linear sequence of training examples, but over a fixed window of
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time. When the algorithm identifies the context, it uses only those examples in the window
relevant for that context. MetaL(IB) uses additional mechanisms, such as exemplar selection
and exemplar weighting, to further concentrate on the relevant examples in the window.

The FAVORIT system (Krizakova & Kubat, 1992; Kubat & Krizakova, 1992), which
extends UNIMEM (Lebowitz, 1987), uses mechanisms for aging and forgetting examples.
Although FAVORIT has no instance memory, we include this discussion because aging and
forgetting mechanisms are important for partial memory learners, and because this system
uses a third type of forgetting: frequency-based forgetting.

FAVORIT ages training examples either positively or negatively with respect to time (i.e.,
the newer the example, the more important, and vice versa). Forgetting involves updating
a score for each node in a decision tree. If incoming training examples do not reinforce a
node’s presence in the tree, then the node’s score decays until it falls below a threshold.
At this point, the algorithm forgets, or removes, the node. Conversely, if incoming training
examples continue to reinforce and revise the node, its score increases. If the score surpasses
an upper threshold, then the node’s score is fixed and remains so.

2.2. A general framework for partial memory learning

Based on an analysis of these systems and on our design of AQ-PM, we developed a general
algorithm for inductive learning with partial instance memory, presented in Table 1. The
algorithm begins with a data source that supplies training examples distributed over time,
represented by Datat , wheret is a temporal counter. We generalize the usual assumption
that a single instance arrives at a time by placing no restrictions on the cardinality of Datat ,
allowing it to consist of zero or more training examples. This criterion is important because
it ultimately determines the structure of time for the learner.1 By allowing Datat to be empty,
the learner can track the passage of time, since the passage of time is no longer associated
with the explicit arrival of training examples. By allowing Datat to consist of one or more
training examples, the learner can model arbitrary periods of time (e.g., days and weeks)
without requiring that a specific number of training examples arrive during that interval.
Intuitively, there may be a day when the system learns one thing, but simply because it
learns something else does not mean that another day passed.

Table 1. Algorithm for partial memory learning.

1. Learn-Partial-Memory (Datat , for t = 1 . . .n);
2. Concepts0 = ∅;
3. PartialMemory 0 = ∅;
4. for t = 1 to n do
5. Missedt = Find-Missed-Examples(Conceptst−1, Datat );
6. TrainingSett = PartialMemory t−1 ∪ Missedt ;
7. Conceptst = Learn(TrainingSett , &optionalConceptst−1);
8. TrainingSet′t = Select-Partial-Memory (TrainingSett , Conceptst );
9. PartialMemory t = Maintain-Partial-Memory (TrainingSet′t , Conceptst );

10. end; /* for */
11. end. /* Learn-Partial-Memory */
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Initially, the learner begins with no concepts and no training examples in partial memory
(steps 2 and 3), although it may possess an arbitrary amount of background knowledge.
For the first learning step (t = 1), the partial memory learner behaves like a batch learning
system. Since it has no concepts and no examples in partial memory, the training set consists
of all examples in Data1. It uses this set to induce the initial concept descriptions (step 7).
Subsequently, the system must determine which of the training examples to retain in partial
memory (steps 8 and 9).

In subsequent time steps (t > 1), the system begins by determining which of the new
training examples it misclassifies (step 5). The system uses these examples and the examples
in partial instance memory to learn new concept descriptions (step 7).

As we have seen in the review of related systems, there are several ways to accomplish
this. The system could simply memorize the new examples in the training set. It could
also induce new concept descriptions from these examples. And finally, it could use the
examples in the training set to modify or alter its existing concept descriptions to form new
concept descriptions.

The precise way in which a particular learner determines misclassified examples (step 5),
learns (step 7), selects examples to retain (step 8), and maintains those examples (step 9)
depends on the concept description language, the learning methods employed, and the task
at hand. Therefore, to ground further discussion, we will describe the AQ-PM learning
system.

3. Description of the AQ-PM learning system

AQ-PM is an on-line learning system that maintains a partial memory of past training
examples. To implement AQ-PM, we extended the AQ-15c inductive learning system (Wnek
et al., 1995), so we will begin by describing this system before delving into the details of
AQ-PM.

AQ-15c represents training examples using a restricted version of the attributional lan-
guage VL1 (Michalski, 1980). Rule conditions are of the form

‘[’< attribute>‘=’<reference>‘]’ ,

where <attribute> is an attribute used to represent domain objects, and <reference> is a list
of attribute values. A rule condition is true if the attribute value of the instance to which the
condition is matched is in the <reference>. Decision rules are of the form

D⇐ C,

where D is an expression in the form of a rule condition that assigns a decision to the
decision variable,⇐ is an implication operator, and C is a conjunction of rule conditions.
If all of the conditions in the conjunction are true, then the expression D is evaluated and
returned as the decision. We can also represent training instances in VL1 by restricting the
cardinality of each reference to one. That is, we can view training instances as VL1 rules in
which all conditions have references consisting of single values.
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The performance element of AQ-15c consists of a routine that flexibly matches instances
with VL1 decision rules. Decision rules carve out regions in the representation space, leaving
some of the space uncovered. If an instance falls into an uncovered region of the space,
then, usingstrict matchingtechnique, the system would classify the instance as unknown,
which is important for some applications.Flexible matchinginvolves computing thedegree
of matchbetween the instance and each decision rule. We can compute this metric in a
variety of ways, but, for the experiments discussed here, we computed the degree of match
as follows.2 For each decision class Di , consisting ofn conjunctions Cj , the degree of
match,δi , for an instance is given by

δi =


αi j

βi j
, for j = 1;

δi−1+ αi j

βi j
− δi−1

αi j

βi j
, for j = 2 . .n,

(1)

whereαi j is the number of conditions in Cj satisfied by the instance, andβi j is the total
number of conditions in Cj .

Formula 1 yields a number in the range [0, 1] and expresses the proportion of the condi-
tions of a rule an instance matches. A value of zero means there is no match, and a value of
one means there is a complete match. The flexible matching routine returns as the decision
the label of the class with the highest degree of match. If the degree of match falls below a
certain threshold, then the routine may report “unknown” or “no match”.

To learn a set of decision rules, AQ-15c uses the AQ algorithm (Michalski, 1969), a
covering algorithm. Briefly, AQ randomly selects a positive training example, known as the
seed. The algorithm generalizes the seed as much as possible, given the constraints imposed
by the negative examples, producing a decision rule. In the default mode of operation, the
positive training examplescoveredby the rule are removed from further consideration, and
this process repeats using the remaining positive examples until all are covered.

To implement AQ-PM, we extended AQ-15c by incorporating the features outlined in
the partial memory algorithm in Table 1. AQ-PM finds misclassified training examples by
flexibly matching the current set of decision rules with the examples in Datat (step 5). These
“missed” examples are grouped with the examples currently held in partial memory (step 6)
and passed to the learning algorithm (step 7). Like AQ-15c, AQ-PM uses the AQ algorithm
to induce a set of decision rules from training examples, meaning that AQ-PM operates
in a temporal batch mode. To form the new contents of partial memory (step 8), AQ-PM
selects examples from the current training set using syntactically modifiedcharacteristic
decision rulesderived from the new concept descriptions, which we discuss further in
Section 3.1. Finally, AQ-PM may use a variety of maintenance policies (step 9), like time-
based forgetting, aging, and inductive support, which are activated by setting parameters.

3.1. Selecting examples

One of the key issues for partial memory learners is deciding which of the new training
examples to select and retain. Mechanisms that maintain these examples are also important
because some of the examples held in partial memory may no longer be useful. This could
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Figure 2. Visualization of the setosa and versicolor training examples.

be due to the fact that concepts changed or drifted, or that what the system initially thought
was crucial about a concept is no longer important to represent explicitly, since the current
concept descriptions implicitly capture this information.

Returning to AQ-PM, we used a scheme that selects the training examples that lie on
the boundaries of generalized concept descriptions. We will call these examplesextreme
examples. Each AQ-PM decision rule is an axis-parallel hyper-rectangle in discreten-
dimensional space, wheren is the number of attributes used to represent domain objects.
Therefore, the extreme examples could be those that lie on the surfaces, the edges, or the
corners of the hyper-rectangle covering them. For this study, we chose the middle ground
and retained those examples that lay on the edges of the hyper-rectangle, although we have
considered and implemented the other schemes for retaining examples (Maloof, 1996).

Referring to figure 2, we see a portion of a discrete version of the iris data set (Fisher,
1936). We took the original data set from the UCI Machine Learning Repository (Blake,
Keogh, & Merz, 1998) and produced a discrete version using the SCALE implementation
(Bloedorn et al., 1993) of the ChiMerge algorithm (Kerber, 1992). Shown are examples of
the versicolor and setosa classes with each example represented by four attributes: petal
length (pl), petal width (pw), sepal length (sl), and sepal width (sw).

To find extreme or boundary training examples, AQ-PM uses characteristic decision rules,
which specify the common attributes of domain objects from the same class (Michalski,
1980). These rules consist of all the domain attributes and their values for the objects
represented in the training set, and form the tightest possible hyper-rectangle around a
cluster of examples. Returning to our example, figure 3 shows the characteristic rules
induced from the training examples pictured in figure 2.

AQ-PM syntactically modifies the set of characteristic rules so they will match examples
that lie on their boundaries and then uses a strict matching technique to select the extreme
examples. Although AQ-PM uses characteristic rules to select extreme examples, it can
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Figure 3. Visualization of the setosa and versicolor concept descriptions with overlain training examples.

Figure 4. Visualization of the setosa and versicolor extreme examples.

use other types of decision rules (e.g., discriminant rules) for classification. Figure 4 shows
the examples retained by the selection algorithm, which are those examples that lie on the
edges of the hyper-rectangles expressed by characteristic decision rules.

Theorem 1 states the upper bound for the number of examples retained by AQ-PM and its
lesioned counterpart. The lesioned version of AQ-PM, which we describe formally in the
next section, is equivalent to a temporal batch learning system with full instance memory.
For the best case, the partial memory learner will retain fewer training examples than the
lesioned counterpart by a multiplicative factor. For the worst case, or the lower bound, the



36 M.A. MALOOF AND R.S. MICHALSKI

number of examples maintained by the partial memory learner will be equal to that of the
lesioned learner. This follows from the proof of Theorem 1 and occurs when the training
set consists only of examples that lie on the edges of a characteristic concept description.

Theorem 1. For the characteristic decision rule D⇐ C induced from training exam-
ples drawn from an n-dimensional discrete representation space, the number of training
examples retained by the partial memory learner is

n∑
k=1

[2n−1(|referencek| − 2)] + 2n,

while its lesioned counterpart will retain

n∏
k=1

|referencek|.

Proof: Let D⇐C be a characteristic decision rule induced from training examples drawn
from ann-dimensional discrete representation space<. Let ck be thekth condition in C.
By definition, the following three are numerically equivalent:

1. The dimensionalityn of <.
2. The number of conditionsc ∈ C.
3. The number of attributes forming<.

For the partial memory learner,ck expresses thekth dimension in the hyper-rectangle and will
match|referencek| training examples along each edge of thekth dimension. Furthermore,ck

corresponds to 2n−1 edges in thekth dimension of the hyper-rectangle realized by D⇐ C.
Therefore, the number of training examples matched byck is

2n−1|referencek|.

If we were to compute this number fork= 1 . .n, then we would overcount the training
examples that lie at the corners of the hyper-rectangle. Therefore, we must subtract the two
training examples that lie at the endpoints of each edge of the hyper-rectangle, yielding

n∑
k=1

[2n−1(|referencek| − 2)].

But now this undercounts the number of training examples because it excludes all of the
training examples that lie at the corners. Since there are 2n corners in ann-dimensional
hyper-rectangle, the total number of examples matched is

n∑
k=1

[2n−1(|referencek| − 2)] + 2n.
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For the lesioned learner, each attribute value of a training example will map to a corre-
sponding value in a conditionck, by definition of a characteristic concept description. For
a set of training examples, each attribute will result in a conditionck such that the number
of attribute values in the condition’s reference is equal to the number of unique values
the attribute takes. Therefore, the number of training examples maintained by the lesioned
learner is equal to

n∏
k=1

|referencek|. 2

3.2. Forgetting mechanisms

Forgetting mechanisms are important for partial memory learners for two reasons. First, if
the learner selects examples that lie on the boundaries of concept descriptions, as AQ-PM
does, and these boundaries change, then there is no reason to retain the old boundary
examples. The new extreme examples do the important work of enforcing the concept
boundary, so the learner can forget the old ones.

Second, if the learner must deal with concept drift, then forgetting mechanisms are crucial
for removing irrelevant and outdated examples held in partial memory. As we will see in
the experimental section, when concepts change suddenly, the learner must cope with the
examples held in partial memory from the previous target concept. In the context of the
new target concept, many of these examples will be contradictory, and forgetting them is
imperative.

In AQ-PM, there are two types of forgetting: explicit and implicit. Explicit forgetting
occurs when examples in partial memory meet specific, user-defined criteria. In the current
implementation, AQ-PM uses a time-based forgetting function to remove examples from
partial memory that are older than a certain age.

Implicit forgetting occurs when examples in partial memory are evaluated and deemed
useless because they no longer enforce concept boundaries. When computing partial mem-
ory, the basic algorithm (Table 1) evaluates the training examples currently held in partial
memory and those misclassified by the current concept descriptions (step 8). Consequently,
it repeatedly evaluates the extreme examples and determines if they still fall on a concept
boundary, which gives rise to animplicit forgetting process. That is, if the learning algorithm
generalizes a concept description such that a particular extreme example no longer lies on
the concept boundary, then it forgets the example. We call this an implicit forgetting process
because there is no explicit criterion for removing examples (e.g., remove examples older
than fifty time steps).

4. Experimental results

In this section, we present a series of experimental results from a lesion study (Kibler
& Langley, 1990), in which we used AQ-PM for three problems. To produce the lesioned
version of AQ-PM, we simply disabled its partial memory mechanisms, resulting in a system
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Table 2. Algorithm for the lesioned version of AQ-PM, AQ-Baseline (AQ-BL).

1. AQ-BL (Datat , for t = 1 . . .n);
2. Concepts0 = ∅;
3. TrainingSet0 = ∅;
4. for t = 1 to n do
5. TrainingSett = TrainingSett−1 ∪ Datat ;
6. Conceptst = AQ-Learn (TrainingSett );
7. end; /* for */
8. end. /* AQ-BL */

equivalent to a temporal batch learner with full instance memory. We present this learner
formally in Table 2 and will refer to it as AQ-Baseline (AQ-BL). We also included IB2
(Aha, Kibler, & Albert, 1991) for the sake of comparison, which is a instance-based learner
with a partial memory model.

The first problem, a synthetic problem, is referred to as the “STAGGER Concepts”
(Schlimmer & Granger, 1986). It has become a standard benchmark for testing learning
algorithms that track concept drift. We derived the remaining two data sets from real-
world problems. The first problem entails detecting blasting caps in X-ray images of airport
luggage (Maloof & Michalski, 1997), and the second involves using learned profiles of
computing behavior for intrusion detection (Maloof & Michalski, 1995). We chose these
real-world problems because they require on-line learning and likely involve concepts that
change over time. For example, computing behavior changes as individuals move from
project to project or from semester to semester. The appearance of visual objects can also
change due to deformations of the objects or to changes in the environment. For these ex-
periments, the independent variable is the learning algorithm, and the dependent variables
are predictive accuracy and the number of training examples maintained. For both of these
measures, we computed 95% confidence intervals, which are also presented. Detailed re-
sults for learning time and concept complexity for these and other problems can be found
elsewhere (Maloof, 1996).

4.1. The STAGGER Concepts

The STAGGER Concepts (Schlimmer & Granger, 1986) is a synthetic problem in which
the target concept changes over time. Three attributes describe domain objects: size, taking
on values small, medium, and large; color, taking on values red, green, and blue; and, shape,
taking on values circle, triangle, and rectangle. Consequently, there are 27 possible object
descriptions (i.e., events) in the representation space. The presentation of training examples
lasted for 120 time steps with the target concept changing every 40 steps. The target concept
for the first 39 steps was [size= small] & [color = red]. For the next 40 time steps, the
target concept was [color= green]∨ [shape= circular]. And for the final 40 time steps,
the target concept was [size=medium∨ large]. The visualization of these target concepts
appears in figure 5.

At each time step, a single training example and 100 testing examples were generated
randomly.3 For the results presented, we conducted 60 learning runs using IB2, AQ-PM,
and AQ-BL, the lesioned version of AQ-PM.
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Figure 5. Visualization of the STAGGER Concepts.

Figure 6. Predictive accuracy for AQ-PM, AQ-BL, and IB2 for the STAGGER Concepts.

Referring to figure 6, we see the predictive accuracy results for IB2, AQ-PM, and AQ-BL
for the STAGGER Concepts. IB2 performed poorly on the first target concept (85± 2.8%)
and worse on the final two (53± 2.7% and 62± 4.0%, respectively). Conversely, AQ-PM
and AQ-BL achieved high predictive accuracies for the first target concept (99± 1.0% and
100± 0.0%, respectively). However, once the target concept changed at time step 40, AQ-
BL was never able to match the partial memory learner’s predictive accuracy because the
former was burdened with examples irrelevant to the new target concept. This experiment
illustrates the importance of forgetting mechanisms. AQ-PM was less burdened by past
examples because it kept fewer examples in memory and forgot those held in memory
after a fixed period of time. AQ-PM’s predictive accuracy on the second target concept was
89±3.38%, while AQ-BL’s was 69±3.0%. For the third target concept, AQ-PM achieved
96± 1.8% predictive accuracy, while AQ-BL achieved 71± 3.82%.

The predictive accuracy results for AQ-PM are comparable to those of STAGGER
(Schlimmer & Granger, 1986) and of the FLORA systems (Widmer & Kubat, 1996) with
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Figure 7. Memory requirements for AQ-PM, AQ-BL, and IB2 for the STAGGER Concepts.

the following exceptions. On the first target concept, AQ-PM did not converge as quickly
as the FLORA systems but ultimately achieved similar predictive accuracy. On the second
target concept, AQ-PM’s convergence was like that of the FLORA systems, but it performed
about 10% worse on the test cases. Performance (i.e., slope and asymptote) on the third
target concept was similar.

Turning to memory requirements, shown in figure 7, we see that the partial memory
learners, AQ-PM and IB2, maintained far fewer training examples than AQ-BL. Without
the partial memory mechanisms, the baseline learner, AQ-BL, simply accumulated more
and more examples. Intuitively, this is an inefficient and inadequate policy when learning
changing concepts. Yet, as IB2’s predictive accuracy showed, selection mechanisms alone
are not enough.

Taking a closer look at the memory requirements for AQ-PM and IB2 (figure 8), we see
that the number of examples each learner maintained increases because of example selection

Figure 8. Memory requirements for AQ-PM and IB2 for the STAGGER Concepts.
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mechanisms. Overall, IB2 maintained fewer training examples than AQ-PM, but this savings
cannot mitigate its poor predictive accuracy. During the first 40 time steps, for instance,
both learners accumulated examples. As each achieved acceptable predictive accuracies,
the number of examples maintained stabilized. Once the concept changed at time step 40,
both learners increased the number of examples held in partial memory to retain more
information about the new concept. The increases in IB2’s memory requirements occurred
because it adds new examples only if they are misclassified by the examples currently held
in memory. When the target concept changed, most of the new examples were misclassified
and, consequently, added to memory. Because IB2 kept all of the examples related to the
previous target concept, predictive accuracy suffered on this and the final target concept.
Although AQ-PM also increased the number of examples held in memory, it used an explicit
forgetting process to remove outdated and irrelevant training examples after a fixed period
of fifty time steps, which proved crucial for learning these concepts.

We cannot compare AQ-PM’s memory requirements to STAGGER’s, since the latter does
not maintain past training examples, but we can indirectly compare it to one run of FLORA2
(Widmer & Kubat, 1996). Recall that the size of the representation space for the STAGGER
problem is only 27 examples. At time step 50, FLORA2 maintained about 24 examples,
which is 89% of the representation space. At the same time step, AQ-PM maintained only
10.11 examples, on average, which is only 37% of the representation space. Over the entire
learning run, FLORA2 kept an average of 15 examples, which is 56% of representation
space. AQ-PM, on the other hand, maintained only 6.6 examples, on average, which is only
24% of the space.

4.2. Blasting cap detection problem

The blasting cap detection problem involves detecting blasting caps in X-ray images of
airport luggage (Maloof & Michalski, 1997). The 66 training examples for this experiment
were derived from 5 images that varied in the amount of clutter in the luggage and in the
position of the bag relative to the X-ray source. Figure 9 shows a typical X-ray image
from the collection. Positive and negative examples of blasting caps were represented using

Figure 9. Example of X-ray image used for experimentation.
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27 intensity, shape, and positional attributes (Maloof et al., 1996). We computed eleven
attributes for the blob produced by the heavy metal explosive near the center of the blasting
cap. We also computed these same eleven attributes for the rectangular region produced
by the blasting cap’s metal tube. Finally, we used five attributes to capture the spatial
relationship between the blob and the rectangular region. These real-valued attributes were
scaled and discretized using the SCALE implementation (Bloedorn et al., 1993) of the
ChiMerge algorithm (Kerber, 1992).4 The 15 most relevant attributes were then selected
using the PROMISE measure (Baim, 1988). The resulting attributes for the blob were
maximum intensity, average intensity, length of a bounding rectangle, and three measures
of compactness. For the rectangular region, the selected attributes were length, width,
area, standard deviation of the intensity, and three measures of compactness. And finally,
the remaining spatial attributes were the distance between the centroids of the blob and
rectangle, and the component of this distance that was parallel to the major axis of a fitted
ellipse.

We randomly set aside 10% of the original data as a testing set. The remaining 90% was
partitioned randomly and evenly into 10 data sets (i.e., Datat , for t = 1 . .10). We then
conducted an experimental comparison between IB2, AQ-PM, and the lesioned version of
the system, AQ-BL. For each learning run, we presented the learners with Datat and tested
the resulting concept descriptions on the testing set, making note of predictive accuracy and
memory requirements. We conducted 100 learning runs, in which we randomly generated
a new test set and new data sets Datat , for t = 1 . .10, averaging the performance metrics
over these 100 runs.

Figure 10 shows the predictive accuracy results for the blasting cap detection problem.
AQ-PM’s predictive accuracy was consistently lower than AQ-BL’s, which learned from all
of the available training data at each time step. When learning stops at time step 10, AQ-
PM’s predictive accuracy was 7% less than that of the lesioned learner, AQ-BL (81±3.4%
vs. 88± 2.8%). IB2 did not perform well on this task and ultimately achieved a predictive
accuracy of 73± 3.8%.

Figure 10. Predictive accuracy for AQ-PM, AQ-BL, and IB2 for the blasting cap detection problem.
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Figure 11. Memory requirements for AQ-PM, AQ-BL, and IB2 for the blasting caps detection problem.

A notable decrease in memory requirements has to be measured against AQ-PM’s loss
in predictive accuracy, as shown by figure 11. When learning ceased at time step 10, the
baseline learner maintained the entire training set of 61± 0.0 examples, while the partial
memory learner kept 18± 0.5 training examples, on average, which is roughly 30% of the
total number of examples. IB2 retained slightly more examples in partial memory than
AQ-PM: 25± 0.6.

4.3. Computer intrusion detection problem

For the computer intrusion detection problem, we must learn profiles of users’ computing
behavior and use these profiles to authenticate future behavior. Learning descriptions of in-
trusion behavior is problematic, since adequate training data is difficult, if not impossible, to
collect. Consequently, we chose to learn profiles for each user, assuming that misclassifica-
tion means that a user’s profile is inadequate or that an unauthorized person is masquerading
as the user in question. Most existing intrusion detection systems make this assumption.

The data for this experiment were derived from over 11,200 audit records collected for
9 users over a 3 week period. We first parsed each user’s computing activity from the output
of the UNIX acctcom command (Frisch, 1995) intosessionsby segmenting at logouts and
at periods of idle time of twenty minutes or longer. This resulted in 239 training examples.
We then selected seven numeric audit metrics: CPU time, real time, user time, characters
transferred, blocks read and written, CPU factor, and hog factor. Next, we represented each
of the seven numeric measures for a session, which is a time series, using the maximum,
minimum, and average values, following Davis (Davis, 1981). These 21 real and integer
attributes were scaled and discretized using the SCALE implementation (Bloedorn et al.,
1993) of the ChiMerge algorithm (Kerber, 1992). Finally, using the PROMISE measure
(Baim, 1988), we selected the 13 most relevant attributes: average and maximum real time,
average and maximum system time, average and maximum user time, minimum and average
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Figure 12. Predictive accuracy for AQ-PM, AQ-BL, and IB2 for the intrusion detection problem.

characters transferred, average blocks transferred, average and maximum CPU factor, and
average and maximum hog factor.

The experimental design for this problem was identical to the one we used for the blasting
cap problem. Referring to figure 12, we can see the predictive accuracy results for AQ-
PM, AQ-BL, and IB2 for the intrusion detection problem. AQ-PM’s predictive accuracy
was again slightly lower than AQ-BL’s. When learning stopped at time step 10, AQ-PM’s
accuracy was 88± 1.6%, while AQ-BL’s was 93± 1.2%, a difference of 5%. IB2 fared
much better on this problem than on previous ones. When learning ceased, IB2’s predictive
accuracy was a slightly better than AQ-PM’s: 89± 1.3%, although this result was not
statistically significant (p < .05).

Figure 13 shows the memory requirements for each learner for this problem. AQ-PM
maintained notably fewer training examples than its lesioned counterpart. When learning
ceased at time step 10, the baseline learner, AQ-BL, maintained 221± 0.0 examples, while

Figure 13. Memory requirements for AQ-PM, AQ-BL, and IB2 for the intrusion detection problem.
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AQ-PM maintained 64± 1.0 training examples, which is roughly 29% of the total number
of examples. IB2 maintained even fewer examples than AQ-PM. When learning stopped,
IB2 held roughly 52± 0.8 examples in partial memory, which was slightly fewer than the
number held by AQ-PM.

4.4. Summary

The lesion study comparing AQ-PM and AQ-BL suggested that the mechanisms for selecting
extreme examples notably reduced the number of instances maintained in partial memory
at the expense of predictive accuracy. When concepts changed, AQ-PM relied on forgetting
mechanisms to remove outdated and irrelevant examples held in memory. Recall that AQ-
PM can use two types of forgetting: implicit and explicit. Explicit mechanisms proved
crucial for the STAGGER Concepts, but the implicit forgetting mechanisms, in general,
had little effect, an issue we explore further in the next section.

The direct comparison to IB2 using the STAGGER Concepts further illustrated the im-
portance of forgetting policies, as it was apparent that the example selection mechanisms
alone did not guarantee acceptable predictive accuracy when concepts changed. On the other
hand, when concepts were stable, as was the case with the computer intrusion detection
and blasting cap detection problems, forgetting mechanisms played a less important role
than the selection mechanisms. Moreover, we predict that the differences in performance
between AQ-PM and IB2 on these problems were due to inductive bias rather than a limita-
tion of IB2’s example selection method. This would explain why IB2 performed well on the
intrusion detection problem but performed poorly on the blasting cap detection problem.
Indeed, AQ-PM and IB2 used similar selection methods, and experimental results showed
that each maintained roughly the same number of examples in memory.

Regarding the indirect comparison to the FLORA systems, AQ-PM performed as well
on two of the three STAGGER Concepts, and it appears to have maintained fewer training
examples in partial memory. The difference in memory requirements is due to how the
learners selected examples from the input stream. The FLORA systems kept a sequence
of examples of varying length from the input stream, and, as a result, partial memory
likely contained duplicate examples. This would be especially true for a problem like the
STAGGER Concepts in which we randomly draw 120 examples from a representation space
consisting of 27 domain objects. Conversely, AQ-PM retained only those examples that lay
on the boundaries of concept descriptions and, consequently, would not retain duplicate
examples or examples from the interior of the concept.

We claim that AQ-PM was able to achieve comparable accuracy while maintaining fewer
examples in partial memory because the selected examples enforced concept boundaries
and, hence, were of high utility. The two systems do use different concept description
languages: AQ-PM uses VL1, which is capable of representing DNF concepts, whereas
the FLORA systems use a conjunctive description language. However, upon analyzing the
STAGGER Concepts, we concluded that it is unlikely that representational bias accounted
for the differences or similarities in predictive accuracy.

As we noted, AQ-PM did not fare as well as the FLORA systems on the second of the
three STAGGER Concepts. Transitioning concept descriptions from the first target concept
to the second is the most difficult because it is here that there is the most change in the
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representation space. It is here that there is the most overlap between the old negative
concept and the new positive concept, as depicted in figure 5.

AQ-PM should have had an advantage over an incremental learning system in this sit-
uation because it operates in a temporal batch mode. Since AQ-PM replaces old concept
descriptions with new ones, it would not be burdened by the information about the old
concepts encoded in the concept descriptions. But, because AQ-PM operates in a temporal
batch mode, the only cause for its fair performance on the second concept is the examples
held in partial instance memory.

As we have discussed, AQ-PM used a simple forgetting policy that removed examples
older than fifty time steps. The FLORA systems, on the other hand, used an adaptive
forgetting window, which, in this case, more efficiently discarded examples after the concept
changed and may account for the difference in performance on the second concept. Making
the transition between the second and third STAGGER Concepts is easier than transitioning
between the first and second because there is more overlap between the old positive concept
description and the new positive concept description (see figure 5). AQ-PM’s static forgetting
policy worked better during this transition than during the previous one, and the learner
achieved predictive accuracies that were comparable to the FLORA systems.

5. Discussion

Intelligent systems need induced hypotheses for reasoning because they generalize the
system’s experiences. We anticipate that manipulating some concept descriptions to cope
with changing concepts will slow a system’s reactivity. By keeping extreme examples in
addition to concept descriptions, the learner maintains a rough approximation of the current
concept descriptions and, consequently, is able to both reason and react efficiently.

When learning stable concepts, we expect slight changes in the positions of concept
boundaries. The extreme examples, in this case, document the past and provide stability.
On the other hand, when examples arrive that radically change concept boundaries, then
the examples held in memory that no longer fall on concept boundaries are removed and
replaced with examples that do. This process is actually happening in both situations, but
to different degrees. The extreme examples provide stability when it is needed. Yet, they do
not hinder the learner because forgetting mechanisms ensure that stability does not result
in low reactivity. For systems to succeed in nonstationary environments, they must find a
balance between stability and reactivity.

In the sections that follow, we examine a variety of issues related to this study and, more
globally, to partial memory learning and nonstationary concepts. In particular, we examine
experimental results from other aspects of our study (Maloof, 1996), such as learning time,
concept complexity, other methods of example selection, and incremental learning. Then,
after discussing the some of the current limitations of this work, we consider directions for
the future.

5.1. Learning time

The experimental results from the lesion study showed that the example selection method
greatly reduced the number of training examples maintained when compared to the baseline
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Table 3. Examples of AQ-PM rules for daffy and coyote’s computing behavior.

[decision= daffy] ⇐ [averageSystemTime= 25352.53..63914.66]
(t-weight: 10, u-weight: 10)

[decision= coyote] ⇐ [averageSystemTime= 3676.80..4579.19] &
[averageCharactersTransferred= 0.0..0.20]
(t-weight: 7, u-weight: 6)

[decision= coyote] ⇐ [averageRealTime= 44.75..404.84] &
[averageBlocks= 0.0..0.39]
(t-weight: 4, u-weight: 3)

learner. Because the number of training examples affects run time of the algorithms investi-
gated, reducing the number of training examples maintained resulted in notable decreases in
learning time. For the intrusion detection problem, as an example, at time step 10, AQ-PM’s
learning time was 36.7 seconds, while AQ-BL’s was 55.6 seconds,5 meaning that AQ-BL
was 52% slower than AQ-PM for this problem.

5.2. Complexity of concept descriptions

We also examined complexity of induced concept descriptions in terms of conditions and
rules. AQ-PM produced concepts descriptions that were as complex or simpler than those
produced by AQ-BL. The degree to which descriptions induced by AQ-PM were simpler
was not as notable as other measures, such as learning time and memory requirements.

Table 3 shows decision rules from the intrusion detection problem that AQ-PM induced
for two computer users, daffy and coyote.6 The first rule, for daffy, consists of one con-
dition involving the average system time attribute, which must fall in the high range of
[25352.53. .63914.66].7 The class label “daffy” is assigned to the decision variable if the
average system time for one of daffy’s sessions falls into this range. Therefore, daffy’s
computing use is characterized by a considerable consumption of system time.

The weights appearing at the end of the rules are strength measures. The t-weight indicates
how many total training examples the rule covers. The u-weight indicates how many unique
training examples the rule covers. Rules may overlap, so two rules can cover the same
training example. The rule for daffy’s computing use is strong, since it alone covers all of
the available training examples. The next two rules characterize coyote’s behavior, whose
use of computing resources is low, especially compared to daffy’s.

5.3. Other example selection methods

The selection method used for this study retained the examples that lay on the edges of
the hyper-rectangle expressed by a decision rule. We alluded to similar methods that keep
the examples that lie on the corners and surfaces of these hyper-rectangles. Experimental
results from a previous study (Maloof, 1996) for the blasting caps and intrusion detection
problems showed that keeping the examples that lie on the corners of the hyper-rectangle,
as opposed to those on the edges, resulted in slightly lower predictive accuracy and slightly
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reduced memory requirements. We anticipate that a method retaining the examples that lie
on surfaces of the hyper-rectangle will slightly improve predictive accuracy and slightly
increase memory requirements when compared to the edges method. From these results,
we can conclude that as AQ-PM keeps more and more examples in partial memory, its
predictive accuracy will converge to that of the full memory learner.

5.4. Adding examples to partial memory

In this paper, we have discussed a reevaluation strategy for maintaining examples in partial
memory. Using this scheme, AQ-PM uses new concept descriptions to test if the misclas-
sified examples and all of the examples in partial memory lie on concept boundaries. It
retains those examples that do and removes those that do not. And, as we discussed, this
gives rise to an implicit forgetting process.

An alternative scheme is to accumulate examples by computing partial memory using only
the misclassified examples and by adding the resulting extreme examples to those already
in partial memory. Therefore, once an example is placed in partial memory, it remains
there until removed by an explicit forgetting process. For the problems discussed here and
elsewhere (Maloof, 1996), we did not see notable differences in performance between the
reevaluation policy and the accumulation policy. For example, one would expect that the
reevaluation policy would work best for dynamic problems, like the STAGGER Concepts,
and the accumulation policy would work best for more stable problems, like the blasting
cap problem. To date, our experimental results have not supported this intuition.

5.5. Incremental learning

In the basic algorithm, we used a temporal batch learning method (Table 1, step 7). We have
also examined variants using incremental learning algorithms (Maloof, 1996), meaning that
the system learns new concept descriptions by modifying the current set of descriptions using
new training examples and those examples in partial memory. We have investigated this
notion using two incremental algorithms: the GEM algorithm (Reinke & Michalski, 1988),
a full instance memory technique, and the AQ-11 algorithm (Michalski & Larson, 1983),
a no instance memory technique. We chose these algorithms because their inductive biases
are most similar to that of AQ-PM: both use the VL1 representation language (Michalski,
1980) and the AQ induction algorithm (Michalski, 1969).

Experimental results for the computer intrusion detection and the blasting cap detection
problems show evidence that the incremental learning variants of AQ-PM lose less pre-
dictive accuracy than AQ-PM using a temporal batch learning method. We can infer that
the incremental learning variants perform better because the concepts themselves encode
information that is lost when using a temporal batch method. The incremental learning
methods take advantage of this information, whereas the temporal batch method does not.
Moreover, we intend to evaluate these incremental learning methods using the STAGGER
problem to determine how they perform. We may find that the incremental methods perform
worse because they encode too much information about the past and reduce the learner’s
ability to react to changing environments.
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5.6. Current limitations

Many of the current limitations of the approach stem from assumptions the system makes.
For example, the system assumes the given representation space is adequate for learning.
That is, it is currently incapable of constructive induction (Michalski, 1983). Also, it assumes
that the context in which training examples are presented is stationary. Hence, it cannot learn
contextual cues (Widmer, 1997). Although we did not implement explicit mechanisms to
handle noise, there has been work on such mechanisms in contexts similar to these (Widmer
& Kubat, 1996). In general, the selection methodology works best for ordered attributes,
taking advantage of their inherent structure. Consequently, for purely nominal domains,
the method selects all training examples, since, for each training example, there exists a
projection of the representation space in which the example lies on a concept boundary.

5.7. Future work

Much of the current research assumes that the representation space in which concepts drift
or contexts change is adequate for learning. If an environment is nonstationary, then the
representation space itself could also change. Learners typically detect concept change
by a sudden drop in predictive accuracy. If the learner is subsequently unable to achieve
acceptable performance, then it may need to apply constructive induction operators in an
effort to improve the representation space for learning. To this end, one may use a program
that automatically invokes constructive induction, like AQ-18 (Bloedorn & Michalski, 1998;
Kaufman & Michalski, 1998).

Another interesting problem for future research is how to detect good and bad types
of change. Consider the problem of intrusion detection. We need systems that are flexible
enough to track changes in a user’s behavior; otherwise, when changes do occur, the system’s
false negative rate will increase. Yet, if intrusion detection systems are too flexible, then
they may perceive a cracker’s behavior as a change in the true user’s behavior and adapt
accordingly. We envision a two-layer system that learns a historical profile of a user’s
computing behavior and learns how that historical profile has changed over time. If a
user’s computing behavior no longer matches the historical profile, then the system would
determine if the type of change that occurred is plausible for that user. If it is not, then
the system would issue an alert. Such systems should prove to be more robust and should
perform with lower false negative rates.

From the standpoint of the methodology, we would like to investigate policies that let
the learner function when instances arrive without feedback. Producing decisions without
feedback is not necessarily problematic, but, when feedback does arrive after a period of
time, the system may realize that many of its past decisions were wrong. Naturally, the
simplest policy is to forget past decisions, in which case the learner would never realize
that it had made mistakes. Certain applications, like intrusion detection, require systems
to be more accountable. However, even though a system may remember past decisions,
when it realizes that some were wrong, perhaps it should only issue an alert. Alternatively,
the system may seek feedback for the events that led to the incorrect decisions and relearn
from them.
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From the perspective of the implementation, a fruitful exercise would be to implement
the example selection method using another concept representation, like decision trees.
There is nothing inherent to the method that limits it to decision rules. We could apply the
method to any symbolic representation that uses linear attributes. We could also implement
other example selection and maintenance schemes as well as mechanisms for coping with
noise and contextual changes, but these latter areas, as we have commented, have been
well-studied elsewhere.

Finally, there are several opportunities for additional experimental studies. Here, we
investigated concepts that change suddenly. Changes in concepts could also occur more
gradually. If we think of concepts as geometric objects in a space, then they could change
in shape, position, and size. Consequently, concepts could grow (i.e., change in size, but
not in position and shape), move (i.e., change in position, but not in shape and size), deform
(i.e., change in shape, but not in position and size), and so on. Although synthetic data
sets like these provide opportunities to investigate specific research hypotheses, we are
also interested in concept drift in real-world applications like intrusion detection and agent
applications (e.g., an agent for prioritizing e-mail).

6. Conclusion

Partial memory learning systems select and maintain a portion of the past training examples
and use these examples for future learning episodes. In this paper, we presented a selection
method that usesextreme examplesto enforce concept boundaries. The method extends
previous work by using induced concept descriptions to select a nonconsecutive sequence
of examples from the input stream. Reevaluating examples held in partial memory and
removing them if they no longer enforce concept boundaries results in an implicit forgetting
process. This can be used in conjunction with explicit forgetting mechanisms that remove
examples satisfying user-defined criteria. Experimental results from a lesion study suggested
that the method notably reduces memory requirements with small decreases in predictive
accuracy for two real-world problems, those of computer intrusion detection and blasting
cap detection in X-ray images. For the STAGGER problem, AQ-PM performed comparably
to STAGGER and the FLORA systems. Finally, a direct comparison to IB2 revealed that
AQ-PM provided comparable memory requirements and often higher predictive accuracy
for the problems considered.
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Notes

1. The structure of time is not crucially important for this paper, but we do feel that this issue warrants a more
sophisticated treatment.

2. AQ-15c has other methods for computing the degree of match, but, based on empirical analysis, we found that
this method worked best for the problems in this study.

3. For the first time step, we generated two random examples, one for each class.
4. We ran IB2 using the unscaled, continuous data.
5. We conducted these experiments using a C implementation of AQ-PM running on a Sun Sparc 2.
6. Attribute values have been expressed using their original real ranges.
7. The units in this case are seconds.
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