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Abstract

Mutant selection refers to the problem of choosing, among a large number of mutants, the

(few) ones that should be used by the testers. In view of this, we investigate the problem

of selecting the fault revealing mutants, i.e., the mutants that are killable and lead to test

cases that uncover unknown program faults. We formulate two variants of this problem: the

fault revealing mutant selection and the fault revealing mutant prioritization. We argue and

show that these problems can be tackled through a set of ‘static’ program features and pro-

pose a machine learning approach, named FaRM, that learns to select and rank killable and

fault revealing mutants. Experimental results involving 1,692 real faults show the practical

benefits of our approach in both examined problems. Our results show that FaRM achieves

a good trade-off between application cost and effectiveness (measured in terms of faults

revealed). We also show that FaRM outperforms all the existing mutant selection methods,

i.e., the random mutant sampling, the selective mutation and defect prediction (mutating the

code areas pointed by defect prediction). In particular, our results show that with respect

to mutant selection, our approach reveals 23% to 34% more faults than any of the baseline

methods, while, with respect to mutant prioritization, it achieves higher average percentage

of revealed faults with a median difference between 4% and 9% (from the random mutant

orderings).

Keywords Mutation testing · Machine learning · Mutant selection · Mutant prioritization

1 Introduction

Mutation testing has been shown to be one of the most effective techniques with respect

to fault revelation (Titcheu Chekam et al. 2017). Researchers typically use mutation as

an assessment mechanism (measuring effectiveness) for their techniques (Papadakis et al.

2018a), but it can be used as every other test criterion. To this end, mutation can be used
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to assess the effectiveness of test suites or to guide test generation (Ammann and Offutt

2008; Fraser and Zeller 2012; Petrovic and Ivankovic 2018; Papadakis et al. 2018b; Titcheu

Chekam et al. 2017).

Unfortunately, mutation testing is expensive. This is due to the large number of mutants

that require analysis. An important cost parameter is the so-called equivalent mutants,

which are mutants forming equivalent program versions (Papadakis et al. 2015; Ammann

and Offutt 2008). These need to be manually inspected by testers since their automatic

identification is not always possible (Budd and Angluin 1982).

While the problem of the equivalent mutants have been partly addressed by recent meth-

ods such as the Trivial Compiler Equivalence (TCE) (Papadakis et al. 2015), the problem

of the large number of mutants remains challenging. Yet, addressing this problem will in

return contribute to addressing the equivalent mutant problem: any approach that is effec-

tive in reducing the large number of mutants, would indirectly reduce the equivalent mutant

problem since less equivalent mutants will be available.

Nevertheless, producing a large number of mutants is impractical. The mutants need to

be analyzed, compiled, executed and killed by test cases. Perhaps, more importantly testers

need to manually analyse them in order to design effective test cases. The scalability, or

lack thereof, of mutation testing, with respect to the number of mutants to be processed,

is thus a key factor that hinders its wide applicability and large adoption (Papadakis et al.

2018a). Consequently, if we can find a lightweight and reasonably effective way to diminish

the number of mutants without sacrificing the power of the method, we would then manage

to significantly improve the scalability of the method. Since the early days of mutation

testing, researchers attempted to find such solutions by forming many mutant reduction

strategies (Papadakis et al. 2018a), such as selective mutation (Offutt et al. 1993; Wong and

Mathur 1995a) and random mutant selection (T Acree et al. 1979).

Our goal is to form a mutant selection technique that identifies killable mutants that are

fault revealing, prior to any mutant execution. We consider as fault revealing, any mutant

(i.e. test objective) that leads to test cases capable of revealing the faults in the program

under test. We argue that such mutants are program specific and can be identified by a set

of static program features. In this respect, we need features that are simultaneously generic,

in order to be widely applicable, and powerful to approximate well the program and mutant

semantics.

We advance in this research direction by proposing a machine learning-based approach,

named FaRM , which learns on code and mutants’ properties, such as mutant type and

mutation location in program control-flow graphs, as well as code complexity and program

control and data dependencies, to (statically) classify mutants as likely killable/equivalent

and likely fault revealing. This approach is inspired by the prediction modelling line of

research, which has recorded high performance by using machine learning to triage likely

error-prone characteristics of code (Menzies et al. 2007; Kamei and Shihab 2016).

The use case scenario of FaRM is a standard testing scenario where mutants are used

as test objectives, guiding test generation. To achieve this, we train on a set of faulty pro-

grams that have been tested with mutation testing, prior to any testing or test case design

for the particular system under analysis. Then, we predict the killable and fault revealing

mutants based on which we test the particular system under analysis. The training corpus

can include previously developed projects (related to the targeted application domain) or

previous releases of the tested software. In a sense, we train on system(s), say x, and select

mutants on the system under test, say y, where x �= y.

Experimental results using 10-Fold cross validation on 1,692 + 45 faulty program ver-

sions show a high performance of FaRM in yielding an adequately selected set of mutants.
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In particular our method achieves statistically significantly better results than the random,

selective mutation and defect prediction (mutating the areas predicted by defect prediction),

mutant selection baselines by revealing 23% to 34% more faults than any of the baselines.

Similarly, our mutant prioritization method achieves statistically significant higher Average

Percentage of Faults Detected (APFD) (Henard et al. 2016) values than the random priori-

tisation (4% to 9% higher in the median case). With respect to test execution, we show that

our selection method requires less execution time (than random).

We also demonstrate that our method is capable of selecting killable (non-equivalent)

mutants. In particular, by building an equivalent classification method, using our features,

we achieve an AUC value of 0.88 and 95%, 35% precision and Recall. These results indicate

drastic reductions on the efforts required by the analysis of equivalent mutants. A combined

approach, named FaRM* , achieves similar to FaRM fault revelation, but potentially at a

lower cost (lower number of equivalent mutants), indicating the capabilities of our method.

In summary, our paper makes the following contributions:

– It introduces the fault revealing mutant selection and fault revealing mutant prioritiza-

tion problems.

– It demonstrates that the killability and fault revealing utility of mutants can be captured

by simple static source code metrics.

– It presents FaRM , a mutant selection technique that learns to select and rank mutants

using standard machine learning techniques and source code metrics.

– It provides empirical evidence suggesting that FaRM outperforms the current state-of-

the-art mutant selection and mutant prioritization methods by revealing 23% to 34%

more faults and achieving 4% to 9% higher average percentage of revealed faults,

respectively.

– It provides a publicly available dataset of feature metrics, kill and fault revelation

matrices that can support reproducibility, replication and future research.

The paper is organized as follows. Section 2 provides background information on

mutation testing, the mutant selection problem and defines the targeted problem(s).

Section 3 overviews the proposed approach. Evaluation research questions are enumerated

in Section 4, while experimental setup is described in Section 5 and experimental results

are presented in Section 6. A detailed discussion on the applicability of our approach and

the threats to validity are given in Section 7, and related work is discussed in Section 8.

Section 9 concludes this work.

2 Context

2.1 Mutation Testing

Mutation testing (DeMillo et al. 1978) is a test adequacy criterion that sets the revelation

of artificial defects, called mutants, as the requirements of testing. As every test criterion,

mutation assists the testing process by defining test requirement that should be fulfilled by

the designed test cases, i.e., defining when to stop testing.

Software testing research has shown that designing tests that are capable of revealing

mutant-faults results in strong test suites that in turn reveal real faults (Frankl et al. 1997; Li

et al. 2009; Titcheu Chekam et al. 2017; Papadakis et al. 2018a; Just et al. 2014b) and are

capable of subsuming or almost subsuming all other structural testing criteria (Offutt et al.

1996b; Frankl et al. 1997; Ammann and Offutt 2008).
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Mutants form artificially-generated defects that are introduced by making changes to

the program syntax. The changes are introduced based on specific syntactic transforma-

tion rules, called mutation operators. The syntactically changed program versions form the

mutant-faults and pose the requirement of distinguishing their observable behaviour from

that of the original program. A mutant is said to be killed, if its execution distinguishes it

from the original program. In the opposite case it is said to be alive.

Mutation quantifies test thoroughness, or test adequacy (DeMillo et al. 1978, 1991;

Frankl and Iakounenko 1998), by measuring the number of mutants killed by the candidate

test suites. In particular, given a set of mutants, the ratio of those that are killed by a test

suite is called mutation score. Although all mutants differ syntactically from the original

program, they do not always differ semantically. This means that there are some mutants

that are semantically equivalent to the original program, while being syntactically differ-

ent (Offutt and Craft 1994; Papadakis et al. 2015). These mutants are called equivalent

mutants (DeMillo et al. 1978; Offutt and Craft 1994) and have to be removed from the test

requirement set.

Mutation score denotes the degree of achievement of the mutation testing requirements

(Ammann and Offutt 2008). Intuitively, the score measures the confidence on the test suites

(in the sense that mutation score reflects the fault revelation ability). Unfortunately, pre-

vious research has shown that the relation between killed mutants and fault revelation is

not linear (Frankl et al. 1997; Titcheu Chekam et al. 2017) as fault revelation improves

significantly only when test suites reach high mutation score levels.

2.2 Problem Definition

Our goal is to select among the many mutants the (few) ones that are fault revealing,

i.e., mutants that lead to test cases that reveal existing, but unknown, faults. This is a

challenging goal since only 2% (according to our data) of the killable mutants are fault

revealing.

The fault revealing mutant selection goal is different from that of the “traditional” mutant

reduction techniques, which is to reduce the number of mutants (Offutt et al. 1996a; Wong

and Mathur 1995b; Ferrari et al. 2018; Papadakis et al. 2018a). Mutant reduction strategies

focus on selecting a small set of mutants that is representative of the larger set. This means,

that every test suite that kills the mutants of the smaller set, also kills the mutants of the

large set. Figure 1 illustrates our goal and contrasts it with the “traditional” mutant reduction

problem. The blue (and smallest) rectangle on the figure represents the targeted output for

the fault revealing mutant selection problem.

Previous research (Papadakis et al. 2018b, c) has shown that the majority of the mutants,

even in the best case, are “irrelevant” to the sought faults. This means that testers need

to analyse a large number of mutants before they can find the actually useful ones (the

fault revealing ones), wasting time and effort. According to our data, 17% of the min-

imal mutants (ideal mutant reduction), i.e., subsuming mutants (a set of mutants with

minimal overlap that are sufficient for preserving test effectiveness Jia and Harman 2009;

Kintis et al. 2010; Ammann et al. 2014) is fault revealing. This also indicates that the

majority of the mutants, even in the best case, are “irrelevant” to the sought faults. We

therefore claim that mutation testing should be performed only with the mutants that are

most likely to be fault revealing. This will make possible the best effort application of the

method.

Formally, we consider two aspects of this selection problem: the mutant selection one

and the mutant prioritization one.
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Sufficient Mutant Set
Whole Set of Mutants 

that Reveal Faults

FaRM’s Targeted Set of 

Mutants

Whole Set of Mutants 

• Sufficient Mutants Set: 

Killing all mutants of Killing all mutants of

• Fault Revealing Mutant Set:

The Set of faults revealed 

by killing all mutants of

The Set of faults revealed 

by killing all mutants of=

Fig. 1 Fault revealing mutant selection. Contrast between sufficient mutant set selection and fault revealing

mutant selection. Sufficient mutant set selection aims at selecting a minimal subset of mutants that is killed

by tests that also kill the whole set of mutants. Fault revealing mutant selection aims at selecting a minimal

subset of mutants that is killed by tests that reveal the same underlying faults as the tests that kill the whole

set of mutants

The fault revealing mutant selection problem is defined as:

Given: A set of mutants M for program P .

Problem: Subset selection. Select a subset of mutants, S ∈ M , such that F(S) = F(M)

and (∀m ∈ S), (F (S − {m}) �= F(M)).

S represents a subset of M; F(X) represents the number of faults in P that are revealed

by the test suites that kill all the mutants of the set X. In practice, the challenge is to approx-

imate well S, statically and prior to any test execution, by finding a relatively good trade-off

between the number of selected mutants (to minimise) and the number of faults revealed by

their killing (to maximize).

Similarly, the fault revealing mutant prioritization problem is defined as:

Given: A set of mutants, M and the set of permutations of M , PM for program P.

Problem: Find Pm′ ∈ PM such that (∀Pm′′)(Pm′′ ∈ PM) (Pm′′ �= Pm′) [f (Pm′) ≥

f (Pm′′))]

PM represents the set of all possible mutant orderings of M , and f (X) represents the

average percentage of faults revealed by the test cases that kill the selected mutants in the

given order X (measures the area under the curve representing the faults revealed by the

killing of each one of the mutants in the order). The challenge is to statically and prior

to any test execution, rank the mutants so that the fault revealing potential is maximized
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when killing any (arbitrary) number of them. The idea is that fault revelation is maximized

whenever the tester decides to stop killing mutants.

2.3 Mutant Selection

In the literature many mutant selection methods have been proposed (Papadakis et al. 2018a;

Ferrari et al. 2018) by restricting the considered mutants according to their types, i.e.,

applying one or more mutant operators. Empirical studies (Kurtz et al. 2016; Deng et al.

2013), have shown that the most successful strategies are the statement deletion (Deng et al.

2013) and the E-Selective mutant set (Offutt et al. 1993, 1996a). We therefore compare our

approach with these methods. We also consider the random mutant selection (T Acree et al.

1979) since there is evidence demonstrating that it is particularly effective (Zhang et al.

2010; Papadakis and Malevris 2010b).

2.3.1 RandomMutant Selection

Random mutant sampling (T Acree et al. 1979) forms the simplest mutant selection tech-

nique, which can be considered as a natural baseline method. Interestingly, previous studies

found it particularly effective (Zhang et al. 2010; Papadakis and Malevris 2010b). Therefore,

we compare with it.

We use two random selection techniques, named as SpreadRandom and DummyRan-

dom. SpreadRandom iteratively goes through all program statements (in random order) and

selects mutants (one mutant among the mutants of each statement), while DummyRandom

selects them from the set of all possible mutants. The first approach is expected to select

mutants residing on most of the program statements, while the second one is expected to

make a uniform selection.

2.3.2 Statement Deletion Mutant Selection

Mutant selection based on statement deletion is a simple approach that, as the name sug-

gests, deletes every program statement (once at a time). To avoid introducing compilation

issues (mutants that do not compile) and introduce relatively strong mutants, the statement

deletion is usually applied on parts of a statement (deleting parts of expressions, i.e., the

expression a + b becomes a or b ). Empirical studies have shown that statement deletion

mutant selection is powerful (achieves a very good trade-off between the number of selected

mutants and test effectiveness) and has the advantage of introducing few equivalent mutants

(Deng et al. 2013).

2.3.3 E-selective Mutant Selection

E-Selective refers to the 5 operator mutant set introduced by Offutt et al. (1993, 1996a).

This set is the most popular operator set (Papadakis et al. 2018a) that is included in most of

the modern mutation testing tools. This set includes the mutants related to relational, logical

(including conditional), arithmetic, unary and absolute mutations. According to the study

of Offutt et al. (1996a) this set has the same strengths as a much larger comprehensive set

of operators. Although there is empirical evidence demonstrating that the E-Selective set

has lower strengths than a more comprehensive set of operators (Kurtz et al. 2016), it still

provides a very good trade-off beetween selected mutants and strengths (Kurtz et al. 2016).
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2.4 Mutant Prioritization

Mutant prioritization has received little or even no attention in literature (refer to the Related

Work Section 8 for details). Given the absence of other methods, we compare our approach

with the random baselines. We also consider alternative schemes, such as Defect Prediction

prioritization.

2.4.1 RandomMutant Prioritization

Random mutant prioritization forms a natural baseline for our approach. Comparing with

random orderings is a common practice in test case prioritization studies (Rothermel et al.

2001; Henard et al. 2016) and shows the ability of the prioritization method to systematically

order the sought elements. Similarly to mutants selection, we applied two random order-

ing techniques, the SpreadRandom and DummyRandom. SpreadRandom orders mutants by

iteratively going through all program statements (in random order) and selects one mutant

among the mutants of each statement (statement-based orders), while DummyRandom

orders them from the mutant set (uniform orders).

2.4.2 Defect Prediction Mutant Prioritization

Naturally, one of the main attributes determining the utility of the mutants is their location.

Thus, instead of selecting mutants based on other properties, one could select them based on

their location. To this end, we form a prioritization method that predicts and orders the error-

prone code locations, i.e., code parts that are most likely to be faulty. Then, we mutate the

predicted code areas and form a baseline method. Such an approach is in sense equivalent

to the application of mutation testing on the results of defect prediction. Moreover, such a

comparison demonstrates that mutants depend on the attributes (features) we train on not

solely on their location.

3 Approach

Our objective is to select mutants that lead to effective test cases. In view of this, we aim

at selecting and prioritizing mutants so that we reveal most of the faults by analysing the

smallest possible number of mutants.

We conjecture that mutant selection strategies should account for the properties that make

them killable and fault revealing. Defect prediction studies (Menzies et al. 2007; Kamei and

Shihab 2016) investigated properties related to error-prone code locations, but not related to

mutants. Mutation testing is a behaviour oriented criterion and requires mutants introducing

small and useful semantic deviations. Therefore, we propose building a model, which cap-

tures the essential properties that make mutants valuable (in terms of their utility to reveal

faults).

Figure 2 depicts the FaRM approach, which learns to rank mutants according to their

fault revealing potential (likelihood to reveal (unknown) faults). Initially, FaRM applies

supervised learning on the mutants generated from a corpus of faulty program versions, and

builds a prediction model. This model is then used to predict the mutants that should be

used to test the particular instance of the program under test. This means that at the time

of testing and prior to any mutant execution, testers can use and focus only on the most

important mutants.
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Faulty Programs’ Mutants

Mutants

(Programs under test)

Learning Phase Validation Phase

Classification Training

Mutants Features Extraction

ML Classifier Mutants ranked by

probability of utility

Mutants’ Utilities 

Computation

Mutants Features Extraction

Fig. 2 Overview of the FaRM approach. Initially, FaRM applies supervised learning on the mutants gener-

ated from a corpus of faulty program versions, and builds a prediction model that learns the fault revealing

mutant characteristics. This model is then used to predict the mutants that should be used to test other pro-

gram versions. This means that at the time of testing and prior to any mutant execution, testers can use and

focus only on the most important mutants

Regarding FaRM supervised learning training phase (when the prediction model is built),

the faulty programs mutants’s features are extracted and used as training data’s features

and, their utilities are computed and used as training data’s expected output. The mutant’s

utility for fault revealing and killable mutant prediction is respectively the mutants’ fault

revealing and killability information. Regarding the validation phase, features of the mutants

of the program under test are extracted and used as validation data’s features to predict the

mutants’ utilities with the trained model. Mutants with high predicted utility are the useful

ones.

Definition For a given problem, we define as classifier’s performance the prediction perfor-

mance of the classifier, which is the accuracy of the predictions (precision, recall, F-measure

and Area Under Curve metrics that are detailed in Section 5.3) of the classifier for the given

problem.

ML-based measurement of mutant utility. The selection process in FaRM is based on

training a predictor for assessing the probability of a mutant to reveal faults. To that end,

we explore the capability of several features, which are designed to reflect specific code

properties which may discriminate a useful mutant from another. Let us consider a mutant

M associated to a code statement SM on which the mutation was applied. This mutant

can be characterized from various perspectives with respect to (1) the complexity of the

relevant mutated statement, (2) the position of the mutated code in the control-flow graph,

(3) dependencies with other mutants, (4) the nature of the code block where SM is located.

ML features for characterizing mutants. Recently, the studies of Wen et al. (2018), Just

et al. (2017), and Petrovic and Ivankovic (2018) found a strong connection between mutants’
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utility and the surrounding code (captured by the AST father and child nodes). Therefore, in

addition to the mutant types, typically considered by selective mutation approaches (Offutt

et al. 1996a; Namin et al. 2008; Papadakis et al. 2018a), we also considered the information

encoded on the program AST. We include three such features, the Data type at the mutant

location, the parent AST node (of the mutant expression) and the child AST node (of the

mutant expression), in our machine learning classification scheme.

Let BM be the control-flow graph (CFG) basic block associated to a mutated state-

ment SM containing the mutated expression EM . Table 1 provides the list of all 28

Table 1 Description of the static code features

Complexity Complexity of statement SM approximated by the total number of

mutants on SM

CfgDepth Depth of BM according to CFG

CfgPredNum Number of predecessor basic blocks, according to CFG, of BM

CfgSuccNum Number of successors basic blocks, according to CFG, of BM

AstNumParents Number of AST parents of EM

NumOutDataDeps Number of mutants on expressions data-dependents on EM

NumInDataDeps Number of mutants on expressions on which EM is data-dependent

NumOutCtrlDeps Number of mutants on statements control-dependents on EM

NumInCtrlDeps Number of mutants on expressions on which EM is control-dependent

NumTieDeps Number of mutants on EM

AstParentsNumOutDataDeps Number of mutants on expressions data-dependent

onEM ’s AST parent statement

AstParentsNumInDataDeps Number of mutants on expressions on which EM ’s

AST parent expression is data-dependent

AstParentsNumOutCtrlDeps Number of mutants on statements control-dependent

on EM ’s AST parent expression

AstParentsNumInCtrlDeps Number of mutants on expressions on which EM ’s

AST parent expression is control-dependent

AstParentsNumTieDeps Number of mutants on EM ’s AST parent expression

TypeAstParent Expression type of AST parent expressions of EM

TypeMutant Mutant type of M as matched code pattern and

replacement. Ex: a + b → a − b

TypeStmtBB CFG basic block type of BM . Ex: if − then, if − else

AstParentMutantType Mutant types of M’s AST parents

OutDataDepMutantType Mutant types of mutants on expressions data-dependents on EM

InDataDepMutantType Mutant types of mutants on expressions on which EM

is data-dependent

OutCtrlDepMutantType Mutant types of mutants on statements control-dependents on EM

InCtrlDepMutantType Mutant types of mutants on expressions on which EM

is control-dependent

AstChildHasIdentifier AST child of expression EM has an identifier

AstChildHasLiteral AST child of expression EM has a literal

AstChildHasOperator AST child of expression EM has an operator

DataTypesOfOperands Data types of operands of EM

DataTypeOfValue Data type of the returned value of EM
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features that we extract from each mutant. The features named TypeAstParent, TypeMu-

tant, TypeStmtBB, AstParentMutantType, OutDataDepMutantType, InDataDepMutantType,

OutCtrlDepMutantType, InCtrlDepMutantType, DataTypesOfOperands and DataTypesOf-

Value are categorical. We represented them using one hot encoding. Besides the categorical

features listed above, all other features are numerical. The values of numerical fea-

tures are normalized between 0 and 1 using feature scaling, more precisely min-max

normalization/scaling.

A demonstrating example on how mutant features are computed is given in the following

subsection (Section 3.2). After extracting feature values, we feed them to a machine learning

classification algorithm along with the killable and fault revealing information for each

mutant for a set of faults. The training process then produces two classifiers (one for the

equivalent and one for the fault revealing mutants) which, given the feature values of a

given mutant, they are capable of computing the utility probabilities for this mutant, i.e., its

probability to be killable and its probability to be fault revealing.

By using these two classifiers we form three approaches, two of them using each

one of the classifiers alone and one of them by combining them. The first two, named

FaRM and PredKillable , respectively classify mutants according to their probability to

be fault revealing and killable. The third one, named FaRM* , divides the mutant set in

two subsets, likely killable and likely equivalent (based on PredKillable predictions), sep-

arately ranks them according to their fault revealing probability and concatenates them by

putting the likely killable subset first. Figure 3 show an example of mutant ranking by

FaRM*. The motivation for FaRM* results from the hypothesis that equivalent mutants

Mutants M1 M2 M3 M4 M5 M6

FaRM’s Fault Revela�on proba. 1.0 0.3 0.7 0.9 0.0 0.2

predKillable’s Killability proba. 0.6 0.4 0.3 0.0 1.0 0.7

group mutants according to killability threshold

( = 0.5)

Rank each set by decreasing Fault Revelation

Mutants M1 M5 M6 M2 M3 M4

FaRM’s Fault Revela�on proba. 1.0 0.0 0.2 0.3 0.7 0.9

Mutants M1 M6 M5 M4 M3 M2

FaRM’s Fault Revela�on proba. 1.0 0.2 0.0 0.9 0.7 0.3

FaRM* ranking: M1 M6 M5 M4 M3 M2

Predicted killable Predicted equivalent

Fig. 3 Example of mutant ranking procedure by FaRM* . the ranking is a concatenation of the ranked

predicted killable mutants and the ranked predicted equivalent mutants
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could be noise to FaRM and, PredKillable performs better at filtering equivalent mutants

(or predicting killable mutants). Given that fault revealing mutants are killable, we expect

them to have higher predicted utility value with both FaRM and PredKillable. Therefore,

FaRM* gives priority to the most likely fault revealing mutants that are also most likely

killable.

We implement a prioritization scheme by considering the ranking of all mutants in

accordance to the values of the developed probability measure. This forms our mutant prior-

itization approaches. Our mutant selection strategy sets a threshold probability value (e.g.,

0.5) or a cut-off point according to the number of the top ranked mutants to keep only

mutants with higher utility probability scores in the selected set. This forms our mutant

selection approach. For the combined approach (FaRM* ) we divide the mutant set in the

killable and equivalent subsets by using a cut-off point of 0.5.

3.1 Implementation

We implemented FaRM as a collection of tools in C++. We leverage stochastic gradi-

ent boosting (Friedman 2002) (decision trees) to perform supervised learning. Gradient

boosting is a powerful ensemble learning technique which combines several trained weak

models to perform classification. Unlike common ensemble techniques, such as random

forests (Breiman 2001), that simply average models in the ensemble, boosting methods fol-

low a constructive strategy of ensemble formation where models are added to the ensemble

sequentially. At each particular iteration, a new weak, base-learner model is trained with

respect to the error of the whole ensemble learnt so far (Natekin and Knoll 2013). We use

the FastBDT (Keck T 2016) implementation by setting the number of trees to 1,000 and the

trees depth to 5.

3.2 Demonstrating Example

Here we provide an example on how the features of Table 1 are computed. We consider

the program in Fig. 4 (extracted from the Codeflaws benchmark, ID: 598-B-bug-17392756-

17392766), on which mutation is applied. We present the feature extraction for a mutant

M , which is created by replacing the right side decrement operator by the right side

increment operator on line 16 (m − − becomes m + +). We also present in Fig. 5a

the mutant, the abstract syntax tree (AST) of the mutated statement (while condition)

in Fig. 5b and c the control flow graph (CFG) of the function containing the mutated

statement.

The features, for mutant M , are computed as following:

– The complexity feature value is the number of mutants generated on the statement

containing the mutant M (Line 16). In this case 72 mutants. Thus, the complexity is 72.

– The CfgDepth feature value is the minimum number of basic blocks to follow, along

the CFG, from main function’s entry point to the basic block containing M (BB2). In

this case 1 basic block as shown in Fig. 5c. Thus, the CfgDepth is 1.

– The CfgPredNum feature value is the number of basic blocks directly preceding the

basic block containing M (BB2) on the control flow graph. In Fig. 5c there are 2 basic

blocks (BB1 and BB3). Thus, the CfgPredNum is 2.

– The CfgSuccNum feature value is the number of basic blocks directly following the

basic block containing M (BB2) on the control flow graph. In Fig. 5c there are 2 basic

blocks (BB3 and BB4). Thus, the CfgSuccNum is 2.
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#include <stdio.h>

#include <string.h>

void rotate(char *s, int n, int k) {

char t[10000];

memcpy(t, s + n - k, k); // 49 mutants

memcpy(t + k, s, n - k); // 65 mutants

memcpy(s, t, n); // 10 mutants

}

int main(int argc, char *argv[]) {

char s[10000];

int m, l, r, k;

scanf("%s", s);    // 6 mutants

scanf("%d", &m); // 3 mutants

while (m-- > 0) { // 72 mutants

scanf("%d%d%d", &l, &r, &k); // 6 mutants

l--; // 55 mutants

rotate(s + l, r - l, k); // 60 mutants

}

printf("%s\n", s); // 7 mutants

return 0; // 3 mutants

}
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Fig. 4 Example program where mutation is applied. The C language comments on each line show the number

of mutants generated on the line

char s[10000];

int m, l, r, k;

scanf("%s", s);

scanf("%d", &m);

BB1: Lines 12 to 15

scanf("%d%d%d",…);

l--;

rotate(s + l,…);

BB3: Lines 17 to 19

printf("%s\n", s);

return 0;

BB4: Lines 21 and 22

while(m-- > 0)

BB2: Line 16

while(m++ > 0)

while(m-- > 0)

m

>

0()--

while

while(m-- > 0) Function main

Control Flow Graph

Abstract Syntax Tree

Muta�on

(a) (b) (c)

Fig. 5 a An example of mutant M from the example program from Fig. 4, b the abstract syntax tree of the

mutated statement and c the control flow graph of the function containing the mutated statement
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– The AstNumParents feature value is the number of AST parents of the mutated expres-

sion. In this case, the only AST parent is the relational expression, in Fig. 5b, whose

sub-tree is rooted on the greater than sign (>). Thus the feature value is 1.

– The NumOutDataDeps feature value is the number of mutants on expressions data

dependent on the mutated expression. In this case, looking at Fig. 4, the value of vari-

able m written in the mutated expression m − − is only used in the same expression.

Thus the feature value is the number of mutants on the mutated expression m − −.

– The NumInDataDeps feature value is the number of mutants on expressions on which

the mutated expression is data dependent. In this case, looking at Fig. 4, the value

of variable m used on the mutated expression m − − is either written on the scanf

statement at line 15, or in the same expression. Thus the feature value is the sum of

the number of mutants on the statement at line 15 and the number of mutants on the

mutated expression m − −.

– The NumOutCtrlDeps feature value is the number of mutants on statements control

dependent on the mutated expression. In this case, looking at Fig. 4, no statement is

control dependent on the mutated expression m − −. Thus the feature value is 0.

– The NumInCtrlDeps feature value is the number of mutants on expressions on which

the mutated statement is control dependent. In this case, looking at Fig. 4, no expression

controls the mutated expression. Thus the feature value is 0.

– The NumTieDeps feature value is the number of mutants on the right decrement

expression (mutated expression).

– The AstParentsNumOutDataDeps feature value is the number of mutants on expres-

sions data dependent on the AST parent of the mutated expression. In this case, looking

at Figs. 4 and 5b, the value of the relational expression (AST parent of m − −) is not

used in other expressions. Thus the feature value is 0.

– The AstParentsNumInDataDeps feature value is the number of mutants on expressions

on which the AST parent of the mutated expression is data dependent. In this case,

looking at Figs. 4 and 5b, the value of the relational expression (AST parent of m − −)

only depends on the value of expression m − −. Thus the feature value is the number

of mutants on expression m − −.

– The AstParentsNumOutCtrlDeps feature value is the number of mutants on statements

control dependent on the AST parent of the mutated expression. In this case, looking

at Figs. 4 and 5b, all the statements in basic block BB3 are control dependent on the

relational expression (AST parent of m − −). Thus the feature value is the sum of the

number of mutants in lines 17, 18 and 19 of the code in Fig. 4.

– The AstParentsNumInCtrlDeps feature value is the number of mutants on expressions

on which the AST parent of the mutated expression is control dependent. In this case,

looking at Figs. 4 and 5b, no expression controls the relational expression (AST parent

of the mutated expression m − −). Thus the feature value is 0.

– The AstParentsNumTieDeps feature value is the number of mutants on the rela-

tional expression, AST parent of the mutated right decrement expression. The feature

value here is the number of mutants of the relational expression of operator greater

than.

– The TypeAstParents feature value is AST type of the AST parent expression of the

mutated expression. Here, that is the AST type of the relational expression with operator

greater than.

– The TypeMutant feature value is the type of the mutant as a string representing the

matched and replaced pattern. The feature value is “() − − → () + +”.
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– The TypeStmtBB feature value is the type of the basic block containing the mutated

statement. The feature value here is the type of BB2 (see Fig. 5c), which is “While

Condition”.

– The AstParentMutantType feature value is the aggregation of types of the mutants on the

AST parents of the mutated expression. That is the aggregation of the mutants types of

the relational expression whose sub-tree is rooted on the greater than sign (>) as shown

in Fig. 5b. The aggregation of a set of mutant types is performed by summing up the

one encoding vectors of the mutants types, allowing each mutant type to be represented

in the encoding.

– The OutDataDepMutantType feature value is the aggregation (as computed for Ast-

ParentMutantType) of the mutant types of the mutants counted to compute NumOut-

DataDeps.

– The InDataDepMutantType feature value is the aggregation (as computed for Ast-

ParentMutantType) of the mutant types of the mutants counted to compute NumIn-

DataDeps.

– The OutCtrlDepMutantType feature value is the aggregation (as computed for AstPar-

entMutantType) of the mutant types of the mutants counted to compute NumOutC-

trlDeps.

– The InCtrlDepMutantType feature value is the aggregation (as computed for AstParent-

MutantType) of the mutant types of the mutants counted to compute NumInCtrlDeps.

– The AstChildHasIdentifier feature value is the Boolean value representing whether the

mutated expression has an identifier as operand. In this case, the mutated expression

has the identifier m as operand. Thus, the value of the feature is 1 (True).

– The AstChildHasLiteral feature value is the Boolean value representing whether the

mutated expression has a literal as operand. In this case, the mutated expression does

not have the literal as operand. Thus, the value of the feature is 0 (False).

– The AstChildHasOperator feature value is the Boolean value representing whether the

mutated expression has an operator. In this case, the mutated expression has the operator

right decrement operator −−. Thus, the value of the feature is 1 (True).

– The DataTypesOfOperands feature value is the datatype of the operand of the right

decrement operation −−. That is the datatype of m which is “int”.

– The DataTypeOfValue feature value is the datatype of the value of the mutated

expression, Which is “int” as the data type of m.

4 Research Questions

When building prediction methods, the first thing to investigate is their prediction ability.

Thus, our first question can be stated as:

RQ1: How well does our machine learning method predict the killable mutants?

Similarly, our second question can be stated as:

RQ2: How well does our machine learning method predict the fault revealing mutants?

After demonstrating that our classification method predicts satisfactorily the fault reveal-

ing mutants, we continue by investigating its ability to practically support mutant selection

with respect to the actual measure of interest, the revealed faults, and with respect to the

random baseline techniques. Therefore, we investigate:
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RQ3: How do our methods compare against the random strategies with respect to the

fault revealing mutant selection problem?

In addition to the random strategies, we also compare with the current state-of-the-art

mutant selection methods. Thus, we ask:

RQ4: How do our methods compare against the E-Selection and SDL with respect to the

fault revealing mutant selection problem?

As we already discussed an alternative mutant cost reduction technique is mutant

prioritization. Hence, we ask:

RQ5: How do our methods compare against the random strategies with respect to the

fault revealing mutant prioritization problem?

In addition to the random strategies, we also compare with the defect prediction mutant

prioritization baseline. Therefore, we ask:

RQ6: How do our methods compare against the defect prediction mutant prioritization

method?

Finally, by demonstrating the benefits of our approach, we turn to investigate the gener-

alization ability of our approach on larger and complex programs. Therefore we conclude

by asking:

RQ7: How well do our method generalise its findings on independently selected

programs that are much larger and complex?

5 Experimental Setup

5.1 Benchmarks: Programs and Fault(s)

For the purposes of our study we need a large number of programs that are not trivial and

are accompanied with real faults. The fault set has to be large and of diverse types. Unfor-

tunately, mutation testing is costly and its experimentation requires generating strong test

suites (Titcheu Chekam et al. 2017). Therefore, there are two necessary tradeoffs, between

the number of faults to be considered, the strengths of the test suites to be used and the size

of the used programs.

To account for these requirements, we used the Codeflaws benchmark (Tan et al. 2017).

This benchmark consists of 7,436 programs (among wich 3,902 are faulty) selected from

the Codeforces1 online database of programming contests. These contests consist of three

to five problems, of varied difficulty levels. Every user submits its programs that resolve the

posed problems. In total, the benchmark involves programs from 1,653 users “with diverse

level of expertise” (Tan et al. 2017).

Every fault in this benchmark has two program instances: the rejected ‘faulty’ submis-

sion and the accepted ‘correct’ submission. Overall, the benchmark contains 3,902 faulty

program versions of 40 different defect classes. It is noted that every faulty program instance

in our dataset is unique, meaning that every program we use is different from the others

(in terms of implementation). To the best of our knowledge, this is the largest number of

1http://codeforces.com/

http://codeforces.com/
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Fig. 6 Distribution of Codeflaws Benchmark problems by number of implementations

faults used in any of the mutation testing studies. The size of the programs varies from 1 to

322 with an average of 36 lines of code. Applying mutation testing on Codeflaws yielded

3,213,543 mutants and required a total of 8,009 CPU days for all computations.

To strengthen our results and demonstrate the ability of our approach to handle faults

made by actual developers, we also used the CoREBench (Böhme and Roychoudhury 2014)

benchmark. CoREBench includes real-world complex faults that have been systematically

isolated from the history of C open source projects. These programs are of 9-83 KLoC and

are accompanied by developer test suites. It is noted that every CoREBench fault forms a

single fault instance (it differs from the other faults).

We used the available test suites augmented by KLEE (Cadar et al. 2008). Although

these test suites greatly increased the cost of our experiment, we considered their use of vital

importance as otherwise our results could be subject to “noise effects” (Titcheu Chekam

et al. 2017).

Due to the very high cost of the experiments and technical difficulties to reproduce some

faults, we conducted our analysis on 45 faults (22 in Coreutils, 12 in Find and 11 in Grep).

Applying mutation testing on these 45 versions yielded 1,564,614 mutants and required a

total of 454 CPU days of computation (without considering the test generation and machine

learning computations and evaluations). Test generation resulted in a test pool composed of

122,261 and 22,477 test cases related to Codeflaws, CoREBench.

The goal of our study is to evaluate the fault revealing ability of the mutants we select.

However, approximately half of our faults are trivial ones (triggered by most of the test

cases), and their inclusion in our analysis would artificially inflate our results. Thus, we

restrict our analysis on the faults that are revealed by less than 25% of the test cases involved

in our test suites. Taking such a threshold is usual in fault injection studies (SiR 2018),

but it ensures that the targeted faults and our focus is on faults that are hard enough to

find. Practically, taking a lower threshold will significantly reduce the number of faults to

be considered hindering our ability to train, while taking a higher threshold will make all

the approaches perform similarly, as the faults will be easy to reveal. Overall, from the
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Fig. 7 Distribution of Codeflaws Benchmark faulty programs by number of lines of code changed to fix the

fault

Codeflaws benchmark we consider 1,692 out of the 3,902 ones (1,692 are the non-trivial

faults) and from the CoreBench benchmark 45 faults.

Figure 6 shows the distribution of number of problems by number of implementations

for the considered faulty programs from Codeflaws. We observe that 85% of the problems

have at most 3 implementations.

Despite that Codeflaws benchmark faults were mined from a programming contest, the

faults nevertheless are relatively small syntactical mistakes. We observe on Fig. 7 that

82% of the faults are fixed by modifying a single line of source code. This ensures that

we are compatible with the competent programmer hypothesis2, which is one of the basic

assumptions of mutation testing (DeMillo et al. 1978).

5.2 Automated Tools Used

We used KLEE (Cadar et al. 2008) to support the test generation. We used KLEE with

a relatively large timeout limit, equal to two hours per program, the Random Path search

strategy, with Randomize Fork Enabled, Max Memory 2048 MB, Symbolic Array Size 4096

elements, Symbolic Standard input size 20 Bytes and Max Instruction Time of 30 seconds.

This resulted in 26,229 and 1,942 test cases for CodeFlaws and CoREBench. Since the

automatically generated test cases do not include any test oracle, we used the programs’

fixed version as oracle. We considered as failing, every test case that resulted in different

observable program output when executed in the ‘faulty’ from that in the ‘correct’-fixed

one. Similarly, we used the program output to identify the killed mutants. We deemed a

mutant as killed if it resulted in a different output than in the original program.

We built a mutation testing tool3 that operates on LLVM bitcode. Actually all our metrics

and analysis were performed on the LLVM bitcode. Our tool implements 18 operators,

composed of 816 transformation rules. These include all those that are supported by modern

mutation testing tools (Offutt et al. 1996a; Papadakis et al. 2018a; Coles et al. 2016) and are

detailed in Table 2.

Each mutation operation consists of matching an instruction type (original instruction

type) and replacing with another instruction type (mutated instruction type). Thus, a muta-

tion operator is defined as pair of original instruction type and mutated instruction type. The

2The competent programmer hypothesis states that programs have a small syntactic distance from the correct

version so that we need a few keystrokes to correct the program
3https://github.com/thierry-tct/mart

https://github.com/thierry-tct/mart
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Table 2 Mutant types

Mutated instruction Original instruction type Mutated instruction type

STATEMENT ANY STMT TRAPSTMT

ANY STMT DELSTMT

CALL STATEMENT SHUFFLEARGS

SWITCH STATEMENT SHUFFLECASESDESTS

SWITCH STATEMENT REMOVECASES

EXPRESSION SCALAR.ATOM SCALAR.UNARY

SCALAR.BINARY SCALAR.BINARY

SCALAR.BINARY SCALAR.UNARY

SCALAR.ATOM SCALAR.BINARY

SCALAR.BINARY TRAPSTMT

POINTER.BINARY POINTER.BINARY

SCALAR.BINARY DELSTMT

DEREFERENCE.BINARY DEREFERENCE.BINARY

SCALAR.UNARY SCALAR.UNARY

POINTER.BINARY POINTER.UNARY

DEREFERENCE.BINARY DEREFERENCE.UNARY

POINTER.ATOM POINTER.UNARY

POINTER.UNARY POINTER.UNARY

instruction types are defined as following (p refers to pointer values and s refers to scalar

values):

– ANY STMT refers to matching any type of statement (only original instruction type).

– TRAPSTMT refers to a trap, which cause the program to abort its execution (only

mutated instruction type).

– DELSTMT refers to statement deletion, i.e., replacing by the empty statement which

is equivalent to deleting the original statement (applies only on the mutated instruction

type).

– CALL STATEMENT refers to a function call.

– SWITCH STATEMENT refers to a C language like switch statement.

– SHUFFLEARGS can only be a mutated instruction type and, when the orignal instruc-

tion type is a function call. It refers to the same function call as the original but with

arguments of, same type, swapped. (e.g. f (a, b) → f (b, a))

– SHUFFLECASESDEST can only be used as mutated instruction type and, when the

orignal instruction type is a switch statement. It refers to the same switch statement as

the original but with the basic blocks of the cases swapped. (e.g. {case a : B1; case b :

B2; def ault : B3; } → {case a : B2; case b : B1; def ault : B3; })

– REMOVECASES can only be used as mutated instruction type and, when the orignal

instruction type is a switch statement. It refers to the same switch statement as the

original but with some cases deleted (the corresponding values will lead to execute the

default basic block). (e.g. {case a : B1; case b : B2; def ault : B3; } → {case a :

B2; def ault : B3; })
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– SCALAR.ATOM refers to any non pointer type variable or constant (only original

instruction type).

– POINTER.ATOM refers to any pointer type variable or constant (only original

instruction type).

– SCALAR.UNARY refers to any non pointer unary arithmetique or logical operation

(e.g. abs(s), −s, !s, s + + ...).

– POINTER.UNARY refers to any pointer unary arithmetique operation (e.g. p + +,

− − p ...).

– SCALAR.BINARY refers to any non pointer binary arithmetique, relational or logical

operation (e.g. s1 + s2, s1&&s2, s1 >> s2, s1 <= s2 ...).

– POINTER.BINARY refers to any pointer binary arithmetique or relational operation

(e.g. p + s, p1 > p2 ...).

– DEREFERENCE.UNARY refers to any combination of pointer dereference and

scalar unary arithmetic operation, or combination of pointer unary operation and pointer

dereference (e.g. (∗p) − −, ∗(p − −) ...).

– DEREFERENCE.BINARY refers to any combination of pointer dereference and

scalar binary arithmetic operation, or combination of pointer binary operation and

pointer dereference (e.g. (∗p) + s, ∗(p + s) ...).

Applying mutation testing on CodeFlaws and CoREBench yielded 3,213,543 and

1,564,614 mutants.

To reduce the influence of redundant and equivalent mutants, we applied TCE (Papadakis

et al. 2015; Hariri et al. 2016; Kintis et al. 2018). Since we operate on LLVM bitcode we

compared the mutated optimized LLVM codes using the llvm-diff utility. llvm-diff is a

tool like the known Unix diff utility but for LLVM bitcode. TCE Detected 1,457,512 and

715,996 mutant equivalences on CodeFlaws and CoREBench. Note that the equivalent and

redundant mutants detected by TCE are removed from the mutants set and neither executed

nor considered in the experiments.

The execution of the mutants post TCE resulted in killing the 87% and 54% of the

mutants for CodeFlaws and CoREBench. It is important to note that our tool applies mutant

test execution optimizations by recording the coverage and program state at the mutation

points avoiding the execution of mutants that do not infect the program state (Papadakis and

Malevris 2010a). This optimization enables huge test execution reductions and forms the

current state of the art at the test execution optimizations (Papadakis et al. 2018a). Despite

these optimization our tool required a total of 8,009 and 454 CPU days of computations for

CodeFlaws and CoREBench indicating the large amount of computation resources required

to perform such an experiment.

5.3 Experimental Procedure

To answer our research questions we performed an experiment composed of three parts.

The first part regards the prediction ability of our classification method, answer RQ1 and

RQ2, the second regards the fault revealing ability of the approaches, answer RQ3-RQ6, and

the third regards the fault revealing ability of our approach on large independently selected

programs, answer RQ7. To account for our use case scenario, in our experiments we always

train and evaluate our approach on a different sets of programs (CodeFlaws) or program

versions (CoREBench).

As a first step we used KLEE to generate test cases for all the programs we study and

formed a pool of test cases by joining the generated and the available test cases. We then
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constructed a mutation-fault matrix, which records for every test case the mutants that it

kills and whether it reveals the fault or not (we construct a matrix for every single fault we

study). We also record the execution time needed to execute every mutant-test pair so that

we can simulate the execution cost of the approaches. We make the data available4.

To measure fault revelation we mutated the faulty program versions. This is important in

order to avoid making any assumption related to the interaction of mutants and faults, aka

Clean Program Assumption (Titcheu Chekam et al. 2017). Based on this matrix we compute

the fault revealing ratio for each mutant. The fault revealing ratio is the ratio of tests that

kill the mutant and reveal the fault to the total number of tests that kill the mutant.

First experimental part: The first task of prediction modeling is to evaluate the contri-

bution of the used features. We computed the information gain values for each one of the

used features. Higher information gain values represent more informative features for deci-

sion trees. Demonstrating the importance of our features helps us understand what is the

most important factors affecting the utility of mutants. Having measured information gain,

we then measure the prediction ability of our classification method by evaluating its ability

to predict killable and fault revealing mutants. For this part of the experiment we consid-

ered as fault revealing the mutants that have fault revealing ratio equal to 1. We relax this

constraint in the second part of the experiment.

We evaluate the trained classifiers using four typically adopted metrics such as the preci-

sion, recall, F-measure and Area Under Curve (AUC). The precision of a classifier is defined

as the number of items that are truly relevant among the items that the classifier predicted to

be relevant. The recall of a classifier is defined as the number of items that are predicted to

be relevant by the classifier among all the truly relevant items. The F-measure of a classifier

is defined as the weighted harmonic mean of the precision and recall, it is also named F1

score. The Area Under Curve (AUC) of a classifier is the area under the Receiver Operating

Characteristic (ROC) curve (The ROC curve shows how many true positive classifications

can be gained as more and more false positives are allowed) (Zheng 2015). Precision repre-

sents the ratio of the identified killable and fault revealing mutants out of those classified as

such. Recall represents the ratio of the identified killable and fault revealing mutants out of

all existing ones. In classification usually recall and precision are competitive metrics in the

sense that higher values of one imply lower values for the other. To better compare classifiers

researchers use the F-measure and AUC metrics. These measure the general classification

accuracy of the classifier. Higher values denote better classification.

To reduce the risk of overfitting, we applied a 10-fold cross validation by partitioning our

program set into 10 parts and iteratively train on 9 parts and evaluation on one. We report

the results for all the partitions.

This experiment part was performed on the Codeflaws programs.

Second experimental part: Our analysis requires comparing mutation-based strategies

with respect to the actual value of interest, the number of faults revealed. Given that killing

a mutant does not always result in revealing a fault, we train the classifier in accordance

with the actual fault revealing ratios (i.e., the ratio of tests that kill a mutant and also reveal

faults).

We then select and prioritise our mutants. To evaluate and compare the studied

approaches with respect to fault revelation, we follow a typical procedures (Titcheu Chekam

et al. 2017; Kurtz et al. 2016; Namin et al. 2008) by randomly selecting test cases, from the

formed test pools, that kill the selected mutants. In case none of the available test cases on

4https://mutationtesting.uni.lu/farm

https://mutationtesting.uni.lu/farm
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our test pool kills the mutant we treat it as equivalent. We repeat this process for each one

of the studied approaches. As done in the first part of the experiment we report results using

a 10-fold cross validation.

For the mutant selection problem we randomly pick a mutant and then randomly pick

a test case that kills it. Then we remove all the killed mutants and pick another one. If the

mutant is not killed by any of the test cases on our test pool we treat it as equivalent. We

repeat this process 100 times and compute the probability of revealing each one of the faults.

For the mutant prioritisation case we follow the mutant order by picking test cases that

kills each mutant. We do not attempt to kill a mutant twice. Again, we repeat this process

100 times and compute the Average Percentage of Faults Detected (APFD) values, which is

typical metric used test case prioritization studies (Henard et al. 2016). Again we align the

compared approaches with respect to their cost (number of mutants need manual analysis)

and compare their effectiveness.

To account for coincidental results and the stochastic selection of test cases and mutants

we used the Wilcoxon test, which is a non-parametric test, to determine whether the Null

Hypothesis (that there is no difference between the studied methods) can be rejected. In

case the Null Hypothesis is rejected, then we have evidence that our approach outperforms

the others. Even when the null hypothesis does not hold, the size of the differences might

be small. To account for this effect we also measured the Vargha Delaney effect size Â12

(Vargha and Delaney 2000), which quantifies the size of the differences (aka statistical effect

size). Â12 = 0.5 suggests that the data of the two samples tend to be the same. Â12 > 0.5

values indicate that the first dataset has higher values, while Â12 < 0.5 indicate the opposite.

This experiment part was performed on the Codeflaws programs.

Third experimental part: To further evaluate the fault revealing ability of our approach,

we applied it on the CoreBench programs. We also adopted the 10-fold cross validation

as for the experiments on Codeflaws. We report results related to both fault revelation and

APFD values. The CoreBench corpus is small in size and hence FaRM might not be par-

ticularly important. However, in case the signal of our features is strong, we will be able to

experience the benefits of our method even with those few data.

5.4 Mutant Selection and Effort Metrics

When comparing methods, a comparison basis is required. In our case we measure fault rev-

elation and effort. While measuring fault revelation based on the fault set we use is direct,

measuring effort/cost is hard. Effort/cost depends on a large number of uncontrolled param-

eters, such as the followed procedure, level of automation, skills, underlying infrastructure

and the learning curve. Therefore, we have to account for different scenarios. and we adopt

three frequently used metrics; the number of selected mutants, the number of test cases

generated and the number of mutants requiring analysis.

The first metric (selected mutants) represents the number of mutants that one should

use when applying mutation testing. This is a direct and intuitive metric as it suggest that

developers should select a particular set of mutants to generate (form an actual executable

codes), execute and analyse. Although such a metric conforms to our working scenario, it

does not focus on the required test generation effort involved. Generating test cases is mostly

a manual task (due to the test oracle problem) and so, we also consider a second metric, the

number of test cases that can be generated based on a selected set of mutants.

We also adopt a third metric, the number of mutants that need to be analysed (equiva-

lent mutants and those we pick, i.e., analysed in order to generate test cases). This metric

somehow reflects the effort a tester needs to put in order to kill or identify as equivalent the
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selected mutants (under the assumption that equivalent mutants require the same effort as

the test generation).

To fairly compare the random selection methods, we select mutants until we analyse the

same number of mutants as analysed by our selection method. This establishes a fixed cost

point for all the approaches and compare their effectiveness.

There are other cost factors, such as the mutant-test execution cost and the analysis of

equivalent mutants (for the first two metrics) that we investigate separately. The reason for

that is that we would like to see if our approaches are also faster to execute and require

reasonably less equivalent mutants.

6 Results

6.1 Assessment of Killable Mutant Prediction (RQ1 and RQ2)

To check the prediction performance of our classifier we performed a 10-Fold cross-

validation for three different selected sets. These were the results of applying PredKillable

to predict killable mutants and selecting the 5%, 10% and 20% of the top ranked mutants.

The PredKillable classifier achieves 98.8% 5.7%, 10.7% precision, recall and F-measure

when selecting the 5% of the mutants. With respect to 10% and 20% sets of mutants, it

achieves 98.8% and 98.7% (precision), 11.4% and 22.8% (recall), 20.4% and 37.0% F-

measures. These values are higher than those that one can get by randomly sampling the

same number of mutants. In particular the PredKillable has 12.3%, 12.2% and 12.1% higher

precision, and 0.7%, 1.4% and 2.8% higher recall values for the 5%, 10% and 20% sets of

mutants.

When using PredKillable to predict non killable mutant, the classifier achieves 95.1%

35.0%, 51.2% precision, recall and F-measure when selects the 5% of the mutants. With

respect to 10% and 20% sets of mutants, it achieves 79.1% and 49.3% (precision), 58.6%

and 73.2% (recall), 67.3% and 58.9% F-measures. These values are higher than those that

one can get by randomly sampling the same number of mutants. In particular the PredKil-

lable has 81.6%, 65.7% and 35.8% higher precision, and 30.1%, 48.7% and 53.3% higher

recall values for the 5%, 10% and 20% sets of mutants.

To train our models, approximately 48 CPU hours were required, while to perform the

evaluation (perform mutant selection) it required less than a second. Since training should

only happen once in a while, the training time is considered acceptable. Of course the cost

of selecting and prioritizing mutants is practically negligible.

The Receiver operating characteristic (ROC) shown in Fig. 8 further illustrates perfor-

mance variations of the classifier in terms of true positive and false positive rates when

the discrimination threshold changes: the higher the area under curve (AUC), the better the

classifier. Our classifier achieves an AUC of 88%. These results establish that the code prop-

erties that were leveraged as features for characterizing mutants provide, together, a good

discriminative power for assessing the fault revealing potential of mutants.

6.2 Assessment of Fault Revelation Prediction

ML prediction performance Similarly to Section 6.1 we performed a 10-Fold cross-

validation for three different selected sets in order to check the prediction performance of

our classifier. These were the results of applying FaRM and selecting the 5%, 10% and 20%

of the top ranked mutants. The FaRM classifier achieves 5.7% 12.8%, 7.8% precision, recall
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Fig. 8 Receiver Operating Characteristic For Killable Mutants Prediction on Codeflaws

and F-measure when selects the 5% of the mutants. With respect to 10% and 20% sets of

mutants, it achieves 4.9% and 3.9% (precision), 22.0% and 35.1% (recall), 8.0% and 7.0%

F-measures. These values are higher than those that one can get by randomly sampling the

same number of mutants. In particular FaRM has 3.5%, 2.7% and 1.7% higher precision,

and 7.8%, 12.1% and 15.1% higher recall values for the 5%, 10% and 20% sets of mutants.

The cost of training and evaluation are same as those reported in Section 6.1.

The Receiver operating characteristic (ROC) shown in Fig. 9 further illustrates perfor-

mance variations of the classifier in terms of true positive and false positive rates when

the discrimination threshold changes: the higher the area under curve (AUC), the better the

classifier. Our classifier achieves an AUC of 62%.

We believe that such a result is encouraging due to the nature of the developer mistakes.

As developers make mistakes in an non-systematic way, for the same problem, some may

make mistakes while some others may not, the only thing we can hope for is to form good

heuristics, i.e., identify mutants that maximsize the chances to reveal faults. Therefore, it is

hard to get much higher AUC values. Nevertheless, we expect future research to built on

and improve our results by forming better predictors.

Overall, the above results demonstrate that the code properties that were leveraged as

features for characterizing mutants provide, together, a discriminative power to assess the

fault revealing potential of mutants.

Considered features We provide in Fig. 10 the distribution of information Gain values for

the various features considered in this work. Information gain (IG) measures how much

“information” a feature gives us about the class we want to predict. The IG values are com-

puted by the supervised learning algorithm during the training process. These data enable

the assessment of the potential contribution of every feature to a prediction model. Exper-

imental training process provides evidence in Fig. 10 that the suggested features (in bold)

contribute significantly less than several other features that we have designed for FaRM .
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Fig. 9 Receiver Operating Characteristic For Fault Revealing Mutants Prediction on Codeflaws

Interestingly, together with complexity, the features related to control and data dependen-

cies are the most informative ones. Here we should note that IG values do not suggest which

features to select and which not. Actually our results show that we need all the features.

6.3 Mutant Selection

6.3.1 Comparison with Random (RQ3)

Figure 11 shows the distribution of the fault revelation of the mutant selection strategies

when selecting the 2%, 5% and 10% of the top ranked mutants. As can be seen from the

plot, both FaRM* and FaRM outperforms both DummyRandom and spreadRandom. Both

DummyRandom and spreadRandom outperform PredKillable . When selecting 2% of the

mutants the difference, for both FaRM and FaRM* , of the median values is 22% and 24%
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Fig. 11 Fault revelation of the mutant selection strategies on Codeflaws. All three FaRM and FaRM* sets

outperform the random baselines

for the DummyRandom and SpreadRandom respectively. This difference is increasing when

selecting the 5% of the mutants and goes to 34% and 34% for FaRM and, 24% and 24%

for FaRM* . When selecting 10% of the mutants the difference becomes 20% and 17% for

both FaRM and FaRM* . Regarding PredKillable , the difference with DummyRandom and

SpreadRandom at the 2% mutant selection threshold is 23% and 21% respectively. This

difference increase for the 5% to 37% and 37%. For the 10% threshold is 43% and 46%.

To check whether the differences are statistically significant we performed a Wilcoxon

rank-sum test, which is a non-parametric test that measures whether the values of one sam-

ple are higher than those of the second sample. We adopt a statistically significant level

a < 0.01 below of which we consider the differences as statistically significant. We also

computed the Vargha Delaney Â12 effect size value between the approaches.

The statistical test showed that FaRM and FaRM* outperforms both DummyRandom and

SpreadRandom with statistically significant difference. both DummyRandom and Spread-

Random outperform PredKillable with statistically significant difference. As expected the

differences between DummyRandom and SpreadRandom are not significant. It is noted

that all comparisons are aligned with respect to the number of mutants that need anal-

ysis, which as we already explained represents the manual effort involved. The Vargha

Delaney Â12 value between the approaches show that for the 2% threshold, FaRM is bet-

ter than DummyRandom and SpreadRandom in 60% and 63% of the cases respectively.

These values are slightly higher for FaRM* where it is better than DummyRandom and

SpreadRandom in 62% and 65% of the cases respectively. DummyRandom and Spread-

Random are respectively better than PredKillable in 84% and 82% of the cases. For the 5%

threshold, FaRM is better than DummyRandom and SpreadRandom in 66% of the cases.

FaRM* is better than DummyRandom and SpreadRandom in 64% and 65% of the cases

respectively. DummyRandom and SpreadRandom are respectively better than PredKillable

in 88% and 84% of the cases. For the 10% threshold, FaRM is better than DummyRandom

and SpreadRandom in 65% and 63% of the cases respectively. FaRM* is better than Dum-

myRandom and SpreadRandom in 64% and 61% of the cases respectively. DummyRandom

and SpreadRandom are respectively better than PredKillable in 87% and 85% of the cases.
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Regarding the test execution time of the involved methods, our approach has an advan-

tage but this is minor. The median difference between FaRM and DummyRandom and

SpreadRandom was 12 and 39 seconds per program respectively. This means that FaRM

required 12 and 29 seconds less execution time than the random baselines. While these dif-

ferences are considered as minor they demonstrate that FaRM has significantly higher fault

revelation ability than the compared baselines without introducing any major overhead.

Overall, our results suggest that FaRM and FaRM* significantly outperforms the ran-

dom baselines with practically significant differences, i.e., improvements on the ratios

of revealed faults were between 4% to 34%. PredKillable is outperformed by all the

approaches.

6.3.2 Comparison with SDL & E-selective (RQ4)

This section aims to compare the fault revelation of our approach with that of the SDL and

the E-Selective mutants sets.

In order to compare our approach with SDL selection, the selection size is set to the num-

ber of SDL mutants. In the Codeflaws subjects, SDL and E-SELECTIVE mutants represent

in median respectively 2% and 38% of all mutant as seen in Fig. 12.

Our analysis is designed as following. For each subject, the |SDL| top ranked mutants

of FaRM are selected (where |SDL| is the total number of SDL mutants). We also select

the |SDL| top ranked mutants with the random approaches. Then, the fault revelation of

each approach’s selected mutants set is computed for comparison and presented in Fig. 13.

We observe that FaRM and FaRM* respectively have 30% and 27% higher median fault

revelation than SDL. PredKillable has 25% lower median fault revelation than SDL. We

also observe that SDL has similar fault revelation with the random selections (respectively

3% and 2% lower than DummyRandom and SpreadRandom).

We also performed the Wilcoxon rank-sum test as in Section 6.3. The statistical test

showed that both FaRM and FaRM* outperform SDL, and SDL outperforms PredKillable

. The difference between SDL and DummyRandom and SpreadRandom is not statistical

significant. We also computed the Vargha Delaney Â12 value between the approaches and

found that FaRM and FaRM* are respectively better than SDL in 54% and 55% of the cases.

SDL is better than PredKillable in 79% of the cases.

Similar to the experiment performed above to compare our approach with SDL, we per-

form another experiment to compare FaRM with E-Selective selection. The fault revelation

Fig. 12 Proportion of SDL and E-SELECTIVE mutants among all mutants for Codeflaws subjects
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Fig. 13 Fault revelation of FaRM compared with SDL on Codeflaws. FaRM sets outperform the SDL

selection. Approximately 2% (number of SDL mutants) of all the mutants are selected

results are presented in Fig. 14. We observe that for a selection size equal to the number

of E-Selective mutants, all selection approaches except PredKillable and DummyRandom

achieve the highest median fault revelation. Given that E-Selective mutants are roughly 38%

of all the mutants, which is relative large set, we make the comparison with the E-Selective

set for smaller selection size namely 5% and 15% thresholds of the top ranked mutants (w.r.t

all mutants). The E-Selective mutants of the given sizes are randomly selected from the

whole E-Selective mutant set. The fault revelation results are presented in Figs. 15 and 16.

We can observe that FaRM and FaRM* respectively have 31% and 22% higher median fault

revelation than E-Selective for thresholds 5%. For the 15% threshold, both have 9% higher

median fault revelation. PredKillable has 38% and 47% lower median fault revelation than

E-Selective for thresholds 5% and 15% respectively. We also observe that E-Selective has

similar fault revelation with the random selections (respectively 2% and 1% higher than

Fig. 14 Fault revelation of FaRM compared with E-Selective on Codeflaws. Approximatively 38% (number

of E-Selective mutants) of all the mutants are selected
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Fig. 15 Fault revelation of FaRM compared with E-Selective for selection size 5% of all mutants. FaRM and

FaRM* sets outperform E-Selective selection

DummyRandom and SpreadRandom for selection size 5% and respectively 3% and 0%

higher than DummyRandom and SpreadRandom for selection size 15% ).

The Wilcoxon rank-sum statistical test shows that both FaRM and FaRM* outperform

E-Selective, and E-Selective outperforms the PredKillable . The difference between E-

Selective and the random approaches is not statistical significant. We also computed the

Vargha Delaney Â12 effect size value between the approaches and found that for the 5% and

15% thresholds, FaRM is better than E-Selective in 64% and 63% of the cases respectively.

FaRM* is better in 62% and 61% of the cases respectively, and PredKillable is worse in

86% and 82% of the cases respectively.

Fig. 16 Fault revelation of FaRM compared with E-Selective for selection size 15% of all mutants. FaRM

sets outperform E-Selective selection
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6.4 Mutant Prioritization

6.4.1 Comparison with Random (RQ5)

Selected Mutants Cost Metric Figure 17 shows the distributions of APFD (Average Per-

centage of Faults Detected) values for all faults, using the five approaches under evaluation.

While FaRM and FaRM* respectively yield an APFD median of 98% and 97%, and PredKil-

lable yields an APFD median of 72%, DummyRandom and SpreadRandom reach median

APFD values of 93% and 94% respectively. These results reveal that the general trend is in

favour to our approach. As our approaches FaRM and FaRM* are better than the random

baseline, when the main cost factor (number of mutants that need analysis) is aligned, we

can infer that it is generally better with practically important differences (of 4%). Note that

the highest possible improvement over the random baseline is 6% (DummyRandom has a

median APFD value of 94%). Nonetheless, PredKillable is worse than the random baseline.

To account for the stochastic nature of the compared methods and increase the confidence

on our results, we further perform a statistical test. Wilcoxon test results yielded p-values

much lower than our significance level for the compared data, i.e., samples of FaRM and

DummyRandom, FaRM and SpreadRandom, FaRM* and DummyRandom, FaRM* and

SpreadRandom, PredKillable and DummyRandom, and PredKillable and SpreadRandom

respectively. Therefore, we can definitively conclude that FaRM and FaRM* outperform

random mutant selection with statistically significance while random mutant selection out-

perform PredKillable . On the other hand, as expected, the Wilcoxon test revealed that

there is no statistical difference between the performance of DummyRandom and that of

SpreadRandom.

When examining mutant selection strategies there are two main parameters that influence

the application cost. These are the killable and equivalent mutants that testers need to anal-

yse. When analysing a killable mutant our ability to select fault revealing ones is important,

while increasing the chance to get a killable mutant is also important. Therefore, it could

be that our FaRM is better simply because it selects killable mutants and not fault reveal-

ing ones. To account for this factor we removed all non-killable mutants from our sets and

Fig. 17 APFD measurements considering all mutants for the selected mutants cost metric for Codeflaws.

The FaRM prioritization outperform the random baselines
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recompute our results. This helped eliminating the influence of non-killable mutants, from

both approaches.

Our results show that the performance improvement of FaRM and FaRM* over Spread-

Random and DummyRandom is also effective when considering only killable mutants

(approximated by our test suites). Figure 18 shows the relevant distributions of APFD,

which are visibly similar to the distributions for all mutants (all values are slightly higher

when considering only killable mutants). This result suggest that FaRM and FaRM * are

indeed capable of identifying fault revealing mutants, independent of the equivalent mutants

involved.

To provide a general view of the trends, Fig. 19 illustrates the overall (median) effective-

ness of the mutant prioritization by FaRM , FaRM* and PredKillable in comparison with

random strategies. We note that for all percentages of mutants, FaRM and FaRM* outper-

forms random-based prioritization while PredKillable is outperformed by the random-based

prioritization. Overall, we observe that the fault revelation benefit of FaRM over the ran-

dom approaches is above 20% (maximum difference is 34%) when selecting 2% to 8% of

mutants. FaRM reaches a plateau around 5% of mutants, as the median fault revelation is

maximal. This suggests that a hint for the mutant selection size for FaRM could be 5% of

the mutants.

Finally, we examined the differences between the approaches in terms of execution time.

Although we do not explicitly aim at reducing the test execution cost, we expect some

benefits due to our methods’ ability to prioritise the mutants, which results in a reduced

execution time (Zhang et al. 2013). Figure 20 illustrate, in a box-plot form, the overall

execution time differences between the FaRM and the random baselines with respect to the

attained fault revelation, measured in seconds. Although the differences can be significant

in some (rare) cases, the expected (median values) ones are -58,167 and -29,373 seconds

(-16 and -8 hours) for DummyRandom and SpreadRandom. This result indicates that our

approach has also an advantage with respect to test execution, which sometimes becomes

significant.

Conclusively, our results demonstrate that FaRM is indeed effective as it is statistically

superior to random baselines, independent of the equivalent mutants involved. It provides

Fig. 18 APFD measurements considering only killable mutants for the selected mutants cost metric on

Codeflaws. The FaRM prioritization outperform the random baselines, independent of non-killable mutants
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Fig. 19 Mutant prioritization performance in terms of faults revealed (median case) for the selected mutants

cost metric on CodeFlaws. The x-axis represent the number of considered mutants. The y-axis represent the

ratio of the fault revealed by the strategies

4% higher APFD values, which means that when testers analyse mutants (to strengthen their

test suites) they get a 4% improvement on their fault revelation ability. Note that the high-

est possible improvement over the random baseline is 6% (DummyRandom has a median

APFD value of 94%).

Required Tests Cost Metric Figure 21 shows the distributions of APFD (Average Percent-

age of Faults Detected) values for all faults, using the five approaches under evaluation.

While both FaRM and FaRM* yield an APFD median of 81%, and PredKillable yields an

APFD median of 76%, DummyRandom and SpreadRandom reach median APFD values

of 77%. These results reveal that the general trend is in favour to our approach. As our

approaches FaRM and FaRM* are better than the random baseline, when the main cost fac-

tor (number of test that need to be designed and executed) is aligned, we can infer that it is

generally better with practically important differences (of 4%). The PredKillable performs

quite similarly to the random baseline.

To account for the stochastic nature of the compared methods and increase the confidence

on our results, we further perform a statistical test. Wilcoxon test results yielded p-values

much lower than our significance level for the compared data, i.e., each of FaRM and

FaRM* compared with each of PredKillable , DummyRandom and SpreadRandom. There-

fore, we can definitively conclude that FaRM and FaRM* outperform random baseline

with statistically significance. On the other hand, the Wilcoxon test revealed that there is

no statistical difference between the performance of PredKillable , DummyRandom and

SpreadRandom.

The results of the Vargha Delaney effect size show that FaRM is better than DummyRan-

dom, SpreadRandom and PredKillable in 58%, 61% and 60% of the cases respectively.

FaRM* is better than DummyRandom, SpreadRandom and PredKillable in 58%, 61% and

59% of the cases respectively.
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Fig. 20 Execution cost of prioritization schemes

To provide a general view of the trends, Fig. 22 illustrates the overall (median) effective-

ness of the required test prioritization by FaRM , FaRM* and PredKillable in comparison

with random strategies. We note that for all percentages of tests, FaRM and FaRM* outper-

forms random-based prioritization while PredKillable is outperformed by the random-based
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Fig. 21 APFD measurements for the required tests cost metric on Codeflaws. The FaRM prioritization

outperform the random baselines

prioritization. Overall, we observe that the fault revelation benefit of FaRM over the ran-

dom approaches is above 10% (maximum difference is 15%) for the 20% to 45% top ranked

tests.

Analysed Mutants Cost Metric The analysed mutants cost metric measures the minimum

number of mutants that need to be analysed, including equivalent mutants, following a

mutant prioritization approach, before the fault is revealed. A good mutant prioritization

Fig. 22 Required tests prioritization performance in terms of faults revealed (median case) on CodeFlaws.

The x-axis represent the number of considered tests. The y-axis represent the ratio of the fault revealed by

the strategies
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approach will minimized the analysed mutants cost. Following, we compare the anal-

ysed mutants cost metric between our approaches and the random baselines. The analysed

mutants cost metric is calculated for each approach and for each bug of the benchmark. We

compare the approaches statistically with Wilcoxon rank-sum test and the Vargha Delaney

effect size.

The results show that FaRM , FaRM* and PredKillable are better than DummyRandom

and SpreadRandom with statistical significance displayed by a p-value much lower than the

significance level. FaRM is better than DummyRandom and SpreadRandom in 57% and

61% of the cases respectively. The performance difference is higher for FaRM* where it is

better than DummyRandom and SpreadRandom in 60% and 64% of the cases respectively.

PredKillable is better than DummyRandom and SpreadRandom in 60% and 65% of the

cases respectively.

FaRM* shows a larger improvement than FaRM over the random baseline, but there

is no statistical significance difference between FaRM and FaRM* . Furthermore, FaRM*

outperforms PredKillable with statistical significant difference, and is better in 53% of the

cases. There is no statistical significant difference between FaRM and PredKillable .

Conclusively, our results demonstrate that FaRM and FaRM* are indeed effective as they

are statistically superior to random baselines.

6.4.2 Comparison with Defect Prediction (RQ6)

Selected Mutants Cost Metric Figure 23 shows the distributions of APFD (Average Per-

centage of Faults Detected) values for all faults, using the FaRM , FaRM* , PredKillable

and the random approaches. While FaRM yields an APFD median of 98.0%, defect predic-

tion (DefectPred) reach median APFD value of 83.7%. These results reveal that the general

trend is in favour to our approach. As our approach is much better than the defect predic-

tion approach, when the main cost factor (number of mutants that need analysis) is aligned,

we can infer that it is generally better with practically important differences (of 14%).

Even the random approaches are better than the defect prediction approach. Nevertheless,

PredKillable is worse than defect prediction.

Fig. 23 APFD measurements considering all mutants. The FaRM prioritization outperform the defect

prediction
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The Wilcoxon test results yielded p-values much lower than our significance level for

the samples of FaRM and DefectPred, and FaRM* and DefectPred. Therefore, we can

definitively conclude that FaRM and FaRM* outperforms defect prediction with statisti-

cal significance. On the other hand, the Wilcoxon test also revealed that there is statistical

significant difference between the performance of DefectPred and dummyRandom, and

DefectPred and that of spreadRandom respectively. Nonetheless, DefectPred outperforms

PredKillable with statistical significance. The Vargha Delaney Â12 effect size value shows

that FaRM and FaRM* are better than DefectPred in 76% of cases. While DummyRandom

and SpreadRandom are better than DefectPred in 71% and 70% of the cases respectively.

To provide a general view of the trends, Fig. 24 illustrates the overall (median) effec-

tiveness of the mutant prioritization by FaRM in comparison with the defect prediction

approach. We note that for all percentage of mutants, FaRM outperforms the defect pre-

diction approach. The performance improvement goes around 40% to 66% of more faults

revealed when 2% until 8% of mutants are executed.

6.5 Experiments with Large Programs (RQ7)

Selected Mutants Cost Metric in CoREBench, all APFDs values are much higher than

in CodeFlaws, with FaRM , FaRM* , DummyRandom and SpreadRandom having median

APFD value of 99%, and PredKillable a median APFD value of 94%. The maximum possi-

ble improvement is 1% (given that the random baseline has a median of 99%). This is caused

by the large number of redundant mutants involved. To demonstrate this we check the rela-

tion between mutation score and percentage of considered mutants. Figure 27 illustrates

the overall (median) mutation score achieved (y-axis) by the tests killing the percentage of

Fig. 24 Mutant prioritization performance in terms of faults revealed (median case) on CodeFlaws. The x-

axis represent the number of considered mutants. The y-axis represent the ratio of the fault revealed by the

strategies
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mutants recorded in x-axis. From this graph we can see that all approaches reach their max-

imum median mutation score value when considering more than 30% of the mutants. This

implies that the benefits are reduced for every approach that consider more than 30% of the

involved mutants (Figs. 25 and 26).

Interestingly, both Figs. 27 and 28 demonstrate that FaRM guides the mutant selection

towards mutants that do not maximize the mutation score nor the subsuming mutation score

(random mutant selection achieves higher mutation and subsuming mutation scores than

FaRM ). Instead the selected mutants maximize fault revelation as demonstrated in Figs. 25

and 26.

Given that a large proportion of the mutants are not killable (Fig. 27), we present in

Fig. 29 the sensitivity of the approaches with regard to the equivalent mutants, to see how

they are ranked. We observe that PredKillable does quite well at ranking the killable mutants

first, and FaRM* inherit of such characteristic from FaRM* relatively well. We also observe

that FaRM tend to keep equivalent mutants away from the top ranks.

To provide a general view of the fault revelation trend, Figs. 25 and 26 illustrate the

overall (median) effectiveness of the mutant prioritization by FaRM in comparison with

random strategies for the ratios of selected mutants from 1% to 10%. We note that for all

percentage of mutants, FaRM outperforms random-based prioritization. The performance

improvement goes from 0% to 10% of more faults revealed when 5% and 2% of mutants

are killed. These trends are similar with those we observe on CodeFlaws, suggesting that

FaRM effectively learns the properties of the important mutants.

Required Tests Cost Metric Figure 30 shows the distributions of APFD (Average Percent-

age of Faults Detected) values for all faults, using the five approaches under evaluation.

While both FaRM and FaRM* yield an APFD median of 92%, and PredKillable yields an

Fig. 25 FaRM performance in terms of faults revealed (median case) on CoREBench considering all mutants.

The x-axis represent the number of considered mutants, while the y-axis represent the ratio of the fault

revealed by the strategies
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Fig. 26 FaRM performance in terms of faults revealed (median case) on CoREBench considering only kill-

able mutants. The x-axis represent the number of considered mutants, while the y-axis represent the ratio of

the fault revealed by the strategies

APFD median of 79%, DummyRandom and SpreadRandom reach median APFD values

of 83% and 81% respectively. These results reveal that the general trend is in favour to

our approach. As our approaches FaRM and FaRM* are better than the random baseline,

Fig. 27 Mutation score (median case) on CoREBench. The x-axis represent the number of considered

mutants, while the y-axis represent the mutation score attained by the strategies
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Fig. 28 Subsuming Mutation score (median case) on CoREBench. The x-axis represent the number of

considered mutants, while the y-axis represent the subsuming mutation score attained by the strategies

when the main cost factor (number of test that need to be designed and executed) is aligned,

we can infer that it is generally better with practically important differences (of 9%). The

PredKillable performs slightly worse than the random baseline.

Fig. 29 Ratio of equivalents (median case) on CoREBench. The x-axis represent the number of considered

mutants, while the y-axis represent the proportion of equivalent mutants selected by the strategies
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Fig. 30 APFD measurements on CoREBench for the required tests cost metric. The FaRM prioritization

outperform the random baselines

The results of the Vargha Delaney Â12 effect size show that FaRM is better than Dum-

myRandom, SpreadRandom and PredKillable in 74%, 77% and 86% of the cases respec-

tively. FaRM* is better than DummyRandom, SpreadRandom and PredKillable in 70%,

74% and 81% of the cases respectively. PredKillable is worse than the DummyRandom and

SpreadRandom in 70% and 66% of the cases respectively.

To provide a general view of the trends, Fig. 31 illustrates the overall (median) effective-

ness of the required test prioritization by FaRM , FaRM* and PredKillable in comparison

Fig. 31 Required tests prioritization performance in terms of faults revealed (median case) on CoREBench.

The x-axis represent the number of considered tests. The y-axis represent the ratio of the fault revealed by

the strategies
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with random strategies. We note that FaRM and FaRM* outperforms random-based prioriti-

zation while PredKillable is outperformed by the random-based prioritization. Overall, we

observe that the fault revelation benefit of FaRM over the random approaches is above 30%

(maximum difference is 70%) for the 5% to 20% top ranked tests.

Analysed Mutants Cost Metric The results of the Vargha Delaney Â12 effect size values

related to the analysed mutants cost metric show that FaRM and FaRM* are better than

DummyRandom and SpreadRandom. FaRM is better than DummyRandom and SpreadRan-

dom in 58% and 60% of the cases respectively. The performance difference is higher for

FaRM* where it is better than DummyRandom and SpreadRandom in 61% and 63% of the

cases respectively. PredKillable is better than DummyRandom and SpreadRandom in 56%

and 58% of the cases respectively.

FaRM* shows a larger improvement than FaRM over the random baseline.

Taken together our results demonstrate that FaRM and FaRM* achieves significant

improvements over the random baselines on both CodeFlaws and CoREBench fault sets.

Therefore, the improvements made by FaRM and FaRM* can be considered as important.

7 Discussion

7.1 Working Assumptions

Our approach uses machine learning to support mutation testing. As such it makes some

assumptions that should hold in order to be applicable and effective. First, we assume that

there are sufficient historical data from applications of the same context or previous software

releases. This means that we need to have a diverse and comprehensive set of defects where

mutation testing has been applied. Of course these defects need to belong to the targeted, by

the testing procedure, class of defects. In the absence of sufficient defects, we can relax this

requirement by training on hard-to-kill or subsuming mutants. This can be easily performed,

the same way we train for equivalent mutants, as long as we have a large codebase that is

sufficiently tested.

Second, we assume that defect causes are repeated. This is an important assumption as

in its absence machine learning cannot work. We believe that it holds given the evidence

provided by the n-version programming studies (Leveson 1995; Knight and Leveson 1986)

and the empirical observations in the context of Linux kernel (Palix et al. 2011).

Third, we assume that mutants are linked with targeted defects. This assumption comes

with the use of mutation testing. We believe that it holds given the empirical evidence pro-

vided by recent studies (Titcheu Chekam et al. 2017; Petrovic and Ivankovic 2018; Ramler

et al. 2017; Papadakis et al. 2018b; Just et al. 2014b). Finally, we assume that fault reve-

lation utility can be captured by static features such as the ones used in this study. We are

confident that this assumption holds given the reports of Petrovic and Ivankovic (Petrovic

and Ivankovic 2018) on the utility of the AST features in mutant selection and the evidence

we provide here.

7.2 Threats to Validity

We acknowledge the following threats that could have affected the validity of our results.

One possible external validity threat lies in the nature of the test subjects we used. Individ-

ually, the majority of programs in comparison experiments are small in size, and may not
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be representative of real-world programs. Our mitigation strategy is discussed in the follow-

ing subsection (Section 7.3). Moreover, since the properties of the fault revealing mutants

reside on the code parts that are control and data dependent to and from the faults, the

cumulative size of relevant code parts (based on which we get the feature values) should be

small. Therefore, for such a study, the most important characteristics should be the faulty

code area and its dependencies. Since we have a large and diverse set of real faults, we feel

that this threat is limited. Future work should validate our findings and analysis to larger

programs.

Another potential threat relates to the mutation operators we used. Although we have

considered a variety of operators, we cannot guarantee that they yield representative

mutants. To diminish this threat we used a large number of operators (816 simple operators

across 18 categorises) covering the most frequently used C features. We also included all

the operators adopted by the modern mutation testing tools (Titcheu Chekam et al. 2017;

Papadakis et al. 2018a).

Threats to internal validity lie in the use of recent machine learning algorithms to the

detriment of established and widely used techniques. Nevertheless, these threats are mini-

mized as gradient boosting is gaining a momentum in the research literature as well as the

practice of machine learning.

Similarly, there might be some issues related to code redundancy, duplicated code, that

may influence our results. We discuss our redundancy mitigation strategy on Section 7.4.

Another internal validity threat may be due to the features we use. These have not

been optimized with any feature selection technique. This is not a big issue in our case

as we use gradient boosting that automatically performs feature selection. To verify this

point we trained a Deep Learning model that also performs feature selection and checked

its performance. The result showed insignificant differences from our method. Addition-

ally, we retrained our classifiers using the features with information gain greater or equal

to 0.02 and got results similar to random, suggesting that all our features are needed.

Future research should seed light on this aspect by complementing and optimizing our

feature set.

Other internal validity threats are due to the way we treated mutants as equivalent. To

deal with this issue, we used KLEE, a state of the art test generation tool and the accompa-

nied test suites. As the programs we are using are small KLEE should not have a problem at

generating effective test suites. Together these tools kill 87% of all the mutants, demonstrat-

ing that our test suites are indeed strong. Since the 13% of the mutants we treat as equivalent

is in line with the results reported by the literature (Papadakis et al. 2015), we believe that

this threat is not important. Unfortunately, we cannot practically do much more than that, as

the problem is undecidable (Budd and Angluin 1982).

Finally, our assessment metrics may involve some threats to construct validity. Our cost

measurement, number of selected, analysed mutants and number of test cases essentially

captures the manual effort involved. Automated tools may reduce this cost and hence influ-

ence our measurements. Regarding equivalent mutants, we used a state-of-the-art equivalent

mutant detection technique, TCE (Papadakis et al. 2015), to remove all trivially equivalent

mutants before conducting any experiment. Therefore, the remaining equivalent mutants

are those that remain undetectable by the current standards. Regarding the test generation

cost, we acknowledge that while automated tools manage to generate test inputs, they fail

generating test oracles. Therefore, augmenting the test inputs with test oracles, remains a

manual activity, which we approximate by measuring the number of tests. In our experi-

ments we bypassed the oracle problem by using the ‘correct’ program versions as oracles.

An alternative scenario involves the use of automated oracles, but these are rare in practice
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and we did not considered them. Overall, we believe that with the current standards, our

cost measurements approximate well the human cost involved.

All in all, we aimed at minimizing any potential threats by using various comparisons

scenarios, clearly evaluating the benefit of the different steps in FaRM , and leveraging fre-

quently used and established metrics. Additionally, to enable replication and future research

we make our data publicly available5.

7.3 Representativeness of Test Subjects

Most of our results are based on Codeflaws. We used this benchmark because machine

learning requires lots of data and Codeflaws is, currently, the largest benchmark of real

faults on C programs. Also because of its manageable size, we can automatically generate a

relatively large and thorough test pool and apply mutation testing. Still this required 8,009

CPU days of computations (only for the mutant executions), indicating that we reach the

experimentally achievable limits. Similarly, applying mutation testing on the 45 faults on

CoREBench required 454 CPU days of computations.

The obvious differences between the size of the test subjects raise the question of whether

our conclusions hold on other programs and faults. Fortunately, as already discussed our

results on CoREBench have similar trends with those observed on Codeflaws. Training a

classifier on CoREBench yields AUC values around 0.616, which is approximately the same

(slightly lower) than the one we get from Codeflaws. This fact provides confidence that our

features do capture the mutant properties we are seeking for. To further cater for this issue,

we also selected the harder to reveal faults (faults revealed by less than 25% of the tests).

This is a quality control practice, used in fault injection studies, ensures that our faults are

not trivial.

Additionally, we checked the syntactic distance of the Codeflaws faults and show that it is

small (please refer to Fig. 7), similarly to the one assumed by mutation testing. This property

together with the subtle faults (faults revealed by less than 25% of the tests) we select

make our fault set compliant with the mutation testing assumptions, i.e., the Competent

Programmer Hypothesis.

Furthermore, we computed and contrasted the correlation between mutants and faults on

three defect benchmarks; CoREBench, Codeflaws and Defects4J dataset (Just et al. 2014a).

Our aim is to check whether there are major difference in the relation between the faults

and mutants of the three benchmarks.

Defects4J is a popular defect dataset for Java, with real faults from large open source

programs. To compute the correlations on Defects4J we used the data from the study of

Papadakis et al. (2018b), while for CoREBench and Codeflaws we used the data from

this paper. We computed the Kendall correlations with uncontrolled test suite size between

1% and 15% of all tests. We make 10,000 random test sets each with size randomly cho-

sen between 1% and 15% of all the tests. Then, we compute the mutation score and the

fault revelation of each test set, and compute the Kendall correlation between the mutation

score and fault revelation. Figure 32 shows the correlations for Codeflaws, CoReBEnch and

Defects4J. As can be seen, the correlations are similar in all three cases. Therefore, since the

mutants and faults relations share similar properties on all cases, we believe that our defect

set provide good indications on the fault revealing ability of our approach.

5https://mutationtesting.uni.lu/farm

https://mutationtesting.uni.lu/farm
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Fig. 32 Correlations between mutants and faults in three defect datasets. Similar correlations are observed

in all three cases suggesting that Codeflaws provides good indications on the fault revealing ability of the

mutants

7.4 Redundancy Between the Considered Faults

Code redundancy may influence our results. As depicted in Fig. 6, in Codeflaws the num-

ber of implementations for the same problem is usually higher than one. This introduces

a risk that our evaluation, test defect set, may benefit from the knowledge gained during

training, in case there is another implementation for the same problem in this set. Although

such a case is unlikely as all of our defects are different and form unique program versions,

to remove any threat from such a factor we repeated our experiment by randomly splitting

the Codeflaws subjects into training and test sets in such a way that all implementations

of the same problem either appear in the training set or in the evaluation, but not both. We

obtained almost identical results with the previous experiment, i.e., we get AUC values of

62% and 87% respectively for fault revelation and equivalence prediction when controlling

for the implementations (having always different problem implementations on the training

and test sets). Another threat related to code redundancy may have affected our results in

CoREBench. Among the 45 CoREBench faults we consider, only 20 of them are on the

same components (13 in Coreutils, 3 in Find, and 4 in Grep). Note that the 13 instances

of Coreutils form 3 separated set of 2, 5 and 6 bugs on the same component. We manu-

ally checked these defects and found that they all differ (they are located in different code

parts and the code around the locations modified to fix the defects differs). Nevertheless,

still there is a possibility that code similarities may impact positively or negatively our clas-

sifiers. Although such a case is compatible with our working scenario (we assume that we

have similar historical data), so it is not a problem for our approach, it is still interesting to

check the classifier performance on similar/dissimilar implementations.

To deal with this case, we divided our fault set (CoREBench) into two sets, one with the

faults having similar faulty functions and one with dissimilar ones. To do so, we used the

Deckard (Jiang et al. 2007) tool, which computes the similarity between code instances (at

the AST level). For each faulty function, the tool compares the vector representation of the

sub-trees of small code snippets and reports similarity scores. Two codes are considered as
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similar if they have code parts with high similarity scores on the utilized abstraction, i.e.,

above 95% (Jiang et al. 2007).

Having divided the fault sets as similar and dissimilar we then contrast the results they

provide. Overall, we found insignificant differences between the two sets. Figure 33 com-

pares the ranking position of the fault revealing mutants in the order provided by FaRM ,

when using the following tool parameters: similarity threshold 95, 4 strides and 50 mini-

mum number of tokens. From these results we see that there are no significant differences

between the two sets, suggesting that code redundancy does not affect our results.

In order to further reduce the threat related to code redundancy, concerning mutants that

appears on same line of code in the training data and test data, we repeated the experiments

by removing mutants in the test data that could cause this threat. In fact, we removed all the

mutants of the test data for which there exist at least one mutant in the training data, located

on the same component, that have the same features. This procedure led to removing 13%

(median case) of the test data mutants. The evaluation on the remaining mutants (test data

after dropping the “duplicated”) resulted in similar results as not dropping those mutants,

i.e., AUC value of 62%. It is noted that 18% (median case) of the dropped mutants have dif-

ferent fault revelation score with their “duplicates” in training set. This has the unfortunate

effect of confusing the classifier.

7.5 Other Attempts

Our study demonstrates how simple machine learning approaches can help improving muta-

tion testing. Since our goal was to demonstrate the benefits of using such an approach we

did not attempted to manipulate our data in any way (apart from the exclusion of the trivial

faults). We achieve this goal, but still there is room for improvement that future research can

exploit. For instance it is likely that classification results can be improved by pre-processing

training data, e.g., exclude fault types that are problematic (Papadakis et al. 2018c), exclud-

ing fault types with few instances, excluding versions with low strength test suites, as well

as by removing many other sources of noise.

Fig. 33 CoREBench results on similar (repeatedIDs) and dissimilar (Non-RepeatedIDs) implementation.

We observe similar trend in both cases suggesting a minor or no influence of code similarity on FaRM

performance
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Data manipulation strategies we attempted during our study were oversampling, the

exclusive use of features with high information gain, the use of a Deep Learning classi-

fier and targeting irrelevant mutants (the mutants with lowest fault revealing probability).

Oversampling consist of randomly duplicating the data items of the minority class in order

to have a more balanced data to train the classifier. In this case, we applied oversam-

pling of the minority class for mutants which is the fault revealing class (they represent

approximately 3% of the whole data). We also attempted to replace the supervised learn-

ing algorithm used by our approach by substituting the decision tree with a deep neural

network classifier. We also retrained the classifier to target irrelevant mutant (mutant

not killed by fault revealing tests), the motivation being that the classifier may per-

form better to separate irrelevant mutants than fault revealing ones. All these attempts

yielded quite similar or worse results with those we report and thus, we do not detail

them.

In another attempt, we trained our classifier by only using the features that have highest

information gain (those with IG ≥ 0.02 in Fig. 10) but achieved results similar to random

mutant selection.

8 RelatedWork

Years of research in mutation testing has shown that designing tests that are capable of

revealing mutant-faults results in strong test suites that in turn reveal real faults (Frankl et al.

1997; Li et al. 2009; Titcheu Chekam et al. 2017; Papadakis et al. 2018b; Just et al. 2014b).

The technique is particularly effective and capable of revealing more faults than most of

the other structural test criteria (Frankl et al. 1997; Li et al. 2009; Titcheu Chekam et al.

2017). Experiments using real faults have shown that mutation testing reveals more faults

than the all-uses test criterion et al. (Frankl et al. 1997), and also that it reveals significantly

more faults than the statement, branch and weak mutation (Titcheu Chekam et al. 2017) test

criteria.

Although effective, mutation requires too many mutants making the cost of generating,

analysis and executing them particularly high. Recent studies have shown that only a small

number of mutants is sufficient to represent them (Kintis et al. 2010; Ammann et al. 2014;

Papadakis et al. 2016) and that the majority of the mutants are somehow “irrelevant” to

the underlying faults (faults that testers seek for) (Papadakis et al. 2018b). Along these

lines, Natella et al. (2013) experimented with fault injection and demonstrated that up to

72% of injected faults are non representative. Papadakis et al. (2018c) analysed different

types of mutants, i.e., hard to kill, subsuming, hard to propagate and fault revealing, and

demonstrated that the class of fault revealing mutants is unique and differs from the other

mutant sets. These studies motivated our research by indicating that it is possible to target a

specific (small) set of mutants that maximize testing effectiveness.

Since the early days of mutation testing, researchers realised that the number of mutants

is one of the most important problems of the method. Therefore, several approaches have

been proposed to address this problem. Mutant random sampling was one of the first

attempts (Budd 1980; Acree 1980). Random sampling was evaluated by Wong (1993) who

found that a sampling ratio of 10% results in a test effectiveness loss of approximately 16%

(evaluated on Fortran programs using the Mothra mutation testing system (DeMillo et al.

1988)). More recently, Papadakis and Malevris (2010b), using the Proteum mutation test-

ing tool (Delamaro et al. 2001), reported a fault loss on C operators of approximately 26%,

16%, 13%, 10%, 7% and 6% for sampling ratios of 10%, 20% ..., 60% respectively.
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An alternative approach to reduce the number of mutants is to select them based on their

types, i.e., according to the mutation operators. Mathur (1991) introduced the idea of con-

strained mutation (also called selective mutation), using only two mutation operators. Wong

and Mathur (1995a) experimented with sets of operators and found that two operators alone

have a test effectiveness loss of approximately 5%. Offutt et al. (1993, 1996a) extended this

idea and proposed a set of 5 operators, which had almost no loss on its test effectiveness.

This 5 mutation operator set is considered as the current standard of mutation as it has been

adopted by most of the modern mutation testing tools and used in most of the recent studies

(Papadakis et al. 2018a).

Many additional selective mutation approaches have been proposed. Mresa and Bottaci

(1999) defined a selective mutation procedure focused on reducing the number of equiv-

alent mutants, instead of the number of mutants alone, as done by the studies of Mathur

(1991) and Offutt et al. (1993, 1996a). They report significant reductions on the numbers

of equivalent mutants produced by the selected operators, with marginal effectiveness loss

(evaluated on Fortran with Mothra). Later, Barbosa et al. (2001) defined a selective muta-

tion procedure aimed at reducing the computational cost of mutation testing of C programs.

They found that a set of 10 operators could give almost the same results with the whole set

of C operators supported by Proteum (78 operators). Namin et al. (2008) used regression

analysis techniques and found that a set of 13 mutation operators of Proteum could pro-

vide substantial cost execution savings without any significant effectiveness loss (mutant

reductions of approximately 93% are reported.

More recently, researchers have experimented with mutations involving only mutants

deletion (Untch 2009). Deng et al. (2013) experimented with Java programs and the MuJava

mutation operators (Ma et al. 2006) and reported reductions of 80% on the number of

mutants with marginal effectiveness losses. Delamaro et al. (2014) defined deletion opera-

tors for C and reported that they significantly reduce the number of equivalent mutants, with

again marginal effectiveness losses.

Other attempts have explored the identification of the program locations to be mutated.

The key argument in these research directions is that program location is among the most

important factor that determines the utility of the mutants. Sun et al. (2017) suggested select-

ing mutants that are diverse in terms of static control flow graph paths that cover them.

Gong et al. (2017) used code dominator analysis in order to select mutants that, when they

are covered, maximize the coverage of other mutants. This work applies weak mutation and

attempts to identify dominance relations between the mutants in a static way.

Petrovic and Ivankovic (2018) identified the arid nodes (special AST nodes) as a source

of information related to utility of the mutants. Their work uses dynamic analysis (test

execution) combined with static analysis (based on AST) in order to identify mutants that

are helpful during code reviews. We include such features in our study with the hope that

they can also capture the properties of fault revealing mutants. Nevertheless, still as part of

future work it is interesting to see how our features can fit within the objectives of code

reviews (Petrovic and Ivankovic 2018).

Mirshokraie et al. (2015) used static (complexity) and dynamic (number of executions)

analysis features to select mutants, for JavaScript programs, that reside on code parts that

have low failed error propagation (they are likely to propagate to the program output). Their

results show that more than 93% of the selected mutants are killable, and that more than

75% of the non-trivial mutants resided in the top 30% ranked code parts.

After several years of development of various selective mutation approaches, recent

research has established that literature approaches perform similarly to random mutant sam-

pling. Zhang et al. (2010) compared random mutant selection and selective mutation (using
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C programs and the Proteum mutation operators) and found that there are no significant dif-

ferences between the two approaches. The most recent approach is that of Kurtz et al. (2016)

(using C programs and the Proteum mutation operators), which also reached the same con-

clusion (reporting that mutant reduction approaches, both selective mutation and random

sampling, perform similarly).

From the above discussion it should be clear that despite the plethora of the selective

mutation testing approaches, random sampling remains one of the most effective ones. This

motivated our work, which used machine learning techniques and source code features in

order to effectively tackle the problem. Moreover, as most of the methods use only one

features, the mutant type, which according to our information gain results does not have rel-

atively good prediction power, they should perform poorly. More importantly, our approach

differs from the previous work in the evaluation metrics used. All previous work measured

test effectiveness in terms of artificial faults (i.e., mutant kills or seeded faults found), while

we used real faults. We believe that this is an important difference as our target (dependent

variable) is the actual measurement of interest, i.e., the real fault revelation, and not a proxy,

i.e., the number of mutants killed.

The closest studies to ours are the “predictive mutation”, by Zhang et al. (2016, 2018)

and Mao et al. (2019), and the “fault representativeness” of software fault injection by

Natella et al. (2013). Predictive mutation testing attempts to predict the mutants killed for

a given test suite without any mutant execution. It employs a classification model using

both static and dynamic features (both on test suite and the mutants) and achieves remark-

able results with an overall 10% error on the predicted mutation scores. Predictive mutation

has a similar goal with our killable mutant prediction method. Though, predictive muta-

tion assumes the existence of test suites, while our killable mutant prediction method does

not. Nevertheless, our method targets a different problem, the prediction and prioritization

of the important mutants prior to any test execution. To do so, we use only static fea-

tures (on the code under test), while predictive mutation heavily relies on test code and

dynamic features (Mao et al. 2019), and evaluate our approach using real faults (instead

of mutants).

Natella et al. (2013) proposed removing injected faults to achieve meaningful ‘repre-

sentative’ results and reduce the application cost of fault injection. This was achieved by

employing classification algorithms that use complexity metrics. This approach has a sim-

ilar goal with our fault revealing mutant selection, but in a different context, i.e., it targets

emulating fault behaviour and not fault revelation. Nevertheless, Natella et al. rely on com-

plexity metrics, which in our case do not seem to be adequate (as we show in RQ6). Still it

is interesting to see how our approach performs in the fault injection context.

Another similar line of work is Evolutionary Mutation Testing (EMT) (Delgado-Pérez

and Medina-Bulo 2018). EMT is a technique that attempts to select useful mutants based

dynamic features (test execution traces) and uses them to support test augmentation. EMT

learns the most interesting mutation operators and locations in the code under analysis using

a search algorithm and mutant execution results. Overall, EMT achieve a 45% reduction on

the number of mutants. Although EMT aims at the typical mutant reduction problem (while

we aim at the fault revealing one), it can complement our method. Since EMT performs

mutant selections after the mutant-test executions, FaRM can provide a much better starting

point. Another way to combine the two techniques is to use the search engine of EMT,

together with our features, to refine the mutant rankings.

A different way to reduce the mutants’ number is to rank the live mutants according

to their importance, so that testers can apply customised analysis according to their avail-
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able budget. Along these lines, Schuler and Zeller (2013) used the mutants’ impact to

rank mutants according to their likelihood of being killable. Namin et al. (2015) intro-

duced the MuRanker approach. MuRanker uses three features: the differences that mutants

introduce (a) on the control-flow-graph representation (Hamming distance between the

graphs), (b) on the Jimple representation (Hamming distance between the Jimple codes)

and (c) on the code coverage differences produced by a given set of test cases (Ham-

ming distance between the traces of the programs). Although our mutant prioritization

scheme is similar to these approaches, we target a different problem, the static detection of

valuable mutants. Thus, we do not assume the existence of test suites and mutants execu-

tions. The benefit of not making any such assumptions is that we can reduce the number

of mutants to be analysed by testers, to be generated and executed by mutation testing

tools.

9 Conclusions

The large number of mutants involved in mutation testing has long been identified as a

barrier to the practical application of the method. Unfortunately, the problem of mutant

reduction remains open, despite significant efforts within the community. To tackle this

issue, we introduce a new perspective of the problem: the fault revelation mutant selection.

We claim that valuable mutants are the ones which are most likely to reveal real faults,

and we conjecture that standard machine learning techniques can help in their selection.

In view of this, we have demonstrated that some simple ‘static’ program features capture

the important properties of the fault revealing mutants, resulting in uncovering significantly

more faults (6%-34%) than randomly selected mutants.

Our work forms a first step towards tackling the fault revelation mutant selection with the

use of machine learning. As such, we expect that future research will extend and improve our

results by building more sophisticated techniques, augmenting and optimizing the feature

set, by using different and potentially better classifiers, and by targeting specific fault types.

To support such attempts we make our subjects (programs & tests), feature, kill and fault

revelation matrices publicly available.

Acknowledgments Thierry Titcheu Chekam is supported by the AFR PhD Grant of the National Research

Fund, Luxembourg. Mike Papadakis is funded by the CORE Grant of National Research Fund, Luxembourg,

(C17/IS/11686509/CODEMATES).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

Acree AT (1980) On mutation. phdthesis Georgia Institute of Technology, Atlanta

Ammann P, Offutt J (2008) Introduction to software testing. Cambridge University Press, Cambridge

Ammann P, Delamaro ME, Offutt J (2014) Establishing theoretical minimal sets of mutants. In: Seventh

IEEE international conference on software testing, verification and validation, ICST 2014, Cleveland,

pp 21–30. https://doi.org/10.1109/ICST.2014.13

Barbosa EF, Maldonado JC, Vincenzi AMR (2001) Toward the determination of sufficient mutant operators

for c. Softw Test Verif Reliab 11(2):113–136

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICST.2014.13


Empirical Software Engineering
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