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Abstract

Markov state models represent a popular means to inter-
pret molecular dynamics trajectories in terms of memory-
less transitions between metastable conformational states.
To provide a mechanistic understanding of the consid-
ered biomolecular process, these states should reflect struc-
turally distinct conformations and ensure a timescale sepa-
ration between fast intrastate and slow interstate dynamics.
Adopting the folding of villin headpiece (HP35) as a well-
established model problem, here we discuss the selection of
suitable input coordinates or ‘features’, such as backbone
dihedral angles and interresidue distances. We show that
dihedral angles account accurately for the structure of the
native energy basin of HP35, while the unfolded region of
the free energy landscape and the folding process are best
described by tertiary contacts of the protein. To construct
a contact-based model, we consider various ways to define
and select contact distances, and introduce a low-pass filter-
ing of the feature trajectory as well as a correlation-based
characterization of states. Relying on input data that faith-
fully account for the mechanistic origin of the studied pro-
cess, the states of the resulting Markov model are clearly
discriminated by the features, describe consistently the hi-
erarchical structure of the free energy landscape, and—as a
consequence—correctly reproduce the slow timescales of the
process.

1 Introduction

Classical molecular dynamics (MD) simulations facilitate the
microscopic study of structure, dynamics and function of
biomolecular systems.1 To obtain a concise interpretation
of the ever-growing amount of simulation data, we typically
want to construct a coarse-grained model of the considered
process, such as a Langevin equation2–4 or a Markov state
model (MSM).5–9 In particular, MSMs have become popular
for many practitioners of MD simulations, as they provide a
generally accepted state-of-the-art analysis of the dynamics,
promise to predict long-time dynamics from short trajec-
tories, and are straightforward to build using open-source
packages such as PyEmma10 and MSMBuilder.11 The usual
workflow to construct an MSM consists of (i) selection of
suitable input coordinates, also called ‘features’, (ii) dimen-
sionality reduction from the high-dimensional feature space
to some low-dimensional space of collective variables, (iii)
geometrical clustering of these low-dimensional data into mi-
crostates, (iv) dynamical clustering of these microstates into
metastable conformational states, and (v) estimation of the
transition matrix associated with these states. In principle,
all these steps can be optimized by employing a variational

principle that states that the MSM producing the slowest
timescales represents the best model.12,13 While this is con-
ceptually similar to the well-known variational principle of
quantum mechanics where the exact ground-state wave func-
tion produces the lowest energy, in practice the analogy is
only in part applicable. In particular, it rests on the assump-
tion that the considered process is sufficiently sampled (to
ensure that the MD data are statistically meaningful) and
is appropriately described by the chosen input coordinates.

Since ‘you get what you put in’, it is hard to overstate the
importance of identifying suitable and relevant input coordi-
nates for the analysis.14–18 Due to inevitable mixing of over-
all and internal motion, Cartesian coordinates are in general
not suited for dimensionality reduction.15,19–21 Internal co-
ordinates such as dihedral angles and interatomic distances,
on the other hand, are by definition not plagued by this
problem and also represent a natural choice, because the
molecular force field is given in terms of internal coordinates.
While (φ, ψ) backbone dihedral angles have been shown to
accurately describe the conformation of secondary struc-
tures,22–25 interresidue distances appear to be well suited to
also characterize the overall structure of a protein.26–28 A
drawback of using interresidue distances is that their num-
ber scales quadratically with the number of residues. To
avoid this overrepresentation, it has been suggested to re-
strict the analysis on distances reflecting interresidue con-
tacts such as hydrogen bonds, salt bridges, and hydrophobic
contacts.29–33 In this way, we focus on the very interactions
that cause the studied conformational transition, and con-
sider the long-distance motions as a consequence of these
contact changes.

Irrespective of the type of features, it turns out to be im-
portant to first exclude irrelevant motions from the anal-
ysis. This may include coordinates that do not change
during the functional motion (e.g., stable contacts), coor-
dinates that change randomly (e.g., wildly dangling termi-
nal residues that exhibit large amplitude motion), and co-
ordinates describing slow but non-functional motions (e.g.,
transitions between right- and left-handed helices, where
the latter are hardly populated). Apart from merely cor-
rupting the signal-to-noise ratio, such motion may be de-
ceptive for the subsequent dimensionality reduction. For
example, principal component analysis maximizes the vari-
ance of the first principal components,34 and is therefore
deceived by irrelevant large-amplitude motion. Time-lagged
independent component analysis35 (and other timescale op-
timizing approaches12,13) aims at maximizing the timescales
of the first components and is therefore deceived by func-
tionally irrelevant slow motion (such as left to right-handed
transitions).14 To discriminate collective motions underlying
functional dynamics from uncorrelated motion, we recently
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Figure 1: The folding of villin headpiece (HP35). (a) Molec-
ular structure, consisting of three α-helices (residues 3–10,
14–19 and 22–32) that are connected by two loops. (b) Con-
tact map showing the 42 native contacts of HP35. (c) Time
evolution of the RMSD (with respect to the Cα-atoms of
residues 3 to 33), compared to 1−Q (with Q being the frac-
tion of native contacts) and Ψ representing the sum over the
backbone dihedral angles ψi of the three α-helices. The right
side shows the corresponding free energy curves (in units of
kBT ) along these coordinates.

proposed a correlation analysis termed MoSAIC,36 which
block-diagonalizes the correlation matrix of the considered
coordinates.

In this work we present a detailed study on the virtues
and shortcomings of using contact distances or backbone di-
hedral angles, for short ‘contacts’ and ‘dihedrals’. As both
sets of coordinates appear to describe the protein structure
reasonably well, and since metastable molecular structures
are thought to represent a physical property of the system,
one would assume that this choice of coordinates should not
significantly affect the outcome of Markov modeling. On the
other hand, because dihedrals and contacts reflect different
aspects of the structural dynamics and due to limited sam-
pling, they may result in different collective variables and
metastable states, leading to MSMs with different timescales
and pathways.

Since such a study depends significantly on the consid-
ered system and the specific MD data, here we focus on a
well-established model problem, that is, the folding of villin
headpiece (HP35),37–54 see Fig. 1a. In particular, we em-
ploy a 300 µs-long MD trajectory of HP35 produced by Pi-
ana et al.,47 which is publicly available from D. E. Shaw
Research. Showing the time evolution of the root-mean-
square deviation (RMSD) of the MD trajectory from the
crystal structure, Fig. 1c reveals that the system undergoes
reversible folding and unfolding on a microsecond timescale,
which compares well to experimental data.37–41 A compar-
ison to the fraction of native contacts Q as well as to the

sum Ψ over the backbone dihedral angles ψi of the three
α-helices reveals that both contacts and dihedrals appear to
monitor the overall structural evolution of HP35.

The paper starts with a detailed discussion of the choice
of suitable features for the folding of HP35. In particular,
we consider various ways to define and select contact dis-
tances, and introduce a correlation-based characterization
of states in terms of contact clusters. Following the de-
scription of our workflow to construct the MSM, we discuss
the structural and dynamical properties of the metastable
conformational states obtained for contacts and dihedrals,
and illustrate the insights on the folding process gained di-
rectly from the features and from the MSM. The simulation
data and all intermediate results, including scripts and de-
tailed descriptions can be downloaded from our Github page
https://github.com/moldyn/HP35.

2 Feature selection

All analyses done in this work are based on the 300 µs-long
MD simulation (1.5 × 106 data points) of the fast folding
Lys24Nle/Lys29Nle mutant of HP35 at T = 360 K by Piana
et al.,47 using the Amber ff99SB*-ILDN force-field55–57 and
the TIP3P water model.58

2.1 Definition of contacts
The definition of interresidue protein contacts includes

• the conditions when a contact is established, e.g., via
a distance cutoff,

• the choice of the molecular structures from which
contacts are to be identified, e.g., a single crystal-
structure or an ensemble of MD structures, and

• the definition of the distance dij between two
residues, e.g., the distance between the Cα-atoms or
between the closest heavy atoms of each residue.

Extending previous work,31 here we assume a contact to
be formed if (1) the distance dij between the closest non-
hydrogen atoms of residues i and j is shorter than 4.5Å, (2)
the residues are more than three residues apart, and (3) the
contact is populated more than 30 % of the simulation time
(Pij ≥ 0.3), which ensures that we focus on native contacts.
Applied to the MD trajectory of HP35 by Piana et al.,47 this
results in total in 42 native contacts, which include 13 helix-
stabilizing (n, n+ 4) contacts, 20 hydrophobic contacts, and
9 hydrogen bonds, see the contact map shown in Fig. 1b.59

Let us discuss the justifications and implications of the
above choices. To begin with, the distance cutoff dc = 4.5Å
rests on studies of the distance distribution P (dij) of vari-
ous proteins, whose prominent peak at short dij clearly in-
dicates a contact.60,61 In our experience, this definition cov-
ers the vast majority of polar and nonpolar contacts,31,32

and also covers the commonly applied criteria for hydrogen
bonds.29,30 Restricting ourselves to residues that are more
than three residues apart, we exclude—apart from irrelevant
contacts with next and second next residues—(n, n+3) con-
tacts that occur, e.g., in 310-helices. While these contacts
certainly exist in the unfolded ensemble of HP35, they are
very short-lived and therefore of little interest.

Discussing protein folding, it is advantageous to focus on
native contacts, because they have been shown to largely de-
termine the folding pathways.62–64 Moreover, it is well estab-
lished that the fraction of native contacts Q is highly corre-
lated with the RMSD of the folding trajectory (Fig. 1c) and
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therefore represents a well-defined one-dimensional reaction
coordinate.64,65 To this end, we request that the contacts oc-
cur at least Pc = 30 % of the simulation time, which excludes
nonnative contacts that are typically infrequent and short-
lived. For somewhat smaller population cutoffs we obtain
a higher number of still native contacts (e.g., 56 instead of
42 for Pc = 10 %), while an increasing number of non-native
contacts arise only for significantly lower cutoffs (e.g., in to-
tal 122 contacts for Pc = 1 %). While the threshold Pc = 0.3
proves suitable for the folding of HP35, in general it needs
to be adapted to suit the problem under consideration. We
note that the resulting contacts obtained from the MD tra-
jectory are a different choice of native contacts than the one
determined from the crystal structure39 (PDB 2f4k). The
latter exhibits contacts of the N-terminus due to the packing
in the crystal, which do not occur in solution (and therefore
also not in the MD trajectory). Moreover, these spurious
contacts impede the formation of true native contacts such
as Asp3-Thr13 and Asp5-Arg14, which turn out important
to discriminate various co-existing folded states. See Ta-
ble S1 for a list of all native contacts found in the crystal
structure and the MD simulation.

Apart from the choice of contacts, the appropriate cal-
culation of the contact distance dij along the trajectory
is crucial for the subsequent modeling. While this is
straightforward if the contacted atoms roughly remain the
same throughout the simulation, it becomes more involved
when we consider multicenter contacts between hydrophobic
residues involving many and rapidly changing atom pairs.
Employing Cα-distances, this problem may be circumvented,
however, at the cost of neglecting most microscopic details of
the making and breaking of contacts, which typically leads
to structurally not well-defined conformational states.31 Al-
ternatively, we may consider the distance dij between the
closest non-hydrogen atoms of residues i and j, defined by31

dij(t) = min
n,m
|ri,n(t)− rj,m(t)|, (1)

where the indices n and m run over all heavy atoms of the
selected residue pair (i, j). Listing population probabilities
Pij and life times of all native contacts, Table S1 reveals
that this definition of minimum distances leads to somewhat
shorter life times but significantly higher populations than
those found when only a single atom pair for each contact is
used.

When we consider hydrophobic residues with extended
and flexible side chains (e.g., Phe, Lys, Met and Nle), how-
ever, we find that a large number (say, tens) of connecting
atom pairs may occur. In particular, this is the case for pro-
tein folding, where during the formation of the hydrophobic
core many unusual atom combinations with distances below
the cutoff dc may exist for some short time. Hence, by using
the definition in Eq. (1) along the trajectory, we instanta-
neously choose the atom pair with the minimal distance,
regardless how exotic and short-lived this contact might be.
Resulting in frequent hopping between multiple atom pairs,
this renders the contact definition somewhat ill-defined, be-
cause significantly different side-chain conformations may re-
sult in a similar contact distance. Hence, when calculating
shortest distances between residues, we propose to exclude
atom pairs (n,m) that do not meet the population cutoff
Pnm ≥ 0.3. This leads to a new definition of minimum dis-
tances

dij(t) = min
n,m

Pnm≥0.3

|ri,n(t)− rj,m(t)|, (2)

which will be used throughout this work. As expected, the
new criterion significantly reduces the number of considered
atom pairs, that is, typically only 2-6 (out of tens) survive.
Moreover, the population probability Pij of most contacts
is reduced (Table S1), such that 8 (out of 50) of the weaker
contacts fall below the overall population cutoff Pij ≥ 0.3,
and are therefore not considered as contacts anymore. (Since
redundant contacts between neighboring residues exist, no
information is lost.) On the other hand, we obtain con-
siderably longer life times of the contacts, which leads to
conformational states of higher metastability.

Since Eq. (2) requires the calculation of all atom pair
distances of all possible contacts, the approach is computa-
tionally expensive and takes a few CPU hours on a stan-
dard desktop computer already for a small protein such as
HP35. It is important to note, however, that the computa-
tion of contact distances generally requires only to consider
residues that are nearby to a given residue. Implementing a
local search routine, the computational effort will therefore
scale approximately linear with the number of residues N ,
rendering the computational effort to a few CPU days for
proteins with N≈103 residues.

2.2 Correlation analysis of contacts
To characterize the above defined contacts and detect their
interdependencies, it is instructive to calculate the linear
correlation matrix

ρij,kl(t) =
〈δdijδdkl〉
σijσkl

, (3)

where δdij = dij −〈dij〉 and σij is the standard deviation of
dij . (For scalar variables, nonlinear correlation measures
typically do not provide essential new information.36,66)
Since the ordering of the contacts is per se arbitrary, we
block-diagonalize ρ in order to associate the resulting blocks
or clusters with functional motions. Following Diez et al.,36

this is achieved via a community detection technique called
Leiden clustering,67 using the constant Potts model as ob-
jective function and a Leiden resolution parameter γ = 0.78.
All results reported below were produced using the Python
package MoSAIC.36

Figure 2a shows the modulus of the resulting block-
diagonal correlation matrix {|ρij,kl|}, which reveals seven
main clusters. Within such a cluster, the contacts are highly
correlated (i.e., on average |ρij,kl| ≥ γ), while the corre-
lation between different clusters is comparatively low (i.e.,
|ρij,kl| < γ). As illustrated in Fig. S1 for the first few folding
events, high intracluster correlation means that the contacts
of a cluster typically change together, i.e., in a cooperative
manner. Moreover, there are contacts (or mini-clusters with
< 3 contacts) that are not a member of a main cluster but
still exhibit moderate correlation with some of the main clus-
ters; they are collected in cluster 8.

To illustrate the contacts contained in the main clusters,
Fig. 2b displays the corresponding contact distances inserted
into the structure of HP35. We notice that the contact clus-
ters follow nicely the protein backbone from the N- to the
C-terminus, such that each cluster features contacts that
are located in the same region. In this way, the clusters
can be employed to characterize the structure of the vari-
ous conformational states of the protein, see Fig. 5 below.
On the other hand, cluster 8 is found to mostly represent
helix-stabilizing contacts along the protein backbone. Inter-
estingly, we find that lifetimes of these helical contacts are
typically shorter (∼ 100 ns) than the contacts of the main
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Figure 2: (a) Block-diagonalized correlation matrix of con-
tact distances, revealing seven main clusters and various
mini-clusters comprised in cluster 8. Contacts of main clus-
ters are 1: d3,14, d3,13, d6,14, d5,14; 2: d7,12, d7,13, d6,12, d7,11,
d6,11, d6,17; 3: d12,17, d12,16, d12,20, d13,17; 4: d18,25, d17,25,
d20,25; 5: d24,28, d20,28, d25,29; 6: d29,35, d29,34, d30,35, d29,33;
7: d10,34, d9,32, d10,29; (b) Structural illustration of the in-
terresidue contacts of clusters. (c) Order of clusters formed
during a folding event.

clusters (∼ 1 µs), see Tab. S1. As discussed by Buchenberg et
al.,68 this timescale separation indicates hierarchical dynam-
ics, where the fast opening and closing of helix-stabilizing
contacts is a prerequisite of overall conformational change
to occur.

Since we consider well-populated native contacts and be-
cause we study protein folding (which involves the making
and breaking of virtually all contacts), there are no coordi-
nates that correlate only weakly with few other coordinates.
(This would be the case, e.g., for overall stable contacts and
contacts that form and break frequently, which are excluded
here.) This is in contrast to the study of functional mo-
tion in a folded protein, where 60–90 % of all contacts were
found to be only weakly correlated and could be therefore
discarded in the further analysis.69,70

2.3 Selection of dihedral angles
Various authors have employed (φi, ψi) backbone dihedral
angles of residues i to describe the folding of HP35.48–53 The
number of dihedral angles scales linearly with the number
of residues and are valuable conformational descriptors that
directly indicate whether the protein forms helices, sheets
or loops. While dihedral angles are readily obtained from

Figure 3: Correlation analysis of (φ, ψ) backbone dihedral
angles. Shown are (a) the mean correlation of all dihedrals,
(b) their correlation with the RMSD shown in Fig. 1, and
(c) the decay time of their autocorrelation function. The
terminal angles φ1 and ψ35 are not properly defined and
therefore not shown.

the MD trajectory and do not require a particular definition
(as contact distances do), their periodic nature needs to be
taken into account in a statistical analysis.71–73 For exam-
ple, we may convert all angles ϑ to sine/cosine-transformed
coordinates (x1 =cosϑ, x2 =sinϑ) in order to obtain a linear
coordinate space with the usual Euclidean distance as met-
ric,20,24,71 and perform the statistical analysis in this space.
To avoid the inherent doubling of variables (ϑ→ x1, x2) and
the nonlinear nature of the transformation, we may alter-
natively exploit the well-known Ramachandran plot which
demonstrates that protein backbone dihedral angles do not
cover the full angular space (−π, π] but are limited to specific
regions due to steric hindrance. Hence, natural cuts between
sampled regions can be defined, and by shifting the original
data to align the periodic border to this ‘maximal gap’ in
sampling, statistical analyses can be directly performed on
the dihedral angles in a standard manner.72 Combined with
a principal component analyses, this approach was termed
dPCA+.

When we calculate the correlation matrix of the maximal
gap-shifted (φ, ψ) dihedral angles, the checkerboard pattern
of the matrix indicates that the ψ angles of HP35 are typ-
ically much more correlated than the φ angles (Fig. S2).
Showing the mean correlation (i.e., the average correlation
of an angle with all other angles) of all dihedral angles,
Fig. 3a confirms this finding. It also shows that the rapidly
fluctuating dihedral angles of the first and last two residue
hardly correlate with any other angle and therefore should
be excluded from the further analysis. (If such uncorrelated
motions show transitions between two states, we will get a
trivial doubling of states.) Unlike the correlation analysis of
contacts, a block-diagonalization of the correlation matrix
via Leiden clustering is less instructive (Fig. S2), because
backbone dihedral angles naturally proceed with the protein
sequence.

Considering the correlation of the dihedral angles with the
RMSD of the folding trajectory, Fig. 3b shows that the ψ an-
gles correlate strongly with the folding dynamics of HP35.
The finding is in line with the observation that the time
evolution of the RMSD and of the sum of the ψ angles are
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highly correlated (Fig. 1c). This is expected, because ψ an-
gles decrease significantly in the Ramachandran plot when
the conformation changes from extended to helical struc-
tures, and therefore account directly for the helicity of the
system. The importance of the ψ angles is also apparent
from the long decay times of their autocorrelation functions
shown in Fig. 3c. This suggests that, except for the terminal
residues 1–2 and 34–35, we want to include all ψ-angles in
the further analysis.

While most φ angles change only little when the residue
changes from extended to helical structures, there are promi-
nent exceptions to residues in the termini and the two loops.
Apart from the glycines Gly11 and Gly33, in particular the
φ angle of Asp3 is found to coexist in left- and right-handed
conformations, which leads to a splitting of the states in
the native energy basin,31,49,74 see below. These residues
reveal also slowly decaying autocorrelation functions, while
the majority of the φ motions is rather short-lived. Since
the helical φ-angles contribute only minor to the first PCs,
we decided to include all of them (except for the terminal
residues) in the further analysis. In total, this results in 62
dihedral angles as features.

3 Construction of metastable states
To identify metastable conformational states from the above
defined feature trajectories, the following protocol is used.
First we employ a Gaussian low-pass filter that eliminates
high-frequent fluctuation of the feature trajectory. We
then use principal component analysis34 (PCA) in order
to convert the high-dimensional feature variables to low-
dimensional (. 5) collective variables.75–77 The low dimen-
sionality facilitates robust density-based clustering,74 which
is used to generate (typically hundreds of) microstates. Us-
ing the most probable path algorithm78 (MPP) to lump
the microstates into a few macrostates, we obtain the de-
sired set of metastable conformational states. All analyses
shown in this paper were performed using our open-source
Python package msmhelper, which can be downloaded from
https://github.com/moldyn. To facilitate the reproduction
and analysis of our results, we furthermore provide trajecto-
ries of all intermediate steps. Using an Intel Core i9-10900
processor, the complete above described MSM workflow (fil-
tering, PCA, clustering) applied to 1.5 × 106 data points
required a wall clock time of about 16 min. (Employing two
NVIDIA GeForce GTX 680, robust density-based cluster-
ing74 took 7 min of this time; without GPU acceleration it
takes about 3.5 h.) Moreover, we spent about 2 h on contact
definition, 3 min on angle definition, 30 min for the MSM
analyses shown in Fig. 7, and in total 9.5 h for the XGBoost
analyses shown in Fig. 6.

3.1 Data filtering
While the typical lifetime of the selected contact and dihe-
dral variables of HP35 is between 0.1 and 1 µs (Tab. S1 and
Fig. 3c), the variables are found to fluctuate on a picosec-
ond timescale, reflecting fast moving atoms in the vicinity.
Since we eventually want to define metastable conforma-
tional states from the variables, we face the problem that the
resulting state trajectory may also fluctuate rapidly between
various states when the contacts are close to the distance
cutoff. This is in contrast to the fact that state changes are
associated with rare transitions over free energy barriers (cf.
Fig. 1c), i.e., they are expected to occur infrequently and
without spurious back-transitions. The problem is caused

by the projection of the high-dimensional protein dynamics
onto low-dimensional variables (i.e., the contact distances or
dihedral angles). This may lead to misclassification of the
data points in the transition regions,49 which are notoriously
undersampled in unbiased MD simulations.

As a simple but effective remedy, it has been suggested
that a transition from one state to another must reach the
core region of the other state; otherwise, it is not counted
as a transition.5,79,80 Alternatively, we may request that the
trajectory spends a minimum time in the new state for the
transition to be counted.48,49 While this ‘dynamic coring’ is
capable of correcting spurious transitions, it cannot correct a
wrong state assignment caused by them. This means, for ex-
ample, that if two states overlap due to suboptimally chosen
collective variables and can therefore no longer be discrimi-
nated, the correct state assignment cannot be reconstructed
from coring. The same holds for alternative approaches of
dynamic correction that are subsequent to clustering.5,79,80

As a new approach, we propose to perform the dynamic
correction as the first step in the workflow. Here we use
a Gaussian low-pass filter to smoothen the high-frequency
fluctuations of the feature variables d(t), i.e.,

d(t)→
∑

j

g(t, tj)d(tj), (4)

g(t, tj) =
1√

2πσ2
exp

[−(tj − t)2

2σ2

]
. (5)

Choosing σ = 2 ns, the Gaussian filtering suppresses all sub-
ns fluctuations and makes a subsequent coring of the result-
ing conformational states obsolete. We will discuss the ef-
fects of the filtering ansatz in comparison to dynamic coring
at the end of Sec. 4.1.

3.2 Dimensionality reduction
PCA represents a linear transformation that diagonalizes the
correlation matrix and thus removes the instantaneous linear
correlations among the variables. Ordering the eigenvalues
of the resulting eigenvectors decreasingly, the first principal
components (PCs, i.e., the projection of the input coordi-
nates on the eigenvectors) account for the directions of the
largest correlation of the data set.34 While PCA becomes ex-
act if sufficiently many PCs are included, we aim to obtain
a low-dimensional representation by truncating the number
of PCs according to the following criteria: Non-quadratic
appearance of the free energy curves along the PCs, decay
times of their autocorrelation function, and explained per-
centage of the total correlation.22

Using contact distances, we find that the first 5 PCs ex-
hibit a multimodal structure of their free energy curves, re-
veal the slowest timescales (∼ 0.1–2 µs), and explain ∼ 80 %
of the total correlation (Fig. S3). The first PC mostly reflects
the fraction of native contacts Q (Fig. 1c), which represents
a well-established reaction coordinate.64,65 The higher PCs
account for linear combinations of contact changes in vari-
ous MoSAIC clusters (Fig. 2). Considering dihedral angles,
only the first 4 PCs exhibit nontrivial free energy curves.
They account for slowest timescales (∼ 0.1–2 µs), and ex-
plain ∼ 50 % of the total correlation (Fig. S3). The first
PC represents the sum Ψ of all ψ angles (Fig. 1c), which
describes the overall helicity of the protein. The higher PCs
mainly account for dihedral angle changes of helix 1 and he-
lix 3.
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3.3 Clustering
In a first step, we use robust density-based clustering,49,74

which computes a local free energy estimate for every frame
of the trajectory by counting all other structures inside a hy-
persphere of fixed radius R. When we then reorder all struc-
tures from low to high free energy, the minima of the free
energy landscape can be identified. By iteratively increasing
an energy threshold, all structures with a free energy below
that threshold that are closer than a certain lumping radius
rl will be assigned to the same cluster, until all clusters meet
at their energy barriers. In this way, all data points are as-
signed to a cluster as one branch of the iteratively created
tree. Considering contact distances, we used a hypersphere
R = rl ≈ 0.124 equaling the lumping radius. For dihedral
angles, we choose R = rl ≈ 0.072 rad. Figure S4a shows the
resulting total number of microstates obtained as a function
of the minimal population Pmin a state must contain. Here
we chose Pmin = 0.01 % =̂ 153 frames, resulting in 522 and
330 microstates for contact distances and dihedral angles,
respectively.

In a second step, we adopt the MPP algorithm78 to con-
struct a small number of macrostates. Starting with the
above defined microstates, MPP first calculates the transi-
tion matrix of these states, using a lag time τMPP = 10 ns.
(The choice of τMPP is explained in the discussion of Fig. 7a
below.) If the self-transition probability of a given state is
lower than a certain metastability criterion Qmin ∈ (0, 1],
the state will be lumped with the state to which the transi-
tion probability is the highest. This procedure is reiterated,
until there are no more transitions for a given Qmin. Re-
peating the procedure for increasing Qmin, we construct a
dendrogram that shows how the various metastable states
merge into energy basins, thus illustrating the topology and
the hierarchical structure of the free energy landscape. To
facilitate the handling of many states, we use an automatic
branch detection scheme.81

Figure 4 shows the resulting dendrograms obtained for (a)
contacts and (b) dihedral angles. For Qmin & 0.9, we obtain
only two macrostates, as all microstates are assigned either
to the native or the unfolded energy basin of HP35. Coloring
the states according to their mean number of native contacts,
the native states are drawn in purple and the unfolded in
yellow to orange. Although the unfolded basin clearly con-
tains more microstates, the native basin is higher populated
(≈ 68 %). By decreasing the requested metastability Qmin,
we in effect decrease the requested minimum barrier height
between separated states, such that the two main basins split
up in an increasing number of metastable states. Requesting
that a metastable state should have at least Qmin = 0.5 and
a minimum population of 0.5 % for contacts and 0.1 % for
dihedrals, we obtain 12 metastable states for both contacts
and dihedral angles.82 While overall the two dendrograms
look similar, we find that dihedrals appear to yield a more
structured native basin, while contacts seem to resolve the
unfolded basin better. In particular, contacts reveal that
the unfolded basin splits up in various well-characterized
metastable states, demonstrating that the unfolded basin
exhibits nontrivial dynamical structure. Overall, we wish to
stress that the MPP dendrogram color-coded with reaction
coordinate Q shows clearly whether only structurally sim-
ilar states are merged, thus providing an insightful test of
the quality of the state partitioning.

Figure 4: MPP dendrogram illustrating the clustering of
microstates into metastable states upon increasing the re-
quested minimum metastability criterion Qmin of a state.
Results are shown for (a) contacts and (b) dihedral angles.
The states are colored according to their mean number of
native contacts 〈Q〉state from yellow (unfolded) via orange
to native (purple). Black horizontal bars at the bottom in-
dicate which microstates are contained in a metastable state.

3.4 Structural characterization of states
To obtain a useful state model, the conformational states
identified above should be structurally well-defined (to rep-
resent distinct conformational ensembles) as well as long-
lived or metastable (to give a good MSM). As a structural
characterization, Fig. 5 shows the distribution of contact
distances for each state, as obtained for (a) contacts and (c)
dihedral angles. Similarly, Fig. S4b shows the corresponding
dihedral angle distributions for the two cases. Since contact
distances exhibit a bimodal distribution (reflecting formed
and broken contacts) such that mean and variance do not
well describe the data, we use a box-plot representation with
quartiles Qi comprising the first i · 25 % of the data. The
states are ordered by decreasing fraction of native contacts,
such that state 1 is the native state (all contact distances are
shorter than dc = 4.5Å) and state 12 is the completely un-
folded state with a broad distribution of large distances. The
contacts are ordered according to the seven main MoSAIC
clusters defined in Fig. 2, which follow the protein backbone
from the N- to the C-terminus.

Interestingly, we find that the MoSAIC clusters provide
a concise characterization of the structure of the metastable
states. The first three states are structurally well-defined
native-like states, which combine 62 % and 64 % of the to-
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Figure 5: Structural characterization of the twelve metastable states of HP35, obtained for (a) contacts and (c) dihedral
angles. The states are ordered by decreasing fraction of native contacts Q, the contacts are ordered according to the seven
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Sankey diagram depicting the relation between the two state definitions. The color code (see Fig. 4) reflects the fraction of
native contacts Q.

tal population for contacts and dihedrals, respectively. As
discussed below, these states differ in details of helix 1. Ac-
cording to the MPP dendrogram (Fig. 4), states 4 and 5 (for
contacts) and states 4 to 6 (for dihedrals) also belong to the
native energy basin. Compared to state 1, they are char-
acterized by broken contacts on the C-terminal side. The
unfolded basin mainly consist of states 9 to 12, which show
different degrees of disorder. For contacts, hardly any con-
tacts exist in state 12, while states 9 and 10 at least exhibit
formed contacts in clusters 4 and 5, and (for state 9) in clus-
ter 6. For dihedrals, this splitting of the unfolded states in
different structures is less obvious. Finally, there are several
lowly populated (. 1 %) intermediate states to be discussed
below.

The state partitions obtained for contacts and dihedrals
can be directly compared in a Sankey plot (Fig. 5b). We
find a simple correspondence between the main three native
states, as well as between the main two or three unfolded
states. However, there is no such clear relation for the lowly
populated in-between states, which are assigned differently
for contacts and dihedrals. To summarize, by focusing on
the (clustered) features that describe the considered process,
the contact representation provides a concise but sufficient
structural characterization of the metastable states.

3.5 Essential coordinates of folding
As a further state characterization, we now consider the
essential coordinates of the system, which are defined as
the most important features to discriminate the metastable
states.83 To this end, we adopt the decision tree-based pro-
gram XGBoost,84 which employs a set of MD coordinates
and a set of metastable states, and trains a model to assign
MD structures to the state they most probably belong to.
In a second step, this model is used to assess how specific
coordinates contribute to the identification of a metastable
state. That is, we define as accuracy the success rate of as-
signing MD structures to the correct state, and monitor the
evolution of this score, when we iteratively remove features
from the training set. By discarding the least important
coordinates first, we readily filter out all nonessential coor-

dinates (that do not change the accuracy of the model when
discarded) and thus obtain the desired essential coordinates.

Displaying the accuracy of the assignment of all twelve
metastable states as a function of the remaining features
included in the model, Fig. 6 reveals that while only 6 con-
tacts (out of 42) are necessary to discriminate all metastable
states with an accuracy of at least 95 %, nearly 20 dihedrals
(out of 62) are required for the same level of accuracy. Some-
what surprisingly, the most important contacts are between
residue pairs (3, 13), (6, 17) and (5, 9) involving helix 1, be-
cause they define the three highly populated states of the
native basin. The main unfolded states are characterized by
tertiary contact (20, 28), which holds helix 2 and helix 3 to-
gether. The lowly-populated intermediate states moreover
require mainly contacts (6, 10) and (9, 32) for their identi-
fication. The situation is somewhat different for dihedral
angles, where the most important coordinate is φ3, which is
sufficient to discriminate the three main native states (see
Fig. S4c). With the exception of the second most unfolded
state 11 whose definition mainly requires ψ12, the discrimi-
nation of intermediate and unfolded states requires multiple
dihedral angles located in all three helices. Hence, we have
learned that the substates of the native basin are best de-
scribed by dihedral angles; in fact a single angle, φ3, suffices
for HP35. On the other hand, the overall folding of the
protein and the substates of the unfolded basin are best de-
scribed by tertiary contacts connecting the helices.

4 Construction of MSMs

Employing the projection method of Hummer and Szabo,85

we estimate the transition matrix of the metastable states
for both contacts and dihedrals. We discuss the dynami-
cal properties and the Markovianity of the resulting models,
consider the resulting folding times, and compare to previ-
ously published MSMs based on the same trajectory.
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tree-based machine learning,83 obtained for (a) contacts and
(b) dihedral angles. Employing XGBoost,84 we used a learn-
ing rate η = 0.7, a tree depth of 8, and 50 training rounds
in every step. (Left) Accuracy loss of the assignment of
all twelve metastable states (as well as their population-
weighted mean labeled as “all”) when we discard in every
step the least important feature. (Right) Structural illustra-
tion of the most important essential coordinates.

4.1 Implied timescales and Markovianity
To construct a MSM from the metastable states obtained
above, we calculate the transition matrix Tij , describing the
probability of a transition between states i and j during some
chosen lag time τlag. By diagonalizing the transition ma-
trix, we obtain its eigenvalues λn and the implied timescales
tn = −τlag/ lnλn. For Markovian dynamics these timescales
should be constant [cf. Eq. (6)]; since that is usually not the
case for short lag times, constancy of implied timescales can
be used as a criterion to choose a suitable τlag.7 Figure 7a
shows the resulting implied timescales t1–t3 reflecting the
three slowest processes. We first consider the timescales of
the microstates, which are generally found to level off for lag
times τlag & 10 ns for contacts and dihedrals. As anticipated
above, this value of τlag is used for MPP clustering to define
macrostates.

Considering the macrostates, various methods exist
to calculate the corresponding transition matrix. Most
straightforwardly, it can be directly computed from the as-
sociated count matrix (as done for the microstates), assum-
ing that the macrostates are locally equilibrated. However,
this assumption rests on a timescale separation between in-
trastate and interstate dynamics, which is often only ap-
proximately true for macrostates constructed from MPP. As
a remedy, we may calculate the macrostate transition matrix
by invoking an approach to optimally project the microstate
dynamics onto the macrostate dynamics,86–89 as achieved by
the method of Hummer and Szabo.85 Since the direct cal-
culation yields on average 40 % shorter timescales while the
latter virtually reproduces the timescales of the microstates
(Fig. 7a), we generally employ the projection method in the
following. Similarly, as found for the microstates, the im-
plied timescales of the macrostates level off for lag times
τlag & 10 ns. Hence, if not noted otherwise, all further dis-
cussion will be based on this value. For further reference,

Tab. S2 lists the interstate transition times and state life-
times associated with the resulting transition matrices for
contacts and dihedrals.

The resulting macrostate timescales obtained for contacts
and dihedrals are compared in Fig. 7a. In the case of con-
tacts, the slowest timescale of about 1.2 µs is clearly sepa-
rated from the next ones (∼ 0.10 and 0.08 µs). Inspecting
the eigenvectors of the transition matrix (Fig. S5a), we find
that the slowest process corresponds to the transition from
unfolded states (12, 10 and 9) to folded states (1, 2 and 3),
while the second slowest process describes transitions from
the completely unfolded state 12 to partially unfolded states
6–10. For dihedrals, the slowest timescale is significantly
lower (∼ 0.7 µs), followed by two clearly separated timescales
(∼ 0.2 and 0.1 µs). The slowest process corresponds again
to the transition from unfolded (12, 11) to folded states (1,
2 and 3), while the second eigenvector mostly accounts for
transitions from state 1 to state 2 and 3 in the native basin.
The significantly longer first implied timescale found for con-
tacts (1.2 µs) compared to dihedrals (0.7 µs) is a consequence
of the more apparent timescale separation exhibited by the
corresponding first PCs (Fig. S3).

As a standard test of the quality of the resulting MSM, we
next check the validity of the Chapman-Kolmogorov equa-
tion7

T (nτlag) = T (τlag)n (6)

with n = 1, 2, 3, . . .. Assuming that we start at time t = 0
in a specific macrostate, we can compare the MSM predic-
tion of the decay of this state to the corresponding results
obtained from the MD data. As shown in Fig. S5b for both
contacts and dihedrals, we obtain excellent agreement be-
tween MD and MSM results for most states already for rel-
atively short lag times τlag & 10 ns. For contacts, exceptions
include the lowly (0.9 %) populated unfolded state 11, and—
to a much minor extent—state 2 of the native basin, whose
evolution around 100 ns is only qualitatively reproduced. For
dihedrals, all states of the native basin pass the Chapman-
Kolmogorov test perfectly, while the main unfolded states
11 and 12 perform only qualitatively.

4.2 Folding times
To see how the implied timescales translate to measurable
observables of the folding process, we next consider the dis-
tribution of the folding time tfold, defined as the waiting
time for the transition of the completely unfolded state 12
to the native state 1. To this end, we employed 109 steps of
a Markov chain Monte Carlo propagation, where a trajec-
tory is sampled from the given transition matrix by drawing
random numbers which determine the next step. Shown in
Fig. 7b as a function of the lag time τlag, the resulting fold-
ing time is found to increase only little with τlag. While the
median of the MSM prediction of tfold somewhat underesti-
mates the MD result, overall the MSM reproduces the rather
broad MD folding-time distributions for both contacts and
dihedrals quite well.

Showing only about thirty folding events, the finite sam-
pling of the MD data also limits the prediction quality of the
MSM. This is demonstrated in Fig. 7c which compares the
histogram of folding times obtained from the MD data to
distributions obtained from MSMs using various lag times.
As the number of MD events is clearly too small to give a
smooth distribution, it is hard to assess the true deviation
of the MSM from (non-existent) statistically converged MD
data.
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Figure 7: Timescales and folding dynamics exhibited by MSMs constructed from contacts (top) and dihedrals (bottom). (a)
First three implied timescales tn shown as a function of the lag time τlag, obtained for the microstates (full lines) and for
the macrostates, either assuming local equilibration (dashed lines) or using the projection method of Hummer and Szabo85
(thin lines). Gray areas indicate that tn ≤ τlag. (b) Box-plot representation of the folding time distributions obtained from
MSMs and MD data. (c) Histogram of the MD folding times tfold from state 12 to state 1, compared to MSM folding time
distributions for various lag times. (d) Time evolution of various cumulative population probabilities, obtained for τlag = 10 ns.
Starting in the completely unfolded state 12, the probabilities P12→U(t) reflects the hydrophobic collapse of the protein to
the other states of the unfolded basin, P12→N(t) accounts for the time that the system remains in the unfolded basin, and
P12→1(t) describes the overall folding process into the native state 1.

4.3 Comparison to previous works
In previous works, we have used the HP35 trajectory by Pi-
ana et al.47 to validate various methods of our MSM work-
flow, including MPP,48 robust density-based clustering,74

dPCA+,72 and dynamic coring.49 Moreover, the same MD
data were employed by Damjanovic et al.,52 who combined
density-based clustering with segment splitting, and Klem et
al.53 who employed Gaussian mixture models for structural
clustering. All these works used backbone dihedral angles
as features for the MSM, and can therefore be directly com-
pared to the dihedral-based MSM of this work.

As an overview, Fig. S6a shows Sankey plots that com-
pare the metastable states obtained by the above-mentioned
works to the states of our present MSM. The 16-state MSM
of Damjanovic et al.52 yields a quite similar description of
the native basin by three main states, while the main un-
folded states are split up in several substates. Containing
only four states, the rather coarse-grained MSM of Klem et
al.53 cannot resolve the main native states, but qualitatively
reproduces the two unfolded states of our model. We also
considered the 12-state MSM of Sittel et al.,72 which nicely
resolved the free energy landscape of the native basin and
also yields several distinct unfolded states. Keeping in mind
that MSMs based on backbone dihedral angles only allow for
an approximate description of the unfolded basin, the qual-
itative correspondence of the various state partitionings—in
particular for the native basin—appears satisfactory. We
also considered the first implied timescales and the folding
time of the various models (Fig. S6b,c), and found that the
various models underestimate the results of the new model
on average by a factor 2. Comparing the various MSM work-
flows, we attribute this significant improvement of our model
mainly to the Hummer-Szabo projection (yielding on aver-
age 40 % longer timescales, see Fig. 7a) and to the Gaussian
filtering, which was introduced in Sec. 3.1 to smooth high-
frequent fluctuations of the feature trajectory.

To discuss the effects of the Gaussian filtering in more
detail, we compare in Fig. S7a the results obtained from
(i) filtering (as discussed above), (ii) dynamic coring48,49 in-

stead of filtering, and (iii) using no dynamic correction at all.
By requesting that the trajectory spends a minimum time
of 3 ns in the new state for the transition to be counted, dy-
namic coring overall achieves somewhat shorter timescales
compared to filtering; e.g., we obtain t1 = 0.9 and 1.2 µs in
the case of contacts for τlag = 10 ns. Without any dynamic
correction, on the other hand, the results deteriorate consid-
erably (e.g., t1 = 0.7 instead of 1.2 µs), particularly for short
lag times.

Apart from improving the implied timescales of the MSM,
filtering can be performed before clustering and therefore
may avoid the misclassification of points in the transition
regions. To study this aspect, Fig. S7b shows the contact
representation of the metastable states obtained from dy-
namic coring, which can be compared to the results obtained
for filtering (Fig. 5). Interestingly, we notice that the cored
states are structurally less clearly defined than the filtered
states. For contacts, for example, we find than the three
main native states obtained from filtering are merged into a
single cored state, and that the cored states of the unfolded
basin are less distinct than their filtered counterparts. As
a further advantage of filtering, we mention that the reas-
signment of trajectory frames carried out in dynamic coring
makes it difficult to subsequently apply the Hummer-Szabo
projection, as this relies on a clear correspondence of micro-
and macrostates. Hence, with respect to both structural
characterization and slowest timescales, Gaussian filtering
represents a clear improvement over dynamic coring.

5 Results on the folding of HP35

5.1 Ground truth observations
As the above described procedure to construct an MSM
comes with the choice of a number of methods and asso-
ciated metaparameters, it is instructive to first discuss some
results obtained directly from the MD simulation. Shown in
Fig. 1c, our first examples include the RMSD of the MD tra-
jectory from the crystal structure, the percentage of native
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contacts Q, as well as the sum Ψ over the backbone dihedral
angles ψ of the three α-helices. Constructed directly from
the MD data,47 these and related results may be considered
as unbiased ‘ground truth’.

We choose an upper (lower) threshold of 2Å (6Å) for the
RMSD of folded (unfolded) conformations and employ Gaus-
sian filtering (σ = 5 ns), which yields 33 folding events and
32 unfolding events shown by the 300 µs trajectory. The
associated free energy profile ∆G(RMSD) consists of two
states, showing a sharp minimum for the native state and
a shallow minimum reflecting the unfolded state. Interest-
ingly, we find that the transition path time (i.e, the time
during a folding transition) of typically tens of nanoseconds
is significantly shorter than the folding time (i.e, the waiting
time in the unfolded state) of some microseconds. This indi-
cates a concerted or cooperative process, where all involved
coordinates change at the same time. Nonetheless, the wide
barrier of ∼ 4kBT height as well as the shallow unfolded
state seem to indicate the existence of intermediate states.

Defining the percentage of formed native contacts as
Q =

∑
i ξi(t)/N (with ξi(t) = 0, 1 if contact i is broken or

formed, and N being the total number of native contacts),
the time evolution of 1−Q is found to highly correlate with
the RMSD. This holds in particular for the unfolded parts
of the trajectory, while the folded parts match less. Conse-
quently, the resulting free energy profile ∆G(1 − Q) repro-
duces well the unfolded part of ∆G(RMSD), while it shows
a somewhat broader native state. The situation is the other
way round for the time evolution of Ψ representing the nor-
malized sum of helical dihedral angles ψ, which accurately
reproduces the RMSD in the native state, but exhibits con-
siderably more fluctuations in the unfolded state. This is
reflected in a sharp minimum of ∆G(Ψ) for the native state
and a largely unstructured unfolded region without a mini-
mum.

Apart from providing one-dimensional reaction coordi-
nates, local coordinates such as contact distances and di-
hedral angles allow for a microscopic description of the fold-
ing process. As an example, Fig. S1a shows the time evo-
lution of the native contacts close to a folding event. By
partitioning the contacts in highly correlated MoSAIC clus-
ters (Fig. 2), we find (as expected) that the contacts in a
cluster mostly move in a concerted manner. What is more,
we notice that at each folding event all still open contacts
are formed almost simultaneously, i.e., within the transition
path time of a few tens of nanoseconds. Hence, while the
various clusters in general evolve differently in time, a suc-
cessful folding transition involves the concerted forming of
all contacts at the same time.54 We note that this cooper-
ative behavior may explain the relatively long folding times
(∼ 2 µs) in spite of the modest energy barriers (a few kBT )
shown by the various one-dimensional energy landscapes in
Fig. 1c. Similar conclusions were also reached for the open-
close functional motion of T4 lysozyme69 and the allosteric
transition in PDZ3 domain.70

While during a folding event all still open contacts form
cooperatively within a few tens of nanoseconds, it is nonethe-
less interesting to study the order of the contact changes
during that short time, because this might indicate a poten-
tial causal relation between the contact clusters. Figure 2c
shows that typically clusters 4 and 5 (containing contacts
connecting helices 2 and 3) form first, followed by cluster 6
(containing contacts at the C-terminus). On the other hand,
we find that usually either cluster 7 (that connects the two
terminal ends) or clusters 1, 2 and 3 (containing contacts

connecting helices 1 and 2) form lastly. That is, we observe a
preferred but not mandatory cluster formation order, which
indicates the existence of multiple folding pathways.

Cooperative behavior is also found for the ψ-dihedral an-
gles (Fig. S1b), which generally exhibit correlated motion
within a specific helix, and move all together during a fold-
ing event. As indicated from the Leiden clustering of these
angles (Fig. S2), however, the correlation of dihedral angles
is overall less distinctive than for contact distances.

Recalling that the metastable states of HP35 are well
characterized in terms of their contact clusters (Fig. 5), the
question arises if we can turn the argument around and use
the contact clusters to construct conformational states. For
example, we could define a product state (a, b, c, . . .) that
indicates if the various clusters a, b, c, etc. are formed
or not. Alternatively, we could use dihedral angles to de-
fine a product state (α1, α2, α3) indicating which helices
of HP35 are formed. Similar approaches to employ sub-
divisions of the protein structure as features have been dis-
cussed previously.90,91 Various attempts along these lines to
build an MSM, however, showed that representations built
from contact clusters or helices are too coarse grained to
yield metastable conformational states that accurately re-
produce the dynamics of the system.

5.2 Kinetic network and folding pathways
By constructing the above MSMs of HP35, we found 12
metastable states with well-defined structures (Fig. 5) and
their transition rates (Tab. S2). To connect these findings
with the underlying folding process, it is common practice
to illustrate the MSM via a network, where the node sizes
correspond to the population πi of the states and the edge
weights fij to the transition probabilities Tij . Since com-
plex systems typically exhibit too many edges to visualize
both transition probabilities, it is instructive to define a ‘ki-
netic distance’ between each pair of states.92 Here we use
the symmetric edge weight50

fij = πiTij = πjTji = fji, (7)

which exploits the detailed balance between the two states.
To optimally represent all resulting interstate distances in
two dimensions, we employ the force-directed algorithm
ForceAtlas2,93 using a cut-off fε to discard small fluxes (i. e.,
fij ≤ fε = 2× 10−5). This leads to a kinetic network repre-
sentation, in which high transition rates correspond to close-
ness in the graph.

Figure 8a shows the resulting kinetic networks obtained
for contacts and dihedrals. As anticipated from the MPP
dendrograms in Fig. 4, both networks show a native basin
comprising states 1 to 5 (1 to 6 for dihedrals), which is clearly
separated from the unfolded basin comprising states 9 to 12
(11 to 12 for dihedrals). Moreover, several lowly populated
states exist in the vicinity of the unfolded basin. To illus-
trate the kinetics of the networks, it is instructive to inspect
the corresponding state trajectories obtained form the MD
simulation (Fig. 8b). For contacts, we find fast intercon-
version between states 1–5 of the native basin, as well as
between states 9–12 of the unfolded basin. The lowly popu-
lated states 6–8 are either temporarily visited from the un-
folded basin or used as on-route intermediate states on the
folding pathway. For dihedrals, we also find fast intercon-
version between the states (1–6) of the native basin and the
states (11–12) of the unfolded basin. The lowly populated
states 7–10 are mostly approached from the unfolded basin;
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Figure 8: (a) Kinetic networks of the MSM and (b) ex-
emplary state trajectories obtained for (left) contacts and
(right) dihedrals. The node size indicates the population of
the state and the color code reflects its fraction of native
contacts Q (cf. Fig. 4).

only states 8 and 9 act in part as intermediate states for
folding.

As the MSM approximates well the timescales of the sys-
tem (Fig. 7a), we may illustrate various aspects of the folding
process by performing Markov chain Monte Carlo simula-
tions of the MSM. For example, by starting in the unfolded
state 12 and calculating the time-dependent rise of the pop-
ulation of the native state 1, P12→1(t), we can infer from a
single exponential fit the overall folding time tfold = 1.7 µs
(1.8 µs for dihedrals), see Fig. 7d. (For clarity, we focus on
cumulative population probabilities, i.e., we disregard all fol-
lowing reactions such as subsequent unfolding.) We may also
study the various subprocesses underlying folding. Starting
in the completely unfolded state 12, the first step is the hy-
drophobic collapse of the protein to the other states of the
unfolded basin, where (at least) contact clusters 4 and 5
(containing contacts connecting helices 2 and 3) are formed.
We note that this finding is in line with our discussion of the
formation of the contact clusters in Fig. 2c. Considering the
time evolution of the population of these states, P12→U(t),
we infer the time t12→U = 160 ns (43 ns for dihedrals) for the
hydrophobic collapse. Next, we consider the time that the
system remains in the unfolded basin before leaving to the
native basin. Deduced from the rise of the sum of popula-
tions of all states of the native basin, P12→N(t), we obtain
t12→N = 1.6 µs (0.9 µs for dihedrals), indicating that the es-
cape from the unfolded basin clearly represents the slowest
step of the folding process. As a final step, we consider the
system’s relaxation in the native basin, i.e., the time tN→1 it
takes after entering the native basin until state 1 is reached.
Interestingly, we find that the native basin relaxation time
obtained for contacts (tN→1 = 54 ns) is considerably shorter
than the result for dihedrals (tN→1 = 280 ns), which reflects
the higher metastability of the native states (in particular
of state 2) found for dihedrals (Tab. S2).

Based on these general considerations, we now consider
the main folding pathways from the completely unfolded
state 12 to the native state 1, using MSMPathfinder50 for
a systematic construction of the path ensemble. Comparing
the most frequented folding paths as obtained from the MD

trajectory and from the MSM, Tab. S3 reveals good overall
agreement between the results of MD and MSM. For con-
tacts, in most cases (26 out of 34 in MD) the system first goes
to state 10. Moreover, we find six first transitions to state 9,
as well as two direct transitions to state 5 in the native basin.
As discussed above, the system subsequently spends most of
the folding time tfold in the unfolded basin, before it changes
to the native basin via a concerted forming of all still open
contacts. That is, the broad distribution of folding times
shown in Figs. 7b,c originates mostly from different escape
times tU→N. While we obtain similar results for dihedrals,
we note that the description of the unfolded basin is less
well resolved. That is, from completely unfolded state 12
the first step goes with only a single exception to state 11,
from where the native basin is approached.

Compared to the experimental result (0.73 µs at 360 K
for the considered Nle/Nle-mutant39), the MD simulation
of Piana et al.47 overestimates the overall folding time by
a factor 2.5. Moreover, various experiments38–40 reported
a fast (∼ 0.1 µs) transient, which was interpreted as relax-
ation in the unfolded basin or in the folded basin. This com-
pares roughly to the associated timescales t12→U and tN→1

discussed above. Relating the factor 2.5 to a free energy
difference ∆ via 2.5 = e∆/kBT , we infer a quite low overall
error ∆ ∼ 2.8 kJ/mol of the employed force field, which is in
line with previous studies.94,95 Nonetheless, this accuracy of
biomolecular force fields appears surprisingly good, in par-
ticular when we consider energy barrier heights associated
with microsecond timescales. This finding might be a conse-
quence of folding being eventually mediated by the forming
of interresidue contacts (which should be well described by
common force fields) and the relatively long folding times
are related to the finding that a successful folding transition
involves the concerted forming of all contacts that are still
open.

6 Discussion

6.1 Feature selection: Contacts vs. dihe-
drals

Adopting the ultrafast folding of HP35 as well-established
model problem, we have studied the virtues and shortcom-
ings of using backbone dihedral angles or contact distances
as features to construct an MSM. While dihedral angles are
readily obtained from the MD trajectory, they require an ap-
propriate treatment of their periodicity71–73 and necessitate
the exclusion of uncorrelated dihedral motion. Following
recent work,50,72 here we used maximal-gap shifted (φ, ψ)
dihedral angles and excluded the terminal residues 1–2 and
34–35. With ψ-angles reflecting the helicity of the protein
and φ-angles accounting for potential left-to-right handed
transitions (mainly in flexible loops), backbone dihedral an-
gles report directly on the local secondary structure. This
proves advantageous for the modeling of the conformational
states in the native basin of HP35, which can be mainly de-
scribed by the single angle φ3 (Fig. S4c). However, dihedral
angles account only indirectly for the formation of tertiary
structure during folding, which hampers the modeling of the
folding transition and the conformational distribution in the
unfolded basin.

Considering contacts, on the other hand, we have found
that their selection and appropriate calculation of the corre-
sponding contact distances requires some attention. By in-
troducing a new definition of contact distances [Eq. (2)], we
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focused on the native contacts of HP35, because they are ex-
pected to largely determine the folding pathways.62–64 Per-
forming a correlation analysis36 on the resulting 42 native
contacts, we identified seven clusters (Fig. 2), whose con-
tacts are highly correlated and change in a concerted man-
ner. These contact clusters were shown to directly account
for the cooperative folding of HP35 (Fig. S1a), and also pro-
vide a concise characterization of the metastable states of
the system (Fig. 5). In particular, tertiary contacts were
shown to be key to the folding process, because they repre-
sent the most direct descriptor of the origin of folding. As
a consequence, the first implied timescales of the MSMs ob-
tained for contacts (e.g., t1 = 1.2 µs for τlag = 10 ns) are
significantly slower than the corresponding results obtained
for dihedrals (0.7 µs), indicating that contacts overall give
a better Markovian model than dihedrals. Hence, reflecting
different aspects of the structural dynamics, contacts and di-
hedrals result in different collective variables and metastable
states, eventually leading to MSMs with different timescales
and pathways.

6.2 MSM workflow: What matters?
While we have stressed the importance of the selection of fea-
tures, the discussion of the results obtained from the MSM
inevitably rests on the specific techniques employed for its
construction, including various methods of dynamic correc-
tion, dimensionality reduction, and clustering. To briefly
summarize what parts of the procedure made a difference,
we focus on the case of contacts in the following.

Although a number of more sophisticated methods is
available,75–77 we suppose that standard linear PCA is suf-
ficient for the present case study (provided that appropri-
ate features are available). Including the first five compo-
nents, PCA was shown to explain the majority (80 %) of the
correlation and to account well for the slowest timescales
(Fig. S3). As a benefit, linear methods produce smoothly
varying free energy landscapes, which facilitate the subse-
quent clustering. For the latter we adopted robust density-
based clustering74 as an accurate and efficient deterministic
method to construct microstates. Presumably, the popular
k-means method should give clusterings of similar overall
quality, provided that the required metaparameters (such as
the number of states k) are optimized and that sufficiently
many iterations are run.18

Apart from these commonly used methods, we want to
point out two simple and powerful techniques, which are less
widely known but clearly improved the outcome of the MSM.
First of all, we used Gaussian low-pass filtering to smoothen
high-frequent fluctuations of the feature trajectory, which
significantly reduced spurious transitions between adjacent
metastable states. While the idea is similar to the definition
of dynamic cores of the metastable states48,49 (where we
request that the trajectory spends a minimum time in the
new state for the transition to be counted), the filtering is
performed before the clustering and therefore helps to avoid
the misclassification of points in the transition regions.

Secondly, we want to highlight the explanatory power of
the dendrograms constructed from MPP clustering (Fig. 4).
Revealing how the metastable states emerge from the mi-
crostates, the MPP dendrogram outlines the hierarchical
structure of the free energy landscape.78 For example, we
learn that the unfolded part of the energy landscape of HP35
is structured and reveals several metastable states with life-
times of about 40 ns (Tab. S2). Furthermore, we notice that

the dendrogram for dihedrals exhibits two rather metastable
subsections of the native basin, which explain the relatively
long relaxation time found for this basin (Fig. 7). By col-
oring the microstates according to their mean number of
native contacts Q, we may assess if only structurally similar
states are merged together, thus illustrating the quality of
the state partitioning. Last but not least, the MPP den-
drogram is closely related to the kinetic network (Fig. 8)
that nicely illustrates the overall dynamics exhibited by the
MSM.

We finally wish to discuss the scalability of the presented
MSM workflow to larger systems, such as proteins with
N ≈ 103 residues. This concerns particularly the first steps
of the workflow, that is, the definition of features and the
dimensionality reduction, while the computational effort for
all subsequent steps essentially remains the same (see the
discussion at the beginning of Sec. 3). Backbone dihedral
angles naturally scale linearly with N , and this holds ap-
proximately also for interresidue contacts if local search al-
gorithms are used (see the discussion at the end of Sec. 2.1).
As a consequence, the definition of dihedrals requires about
an hour and the definition of contacts a few CPU days for
a 1000 amino-acid protein (assuming again 1.5 × 106 data
points). Using the resulting ≈ 103 coordinates, the cor-
responding correlation matrix is readily block-diagonalized
via the Leiden algorithm (Sec. 2.2), and the relevant main
correlated clusters can be diagonalized by a PCA, taking
some CPU hours. This means that even for large proteins
the complete MSM workflow including all analyses takes not
more than a few CPU days on a standard desktop computer.

7 Concluding remarks

By designing an MSM, we aim to construct structurally well-
defined metastable states that provide a mechanistic under-
standing of the considered biomolecular process. Adopting
the folding of HP35 as a textbook example, we have high-
lighted several important aspects for the practical construc-
tion of an MSM.

• First, the overall quality of a dynamical model such
as an MSM heavily relies on the selection of input
coordinates or features, which faithfully account for
the process under consideration. Inclusion of deceiv-
ing coordinates or the omission of important features
will quite certainly corrupt subsequent analyses. We
have employed a correlation analysis strategy to iden-
tify appropriate features,36 and discussed in detail
two main types, that is, interresidue contacts and
backbone dihedral angles.

• A successful state partitioning should provide con-
formational states that are clearly discriminated by
some descriptors derived from the features, such as
the mean and the variance of the contact cluster dis-
tributions (Fig. 5). The quality of the state partition-
ing can be furthermore assessed by the MPP dendro-
gram (Fig. 4), which reveals potential conformational
heterogeneity of the microstates being merged to a
macrostate.

• Dynamical corrections such as low-pass filtering of
the feature trajectory and the optimal projection of
microstate dynamics onto macrostate dynamics85–89

may significantly improve the Markovianity of the
MSM.
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Proceeding this way, we have obtained MSMs describ-
ing the folding of HP35, which correctly reproduce the slow
timescales of the process. This result is not achieved by
design, but indicates a consistent dynamical model. Al-
ternatively, we may construct an MSM by requesting long
timescales from the outset.12,13 While this approach may
simplify the construction of the MSM, it still needs to be
checked if the resulting metastable states are structurally
well characterized and do provide the desired mechanistic
understanding of the process.
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Table S1: Native contacts of HP35, as obtained from the crystal structureS1 (left) and from the
MD simulation by Piana et al.,S2 where the minimum contact distance is defined via Eq. (1) of
the main text (middle, MD contacts I), and via Eq. (2) but omitting atom pairs not satisfying the
population cutoff of 30% (right, MD contacts II). For each contact definition and each contact, we
list the percentage of the simulation time when the contact is formed, as well as the decay time
τ of the contact autocorrelation function Cij(t) = 〈δdij(t)δdij(0)〉/〈δd2ij〉, i.e. Cij(τ) = 1/e. The
contact type is assigned as helical if it is a helix-stabilizing (n, n+ 4) contact, as hydrogen bond if
both residues have oppositely charged side chains, and as hydrophobic else.

residues contact type
MoSAIC crystal contacts MD contacts I MD contacts II
cluster formed [%] τ [µs] formed [%] τ [µs] formed [%] τ [µs]

LEU1–ASP5 helical – 11.5 0.019 39.8 0.009 – –
LEU1–PHE6 hydrophobic – 2.1 0.027 – – – –
LEU1–VAL9 hydrophobic – 3.2 0.034 – – – –
LEU1–PHE10 hydrophobic – 1.9 0.030 – – – –
LEU1–ARG14 hydrophobic – 7.3 0.527 – – – –
LEU1–LEU34 hydrophobic – 3.7 0.030 – – – –
SER2–PHE6 hydrogen bond – 29.7 0.039 35.7 0.048 – –
ASP3–LYS7 helical 8 71.0 0.092 75.8 0.050 74.7 0.072
ASP3–THR13 hydrophobic 1 – – 56.9 1.380 46.5 1.574
ASP3–ARG14 hydrogen bond 1 29.2 1.104 69.6 1.210 61.6 1.466

GLU4–ALA8 helical 8 63.0 0.055 65.6 0.048 65.0 0.055
ASP5–VAL9 helical 8 54.7 0.080 69.6 0.108 67.1 0.150
ASP5–ARG14 hydrogen bond 1 – – 49.9 0.241 47.2 0.471
PHE6–PHE10 helical 8 74.8 0.679 80.4 0.413 75.7 0.589
PHE6–GLY11 hydrophobic 2 56.9 0.639 60.4 0.348 56.9 0.639
PHE6–MET12 hydrophobic 2 25.9 1.481 74.1 0.998 63.6 1.558
PHE6–THR13 hydrophobic – 16.4 1.366 61.5 0.806 – –
PHE6–ARG14 hydrophobic 1 24.2 1.481 73.7 0.948 69.4 1.339
PHE6–PHE17 hydrophobic 2 42.9 1.408 70.0 1.071 57.5 1.352
LYS7–GLY11 hydrogen bond 2 71.6 0.929 74.1 0.798 72.7 0.857

LYS7–MET12 hydrophobic 2 66.0 1.725 73.3 0.958 70.1 1.222
LYS7–THR13 hydrophobic 2 16.4 1.481 55.0 0.672 33.5 1.481
VAL9–LYS32 hydrophobic 7 50.7 1.380 60.0 1.222 54.7 1.380
VAL9–LEU34 hydrophobic – 22.1 0.840 36.2 0.452 – –
PHE10–PHE17 hydrophobic – 20.6 1.352 62.0 0.874 – –
PHE10–LEU28 hydrophobic – 27.6 1.380 67.5 1.138 – –
PHE10–NLE29 hydrophobic 7 16.4 1.352 59.6 0.892 36.0 1.380
PHE10–LYS32 hydrophobic – 20.2 1.352 55.2 1.150 – –
PHE10–LEU34 hydrophobic 7 33.8 1.060 47.3 0.554 33.8 1.060
MET12–ALA16 hydrophobic 3 49.4 1.298 72.8 0.141 61.9 1.071

MET12–PHE17 hydrophobic 3 52.9 1.394 74.3 0.560 61.5 1.234
MET12–LEU20 hydrophobic 3 42.3 1.272 56.4 0.766 52.4 1.272
MET12–LEU28 hydrophobic – 18.8 1.173 32.5 0.743 – –
THR13–PHE17 hydrogen bond 3 78.0 1.312 80.9 1.060 78.4 1.312
ARG14–ALA18 helical 8 77.5 1.298 79.4 0.939 78.1 1.222
SER15–ASN19 helical 8 69.1 0.613 78.0 0.256 73.4 0.589
ALA16–LEU20 hydrogen bond 8 72.3 0.120 80.4 0.066 79.5 0.092
PHE17–GLN25 hydrophobic 4 83.2 0.665 87.7 0.537 86.7 0.626
PHE17–LEU28 hydrophobic – 24.9 0.645 71.0 0.665 – –
PHE17–NLE29 hydrophobic 8 32.3 0.883 58.3 0.543 48.2 0.848

ALA18–GLN25 hydrophobic 4 62.6 0.506 80.3 0.501 79.1 0.537
LEU20–NLE24 hydrogen bond 8 27.5 0.036 81.3 0.012 56.5 0.053
LEU20–GLN25 hydrophobic 4 86.8 0.249 93.2 0.105 89.9 0.244
LEU20–LEU28 hydrophobic 5 54.2 0.532 70.8 0.405 54.2 0.532
PRO21–GLN25 hydrogen bond 8 97.2 0.107 98.0 0.081 97.8 0.088
LEU22–GLN26 helical 8 95.4 0.099 96.7 0.074 96.5 0.081
TRP23–HIS27 helical 8 90.8 0.121 93.1 0.088 91.5 0.117
NLE24–LEU28 helical 5 89.3 0.287 90.9 0.225 90.2 0.262
GLN25–NLE29 helical 5 87.5 0.645 88.8 0.589 88.1 0.639
GLN26–LYS30 helical 8 81.6 0.751 84.1 0.658 83.0 0.729

GLN26–PHE35 hydrophobic – – – 56.3 0.086 – –
HIS27–GLU31 helical 8 77.9 0.413 83.3 0.134 81.1 0.222
LEU28–LYS32 helical 8 77.0 0.147 80.4 0.108 78.7 0.142
NLE29–GLY33 hydrogen bond 6 74.2 0.112 77.2 0.082 74.6 0.108
NLE29–LEU34 hydrogen bond 6 66.5 0.161 75.1 0.088 67.9 0.130
NLE29–PHE35 hydrophobic 6 4.9 0.081 67.2 0.073 60.3 0.119
LYS30–PHE35 hydrophobic 6 – – 66.3 0.054 52.9 0.113
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Figure S1: Cooperative behavior of input features during 4 randomly selected folding events, iden-
tified with RMSD thresholds, for (a) contacts and (b) dihedral angles. The contacts are grouped by
MoSAIC clusters and the figure shows that distances belonging to the same cluster move together
and ’jump’ at the same time below the contact threshold of 4.5Å. Moreover, one can see that some
clusters (cluster 4 and cluster 5, featuring contacts connecting helix 2 and helix 3 and contacts be-
longing to the third helix) are most times already formed very early on. This is in good agreement
with Fig. 2c showing the order of clusters formation. Dihedrals are grouped by helices and they
also show cooperativity within the secondary structure they belong to, although they are not as
correlated as in the contacts case.

S-4



φ2 φ6 φ10 φ14 φ18 φ22 φ26 φ30 φ34

residue

ψ2

ψ6

ψ10

ψ14

ψ18

ψ22

ψ26

ψ30

ψ34

re
sid

ue

a

c
φ/ψ of the Leiden/CPM clusters

cluster 1 : φ4, φ3
cluster 2 : ψ7, ψ6, ψ8
cluster 3 : φ10, ψ9
cluster 4 : ψ12, ψ13, φ12, ψ16, ψ15, ψ11, φ11, ψ14
cluster 5 : ψ18, ψ19, ψ17
cluster 6 : ψ21, ψ20, φ22
cluster 7 : ψ24, ψ22, ψ23
cluster 8 : ψ27, ψ26, ψ28, ψ25
cluster 9 : ψ29, ψ30, ψ31

cluster 10 : φ33, ψ33, ψ32
noise N : ψ1, φ2, ψ2, ψ3, ψ4, φ5, ψ5, φ6, φ7, φ8, φ9, ψ10, φ13, φ14, φ15

φ16, φ17, φ18, φ19, φ20, φ21, φ23, φ24, φ25, φ26, φ27, φ28, φ29, φ30, φ31
φ32, φ34, ψ34, φ35

2 4 6 8 10
cluster

1
3

5
7

9
N

cl
us

te
r

b

0.0

0.2

0.4

0.6

0.8

co
rr

el
at

io
n

|ρ
|

Figure S2: Preselection of backbone dihedral angles. For all dihedral angles the (a) pairwise cor-
relations with all other dihedral angles, and the (b) corresponding Leiden/CPM clusters including
(c) the tabular representation. The resolution parameter γ = 0.45 was optimized by silhouette
score using cross validation, and all clusters containing only a single coordinate were sorted into the
cluster N. Gaussian filtered angles with σ = 2ns were used.

S-5



Figure S3: Selection of principal components xi for (top) contact distances, and (bottom) backbone
dihedral angles. (a) Free energy curves, (b) corresponding eigenvectors, (c) cumulative covariance of
the first n principal components, and (d) lifetime τ : ACF(τ) = e−1 of the principal components. (d)
Shannon entropy H(X) = −∑

x∈X p(x) ln p(x), which provides an information theoretic approach
to rank the principal components by their importance. This approach is based on the fact that
entropy is a measure to measure the amount of information contained in a component.
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Figure S4: Further characterization of metastable states. (a) Resulting number of states for varying
minimal population Pmin, used for the density-based clustering algorithm.S3 (b) Structural charac-
terization of the twelve metastable states of HP35, obtained for (left) contacts and (right) dihedral
angles. The states are ordered by decreasing fraction of native contacts Q. As for most residues
the ψ angles are more important than the corresponding φ (see Fig. S2), we restrict the represen-
tation to ψ angles only for the sake of clarity. Since the ψ angles exhibit a bimodal distribution
(reflecting α ↔ β) such that mean and variance do not well describe the data, we use a box-plot
representation with quartiles Qi (comprising the first i · 25% of the data) that define the median
Q2, the interquartile range IQR = Q3 − Q1 and the lower (upper) bound as the smallest (largest)
data point in Q1/3 ± IQR. (c) Comparing the φ3 distribution of the 3 major natives states based
on (left) contacts and (right) dihedral angles.
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Figure S5: Further analysis and validation of the Markov state models, obtained by using the
Hummer-Szabo projection.S4 (a) Left eigenvector corresponding to the four slowest processes ti of
the twelve-state Markov model, obtained for (left) contacts and (right) dihedral angles, where t0
corresponds to the stationary process and ti with i ≥ 1 to the i-th implied timescale. (b) Chapman-
Kolmogorov tests of the twelve states for varying lag times, obtained for (left) contacts and (right)
dihedral angles.
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Figure S6: Comparison of our dihedral-based MSM (Ref) to previously existing models, including
the work of Sittel2017,S6 Klem2022,S7 and Damjanovic2021.S8 (a) Sankey diagrams illustrating the
relationship between the state partitioning of our MSM (left) and the state definitions of the other
models (right). (b) First three implied timescales tn shown as a function of the lag time τlag for
all models. (c) Median folding times tfold, that is the waiting time from the main unfolded state to
the main native state, i.e., transitions (12 → 1) for our model, (5 → 2) for Sittel2017, (6 → 1) for
Damjanovic2021, and (3→ 1) for Klem2022.
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Figure S7: Effects of Gaussian filtering of the feature trajectory, compared to dynamic coringS5

and using no dynamical correction. To this end, we repeated the MSM workflow described in
the main paper (PCA, density-based clustering, and MPP), using the same parameters except for
a lower minimum population of Pmin = 15, which ensures a comparable number of microstates
when no dynamical correction is employed. In the case of dynamic coring, we used the previously
determinedS5,S9 coring time τcor = 3ns, which is expected to result in a similar effect as the Gaussian
filtering with σ = 2 ns. (a) Three slowest implied timescales ti of the various MSMs, obtained via
the Hummer-Szabo projectionS4 for (left) contacts and (right) dihedral angles. (b) Structural
characterization of the associated eleven metastable states obtained for dynamical coring. As in the
main paper, the states are ordered by decreasing fraction of native contacts Q, and the contacts are
ordered according to the seven main MoSAIC clusters (Fig. 5). For each state, the distribution of
contact distances are represented by the median Q2, the interquartile range IQR = Q3 − Q1 and
the lower (upper) bound as the smallest (largest) data point in Q1/3 ± 1.5 IQR.
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Table S2: Timescales tij = R−1ij (in units of ns) obtained from the transition rate matrix R ≡ I−T ,
based on the transition matrix T obtained via the Hummer-Szabo projectionS4 and a lag time of
τlag = 10ns.

(a) contact-based states

state from state to
1 2 3 4 5 6 7 8 9 10 11 12

1 56 85 282 874 902 22076 18179 128850 11973 43900 953654 –
2 43 38 389 2730 4463 344049 178748 – 12458 53762 – 287691
3 53 140 37 2170 2543 7930 13857 13400 22701 39305 186616 –
4 62 486 638 35 126 – – 3421 8336 1363 – –
5 85 620 1445 173 45 52520 – 2718 8710 880 29755 1080
6 296 – 720 19055 – 58 153 210 1059 – 1631 141069
7 476 1484 1478 – – 238 34 63 171 2486 2376 –
8 1964 23078 8785 2887 3004 638 115 50 379 231 959 3610
9 3005 4927 28548 21389 – 8548 1838 2325 51 72 1048 320
10 11715 99758 43659 4587 1777 15544 – 811 55 37 920 190
11 – – 9886 57008 14118 4888 8349 647 136 116 51 569
12 – 29706 – – 3334 – – – 394 309 6398 167

(b) dihedral-based states

state from state to
1 2 3 4 5 6 7 8 9 10 11 12

1 275 1327 889 19718 590 5414249 200861 229587 305607 – 54517 –
2 810 49 55 3212 45726 1340 1878297 – – – 12595 –
3 517 54 40 495 7959 709 208208 29965 4314 669580 1339 15658
4 937 178 42 25 65713 1011 1661 1628 361 – 177 –
5 41 – 710 – 35 739 – 32480 14780 665793 1597 3009
6 2381 96 50 5432 532 24 – 4734 532 62074 231 469
7 29399 2182 621 290 17636 – 26 40 219 – 203 –
8 – 15254 2069 1416 158232 7699 282 55 195 420 131 –
9 6535 – 255 230 27738 399 416 110 29 2307 70 –
10 – – 2351 – 48749 4588 – 49 367 38 247 –
11 32138 13107 1506 2657 12679 4060 16373 2234 1645 85612 87 112
12 417111 – 9576 – 44254 3063 – – – – 47 48
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Table S3: List of the main folding pathways assuming that we start in state 12 and end in state 1.
Compared are (left) the paths found in the MD trajectory and (right) the most probable fold-
ing pathways identified by MSMPathfinderS9 based on the transition matrix T obtained via the
Hummer-Szabo projectionS4 and a lag time of τlag = 10ns.

(a) contacts-based states

MD Pathways Freq Length [µs]

(12, 10, 9, 1) 6 3.25
(12, 10, 5, 1) 4 2.29
(12, 9, 10, 4, 1) 2 1.74
(12, 5, 1) 2 2.78
(12, 10, 8, 1) 2 0.75
(12, 10, 1) 2 1.97
(12, 10, 9, 8, 1) 2 2.91
(12, 10, 8, 6, 1) 2 4.86
(12, 10, 11, 8, 1) 1 0.66
(12, 9, 10, 1) 1 1.92
(12, 10, 5, 4, 3, 1) 1 1.95
(12, 5, 2, 1) 1 0.05
(12, 10, 9, 8, 7, 1) 1 0.78
(12, 10, 7, 1) 1 9.85
(12, 9, 7, 1) 1 3.18
(12, 10, 9, 7, 1) 1 0.14
(12, 10, 8, 3, 1) 1 2.83
(12, 9, 8, 7, 1) 1 3.94
(12, 9, 10, 7, 8, 1) 1 1.85
(12, 9, 10, 5, 1) 1 0.61

Total events 34

MSM Pathways Prob [%] Length [µs]

(12, 5, 1) 9.13 1.58
(12, 9, 1) 8.06 1.74
(12, 10, 9, 1) 7.25 1.78
(12, 10, 5, 1) 7.24 1.78
(12, 9, 2, 1) 4.41 1.78
(12, 9, 10, 5, 1) 4.18 1.83
(12, 10, 9, 2, 1) 3.40 1.83
(12, 10, 4, 1) 3.04 1.76
(12, 5, 4, 1) 2.54 1.63
(12, 10, 5, 4, 1) 2.01 1.81
(12, 10, 1) 1.93 1.74
(12, 9, 10, 4, 1) 1.75 1.83
(12, 9, 7, 1) 1.45 1.84
(12, 10, 8, 7, 1) 1.39 1.89
(12, 10, 9, 7, 1) 1.30 1.88
(12, 9, 10, 5, 4, 1) 1.16 1.87
(12, 5, 2, 1) 1.14 1.63
(12, 9, 10, 1) 1.12 1.78
(12, 10, 8, 1) 1.06 1.84
(12, 10, 5, 2, 1) 0.90 1.80

Total probability 64.46

(b) dihedrals-based states

MD Pathways Freq Length [µs]

(12, 11, 3, 2, 1) 7 4.19
(12, 11, 4, 3, 2, 1) 6 2.78
(12, 11, 2, 1) 4 2.80
(12, 11, 1) 4 2.30
(12, 6, 2, 1) 2 0.76
(12, 11, 6, 2, 1) 2 0.46
(12, 11, 5, 1) 2 7.12
(12, 3, 2, 4, 1) 1 0.75
(12, 9, 3, 2, 1) 1 1.21
(12, 11, 9, 3, 6, 2, 5, 1) 1 4.33
(12, 3, 6, 5, 1) 1 2.11
(12, 11, 8, 7, 9, 4, 3, 2, 1) 1 0.76
(12, 11, 2, 5, 1) 1 3.73
(12, 11, 8, 9, 3, 2, 1) 1 5.17
(12, 11, 6, 3, 4, 2, 1) 1 0.08
(12, 11, 6, 5, 1) 1 4.70

Total events 36

MSM Pathways Prob [%] Length [µs]

(12, 11, 3, 1) 22.40 2.02
(12, 11, 3, 2, 1) 12.96 2.07
(12, 11, 4, 3, 1) 7.61 2.06
(12, 11, 5, 1) 6.35 1.69
(12, 11, 4, 3, 2, 1) 4.40 2.11
(12, 11, 6, 3, 1) 4.09 2.04
(12, 11, 1) 2.87 1.65
(12, 11, 9, 3, 1) 2.67 2.07
(12, 11, 6, 3, 2, 1) 2.35 2.10
(12, 11, 2, 3, 1) 2.31 2.08
(12, 11, 6, 2, 3, 1) 1.89 2.09
(12, 11, 2, 1) 1.87 2.05
(12, 11, 9, 4, 3, 1) 1.77 2.09
(12, 11, 4, 2, 3, 1) 1.61 2.11
(12, 11, 6, 2, 1) 1.56 2.05

Total probability 76.71
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