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Abstract

Many visualization techniques involve mapping high-dimensional data spaces to lower-dimensional views. Unfor-

tunately, mapping a high-dimensional data space into a scatterplot involves a loss of information; or, even worse,

it can give a misleading picture of valuable structure in higher dimensions. In this paper, we propose class con-

sistency as a measure of the quality of the mapping. Class consistency enforces the constraint that classes of n–D

data are shown clearly in 2–D scatterplots. We propose two quantitative measures of class consistency, one based

on the distance to the class’s center of gravity, and another based on the entropies of the spatial distributions of

classes. We performed an experiment where users choose good views, and show that class consistency has good

precision and recall. We also evaluate both consistency measures over a range of data sets and show that these

measures are efficient and robust.

Categories and Subject Descriptors (according to ACM CCS): Data Mining [I.5.3]: Clustering—User Interfaces

[H.5.2]: Evaluation/methodology—

1. Introduction

Today’s scientific and business applications produce large

datasets with increasing complexity and dimensionality. Vi-

sual data exploration techniques have proven to be of high

value in gaining insight into these large data sets. The aim

of visual data exploration is to tightly couple data analysis

techniques and interactive visualization methods, and thus

combine two powerful information processing systems: the

human mind and the modern computer [KSA04].

A major challenge is how to present high dimensional data

to the analyst. Many visualization methods involve mapping

high dimensional data to lower-dimensional views. Because

graphical displays are composed of two spatial coordinates

and a limited number of visual variables such as color, tex-

ture, etc., the maximum number of dimensions that can be

shown in any one view is roughly 3-8 [Ber84]. And since

the dimensionality of the data is often quite high – often tens

to hundreds of dimensions – the mapping from data space

to display space involves a loss of information. The problem

is not just partial information however: projected views can

also present misleading information, since structures that are

separated in higher dimensions are often conflated in the 2–

D projection. This leads to a major challenge in visualiza-

tion: How to map from high dimensions to low dimensions

in a way that faithfully represents the data? Given a huge

collection of possible views, which view represents the data

best?

In this paper we propose class consistency as a com-

putable measure of the utility of a given view. The basic

idea of class consistency is shown in Figure 1. In this fig-

ure the original high-dimensional data is represented as a set

of two-dimensional points, with red and green representing

two classes of data. The low-dimensional views of the data

are represented as the marginal 1–D histogram projections

along the axes of the scatterplot. In this example, we con-

sider the horizontal projection to be consistent. That is, the

red and green points are projected to regions of the display

space that are separable. In contrast, the vertical projection is

inconsistent: red and green points are mixed together in this

projection. We claim that the horizontal projection is better

because view and data are consistent.

In this paper, we assume that each point in high dimen-

sional space has been labeled as belonging to some group.

Class labels can be automatically assigned using a cluster-

ing algorithm. Since 2–D orthogonal projections allow an

intuitive interpretation of the data, orthogonal projections
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forming 2–D scatterplots are often used as a starting point

in exploratory data analysis. In this study, we consider or-

thogonal projections forming 2–D scatterplots. The set of all

possible views is the n(n−1)/2 unique scatterplots in a ma-

trix of scatterplots, or SPLOM [Har75]. Since the number

of 2–D scatterplots of real world data is much higher than

a human analyst can look at, we want the computer to sort-

out consistent views which corresponds to choosing the best

scatterplots from the matrix of scatterplots. Selecting con-

sistent views for other types of patterns and views is left as

future work.

The contributions of this paper are:

• We propose class consistency as criteria for choosing

good views to a class structure in n–D. Class consistency

characterizes the extent to which the class neighborhood

structure in n–D is preserved in a 2–D scatterplot, and thus

avoids to label poor views as good views.

• Since human attention is limited to inspect a small num-

ber of scatterplots, class consistency used as measure of

goodness facilitates an interactive exploration of a class

structure; otherwise a human analyst will be drown in the

vast set of 2–D scatterplots.

• We introduce and evaluate two methods for calculat-

ing class consistency, a distance based and a distribution

based technique. Distribution based class consistency is

more general, but more expensive to compute.

• We evaluate class consistency over a range of data sets

with different dimensionality. We show that the class con-

sistency measures perform well in practice. First user ex-

periments show that people rank consistent views better

than inconsistent views.

2. Related Work

Several different approaches have been proposed for select-

ing good views of high dimensional projections and embed-

dings. The first major development in this area was projec-

tion pursuit. The idea of projection pursuit is to search for a

good view to high dimensional data [Fri87].

Several criteria have been used to define good views.

Tukey and collaborators used clumpiness as a measure of

goodness [FT74]. Clumpiness describes the degree to which

data points are concentrated locally while at the same time

expanded globally in a 2–D embedding. Clumpiness works

well when data points are clustered around cluster centers.

Given the more general situation in which data points clus-

ter around lines, curves, curved manifolds, etc., clumpiness

tends to prefer 2–D embeddings in which large amounts of

classes are mixed. The reason can be seen in the fact that

mixing classes create regions with arbitrary high local den-

sities. In contrast to clumpiness, class consistency used as

measure of goodness assigns high numerical scores to 2–D

views in which classes are separated, and low scores in any

other situation. A natural question is to use class consistency
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Figure 1: Mapping a high-dimensional data space into a

low-dimensional space leads in the worst case to a mislead-

ing picture of the clusters hidden in the data – the 1–D axis

parallel projection of the 2–D cluster model (red and green

points) along the x and y axes results in two different views of

the data. Although there are two clusters visible in both pro-

jections (two peaks in the histograms), only the projection

along the x-dimension is consistent with the clusters. The

projection in y-direction merges the two clusters and hence

is not consistent.

as a measure of goodness in projection pursuit to find gen-

eral projections that are consistent with a class structure in

higher dimension, which is left for future work.

The grand tour [Asi85] shows an overview of a

high-dimensional data space by presenting a sequence

of low-dimensional projections. The widely used

XGOBI [CBCH95] system combines the grand tour

and projection pursuit with a single interactive interface.

Although the combination of these two methods is powerful,

it is still time consuming to manually explore the space

of all 2–D projections in a reasonable amount of time.

More fundamentally, there is still disagreement about the

measures of goodness used in projection pursuit algorithms.

And even if a good measure of goodness is discovered, its

value depends on the feasibility to optimizing it.

Scagnostics was proposed by Tukey and Tukey [TT85] as

an alternative to projection pursuit. A system using graph-

theoretical scagnostic measures was recently described by

Wilkinson et al. [WAG06]. In their paper, they compute

scagnostics for each scatterplot in a matrix of scatterplots.

These graph-theoretic measures are meant to characterize

different types of patterns. These measures are then used

to create a second matrix of scatterplots. Each scatterplot

of the data is represented as a dot in the scatterplots of the

scagnostics. The scagnostics approach effectively supports

c© 2009 The Author(s)
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(a) DSC=90 (b) DSC=49

Figure 2: Consistent (=Good) vs. Non-Consistent (=Poor)

View – The data set contains three clusters representing

three classes of wine, and 13 attributes describing chemical

properties of the wine. The left figure shows the scatterplot

for dimensions alcohol and flavanoids. The classes are sep-

arated in this view and most data points are located close

to class centers, resulting in a consistent view. In the right

figure in contrast, in the scatterplot of dimensions ash and

magnesium classes are cluttered and not separated, result-

ing in a poor consistency rating.

visual data analysis by organizing the different views in the

space of patterns. Our approach for detecting class consis-

tency is complementary to scagnostics, and could be used as

one of the measures.

The rank-by-feature framework [SS05] helps users to

explore 1–D and 2–D orthogonal projections of a high-

dimensional data space. It allows the data analyst to exam-

ine the 2–D orthogonal projections by ranking these projec-

tions according to a criterion chosen by the data analyst. The

framework effectively supports the user in exploring valu-

able correlations between selected dimensions and in finding

outliers. Again, our notion of class consistency could easily

be added to the rank-by-feature framework.

Cluster-preserving projections seek to generate a single

best view of the data by transforming the data into a space

that maximizes class separability. Koren and Carmel [KC04]

propose an interesting measure of goodness. They weight the

distances between points differently depending on whether

they have the same label. Given this objective function, they

find a linear transformation of the high-dimensional data

maximizing inter-cluster and minimizing intra-cluster dis-

tances. Their method has a significant advantage in com-

parison with traditional PCA or MDS, because they cap-

ture the cluster structure of the data and additionally the

intra-cluster shapes. A similar measure of goodness is pro-

posed in [DMS98]. The authors maximize the distance be-

tween the projected means to get a good cluster separation.

Given this objective function, they find a 2–D plane paral-

lel to the plane containing the cluster centers. The distances

between the cluster centers are persevered under this projec-

tion. One problem with general projections and embeddings

is that users may have trouble interpreting the display axes

(which may be arbitrary linear or nonlinear combinations of

the original variables), or the reconstructed 2–D plane (e.g.

MDS). In contrast to cluster-preserving projections which

seek to generate a single best view, our method scores a set

of existing views. Thus, our method can in principle be used

as criterion to measure the utility of the transformation for

any method that generates a space of possible views.

3. Class Consistency

While many potential criteria that could define a good view

are possible, we claim that a good view to a class structure

should be at least consistent with that class structure (see

Figure 2 for an illustration).

First, we define the data space and the set of views. Let

X ⊆ Rn be a high-dimensional data space consisting of

points xk = (x1
k , · · · ,x

n
k). Let πi denote the 1–D orthogonal

projection Rn → R of that data space, that is, πi(x) = xi.

Similarly, πi×π j is the 2–D orthogonal projection Rn → R2

defined by πi ×π j(x) = (xi,x j).

Definition 1 (2–D View) A view v is a 2–D orthogonal em-

bedding of X to the (i, j) coordinates with v = πi ×π j(X).

Second, we define the clustering algorithm and the result-

ing class structure in n–D. Clustering is the process of find-

ing a partitioning of the data into homogeneous groups.

Definition 2 (Class Structure in n–D) Let X be a n–D data

space X ⊆ Rn. Let τ be an external source that labels data

points as belonging to some classes. Then C = τ(X) =
{

c1, · · · ,cm

}

is the set of m classes called the class struc-

ture of X . Each class consists of the subset of the data space

assigned to that class, and each data point is assigned to a

class, thus

C = τ(X) =
{

c1, · · · ,cm

}

and
⋂

i

ci = ∅ and
⋃

i

ci = X

and clabel : X −→ N with clabel(x) is the associated class

label of each data point x ∈ X .

Note that in general C(X) can be generated by any algo-

rithm that classifies data, or by a-priori semantic information

that divides the data points into categories. In our scenario a

clustering algorithm or a supervised classification method is

an external data preprocessing step that assigns labels to data

points. By belonging to some class we mean to include both

the simple situation of data points clustering around a cluster

center, and the more general situation in which data points

cluster around curved manifolds.

3.1. Basic Concept

We call a view v consistent with C(X) when the m classes of

C(X) are mapped to regions in v(X) that are visually separa-

ble. Note that in contrast to a (non)-linear cluster-preserving

c© 2009 The Author(s)
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transformation that seek to minimize or maximize various

class separability criteria, class consistency is a computable

measure that scores the utility of 2–D orthogonal projections

to visually preserve a given class structure which can be used

to choose the best views in a large matrix of scatterplots.

Definition 3 (Consistent View v(X)) Let X be a n–D data

space X ⊆ Rn. Let C = τ(X) =
{

c1, · · · ,cm

}

be the class

structure of X with m classes.

We call a view v(C) consistent with C iff

∀x
′ ∈ v(X)∀p

′ ∈ nbh(x′) : clabel(p
′) = clabel(x′) (1)

with x′ is the 2–D projection of a data point x, nbh(x′) =
{p′ ∈ v(X)|d(x′, p′) < ε}, and d denotes a metric defined in

X .

The level of consistency of a view depends on the defini-

tion of the threshold ε in the neighborhood function nbh(p′)
which depends on the application scenario and task at hand.

In the following section we propose methods to calculate the

class consistency of a given view v(X).

4. Class Consistency Algorithms

In this section we propose two methods for calculating class

consistency, the centroid distance metric and distribution

consistency. The distance metric can be used as a very ef-

ficient method to compute the class consistency of a view

v(X) if the class structure C(X) describes convex classes.

Distribution consistency is more general, but more expensive

to compute. Since class consistency characterizes the extent

to which the classes are preserved in a 2–D view, class con-

sistency utilizes similar criteria used in traditional clustering

algorithm to compute consistency scores. Note that in con-

trast to clustering algorithms, class consistency is meant to

measure the utility of a given 2–D view to faithfully convey

a given class structure to the user. A natural question is to

utilize alternative clustering measures such as graph cuts in

class consistency, which is left for future work.

4.1. Distance Consistency

Partitioning clustering algorithms such as k-means are

widely used in data analysis. These methods create in gen-

eral convex cluster models, because they aim to partition the

data space into k clusters in a way that the quadratic distance

of all cluster members to the centroid (the scatter around the

centroid) is minimized. More precisely, we can observe that

the distance between a cluster member and its centroid is

minimal in comparison to all other centroids. We call that

the centroid distance CD.

Definition 4 (Centroid Distance CD) Given a data space X ⊆
Rn and a class structure C(X) defining m classes. Let ci be

a class and centr(ci) its centroid, and let x be x ∈ X with

clabel(x) = i. CD describes the property of class members

that the distance d(x,centr(ci)) to its class centroid should

be always minimal in comparison to the distance to all other

centroids, thus

d(x,centr(ci)) < d(x,centr(c j)) ∀ j : 1 ≤ j ≤ m; j �= i (2)

and d denotes a metric defined in X . CD(x,centr(ci)) = true

denotes that the centroid property for x and its centroid

centr(ci) is fulfilled.

The centroid distance CD is a good measure for the com-

pactness and separation of classes in high-dimensional data

spaces, and a low dimensional embedding capturing this ba-

sic property should also show separated classes. Note, if the

embedding of two class centers in v(X) just differs by a small

ε, then the centroid distance property is always violated. We

can use the centroid distance as an efficient measure for cal-

culating consistency for given 2–D orthogonal projections.

The idea of our consistency algorithm is to measure how

well CD is preserved in a 2–D orthogonal projection. We

evaluate a view by computing the percentage of data points

for which CD is violated. Distance consistency will there-

fore be defined as the classification error of class members

using CD.

Definition 5 (Distance Consistency DSC) Let X ⊆ Rn be a

n–D data set with k data points. Let C(X) be a class structure

of X defining m classes C(X) = {c1, · · · ,cm}. Let ci be a

class and centr(ci) its centroid in C(X). Let clabel(x) be

the class label of a point x ∈ X . Let v(X) be a 2–D view

of X , then distance consistency DSC(v(C)) is defined as the

classification error

DSC =

∣

∣x′ ∈ v(X) : CD(x′,centr′(cclabel(x))) �= true
∣

∣

k
(3)

with x′ is the 2–D projection of the data point x and

centr′(ci) is the 2–D projection of the centroid of class ci.

We normalize the classification error to improve inter-

pretability (score between 0 and 100). In practice, the num-

ber of clusters generated by a clustering algorithm is rather

small relative to the number of data points. We only compute

the distances of each point to this small set of cluster centers,

and additionally we terminate the computation if we find a

center that violates the centroid distance CD. Because of this

property the computation time is roughly O(k).

To demonstrate the usefulness of our measure we chose

the pre-classified UCI [NHBM98] wine data set which has

3 distinct clusters defined by 3 different kinds of wine and

13 attributes describing their chemical properties. Figure 2

shows a well and poorly rated view of the wine data (the

class structure is visualized using 3 different colors). In the

well rated view (Figure 2 (a)) all 3 distinct clusters are sep-

arated. In contrast to the well-rated view in Figure 2 (a), the

poorly rated view (Figure 2 (b)) completely merges the green

class with the red and blue classes. In Figure 2 (b) it is not

clear that there are 3 classes in n–D.
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(a) (b) (c) (d)

Figure 3: Basic Idea of Distribution Consistency – Top

row: hypothetical spatial distributions of projected data,

with two classes represented as red and green. Bottom row:

hypothetical histograms showing the proportion of data of

each class in a small region such as a pixel. (a) The classes

are clearly separated. (b) Classes are overlapping, and the

histogram has higher entropy as a result. (c) Classes are

overlapping in the indicated region, but the amount of data is

small. The contribution of this region is weakly weighted. (d)

Classes are spatially interleaved on a fine scale. Although

each individual pixel contains only one class of data, the

distribution has low distribution consistency when class pro-

portions are estimated over a small window.

4.2. Distribution Consistency

In this section we propose an extension of our distance con-

sistency approach to accommodate more general spatial dis-

tributions that cannot be characterized as compact classes.

First consider a small region such as a single pixel (the

size of the region will be reconsidered below). If the region

contains data from only one class, consistency is completely

satisfied. If the region contains an equal mixture of data from

all classes, the region is least satisfactory according to this

criterion.

Definition 6 (Entropy as a Measure of Randomness)

Let C(X) = {c1, · · · ,cm} be a class structure of a high-

dimensional data space X ⊆Rn describing m classes. Calling

pc ≡ pc(x,y) as the number of data points of class c ∈C(X)
in the region centered at screen location x,y, the entropy of

the class data probability density within the region

H(x,y) = − ∑
c∈C(X)

pc

∑ pc
log2(

pc

∑ pc
) (4)

is a measure of consistency violation, having minimum value

zero if the region contains data from only one class (Figure

3 (a)), and maximum value log2 m if all m classes are mixed

equally (Figure 3 (b)).

This measure could be integrated over the whole image.

However, doing so would weight regions equally, regardless

of the amount of data they contain. Arguably, it is more im-

portant to be consistent in regions that contain more data.

Thus, we weight the measure according to the amount of

data in the region, p(x,y) ≡ ∑c∈C(x) pc (see Figure 3 (c)).

Definition 7 (Distribution Consistency DC) Let C(X) =
{c1, · · · ,cm} be a class structure of a high-dimensional data

space X ⊆ Rn describing m clusters. Let v(X) be a 2–D view

of X then distribution consistency DC(v(X)) is a integrated

and weighted measure with

DC = 100−
1

Z
∑
x,y

p(x,y)H(x,y) (5)

The 1/Z is a normalizing constant chosen to improve in-

terpretability. We choose 100/(log2(m)∑x,y ∑ pc) to give a

score between 0 and 100.

The performance of this measure on some difficult two-

class synthetic distributions is shown in Figure 4. Note in

particular Figure 4 (b), showing non-convex distributions

that could not be handled with our earlier algorithm, and

(d), showing a concentric (equal center, differing variance)

distribution with partial but not complete overlap.

The region over which pc is defined should be reconsid-

ered now. If this region is a pixel, as suggested above, the

measure will attempt to select views where individual pixels

are consistent, but will allow pixels representing different

classes to be intermixed arbitrarily. It is usually preferable

however to have pixels of a single class grouped together,

at least to the extent possible without violating other con-

siderations. This will discourage “interleaved” data patterns

such as in Figure 3 (d) (although such projections may be

rare, note that grid-like data patterns do commonly arise in

visualizations of network intrusion scans as different hosts

and ports are accessed in sequence). The measure is altered

to consider this by defining pc(x,y) to be the “amount” of

data in a larger region σ centered at x,y, more specifically,

the integral of the projected data under a weighting kernel

of width σ. The choice of kernel width is an issue. In our

case however, the kernel width has a direct interpretation as

the size of a region over which classes should (preferably)

not be mixed. The desired kernel width can thus be specified

interactively with a slider.

Distribution consistency is relatively insensitive to the

choice of σ except in the case of interleaved patterns such

as Figure 3 (d). To demonstrate this, an interleaved pattern

similar to Figure 3 (d) was added to the set in Figure 4. The

following table shows the distribution consistency rankings

for the patterns from Figure 4, with the relative ranking of

the new pattern indicated numerically (from left to right):

σ = .5% 100 (a) (b) (c) (d) (e)

σ = 5% (a) (b) (c) (d) 24 (e)

It can be seen that with σ set to 5% of the image width, the

interleaved pattern is rated as having low consistency (24),

but the ranking of the other patterns is unchanged.
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(a) 99 (b) 74 (c) 51 (d) 29 (e) 15

Figure 4: Rating of several synthetic patterns by distribution consistency – the distribution consistency score is indicated

below each figure. From left to right: (a) separate distributions, (b) separate non-convex distributions, (c) distributions partially

overlap, (d) concentric distributions (same center, different variance), (e) identical distributions.

5. Selecting Good Views in Large SPLOM

The challenge in exploratory data analysis is to find the

highly revealing views of a high-dimensional data space. We

demonstrate the benefit of class consistency for the interac-

tive exploration of classes in large matrices of scatterplots.

For this purpose, we integrated our class consistency mea-

sures into an exploration system called Class Explorer.

To demonstrate the usefulness of our class consis-

tency measures we chose two pre-classified data sets. The

UCI [NHBM98] wine data set which has 3 distinct clus-

ters defined by 3 different kinds of wine and 13 attributes

describing their chemical properties. The WHO HIV data

set [Wor08] consists of 159 attributes describing socio-

economic properties of 194 member countries such as birth

attended by skilled health personal, life expectancy, access

to safe water sources etc. The member countries are classi-

fied into 6 HIV risk groups.

Figure 5 shows typical exploration scenarios. In Figure 5

(a) it is difficult to manually detect good views to the wine

data in reasonable time; even for moderate numbers of at-

tributes. Our system computes the class consistency for each

scatterplot, and the user can define class consistency thresh-

olds via interactive sliders to fade out ’poor’ views. After

the consistency threshold is set to 80 many irrelevant views

are faded out. It is easy to see that scatterplots which show

all 3 clusters separated are detected as good views. The user

may now analyze the remaining views, by selecting them

for detailed analysis. Additionally, the user can interactively

navigate through a ranking of views according to their class

consistency, to analyze highly ranked scatterplots.

Figure 5 (b) shows a more reasonable scenario. The map-

ping of the 159 dimensions of the WHO data space into

2–D scatterplots results in over 12.000 unique views to the

6 HIV risk groups. An analyst typically inspects views till

interesting patterns are found. Views that are cluttered or

where the clusters mix provide little insight and are often

considered uninteresting. Clearly, a human analyst cannot

afford to look at every scatterplot in that huge SPLOM to

explore mutual relationships of HIV risk groups because of

his/her limited attention. Again, after the consistency thresh-

old is set to 80, nearly 97% of the scatterplots are faded

out. Figure 5 (b) shows a small part of the SPLOM of the

159-dimensional WHO data set. Scatterplots with low con-

sistency scores are faded-out, and even the distribution of

highlighted views across the SPLOM can reveal relations. In

the WHO’s SPLOM, many rows exclusively contain views

with high consistency scores. A closer look at the dimension

of one of these rows surprisingly shows that total expendi-

ture on health as percentage of gross domestic product sep-

arates high-risk and low-risk cluster well. Besides this filter-

ing step our method allows to rank views from high to low

consistency values as shown in Figure 5 (b).

6. Evaluation

6.1. Consistency on Different Data Sets

To evaluate our technique, we applied the consistency mea-

sures to a number of different data sets, including Iris,

Wine, and Boston Housing data sets from the UCI reposi-

tory [NHBM98], synthetic data sets, and unclassified data

sets as well. For classified data, the consistency measure

ranks how consistently the high dimensional classes are rep-

resented in the 2–D embeddings. For unclassified data we

applied a clustering algorithm to generate a high dimen-

sional class structure, and applied the consistency measure

to analyze the consistency of the 2–D projections.

The max and mean distance consistency for all data sets

are shown in Figure 6. The left figure shows that the num-

ber of consistent views decreases with increasing number of

dimensions but our distance consistency measure still iden-

tifies a number of good views. For the Iris data for example,

which is fairly simple since one of the three cluster can be

linearly separated, our approach rated the views on average

with DSC = 90.

For the Boston Housing data set we experimented with

different numbers of classes. For this data set, the mean con-

sistency decreases with increasing number of classes due to

the decreasing separation between classes as shown in Fig-

ure 6. However, our measure still identifies good views with

consistency with more than DSC = 70 as shown in the right

figure. In general, these experiments show that our consis-

tency measure is able to identify views that reveal the class

structure in n–D.
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(a1)

(a2)

(a) Wine (13 Dimensions)

(b) WHO (159 Dimensions)

Figure 5: Interactive Selection of good scatterplots – in-

teractive threshold sliders to fade out poor views supports to

find good views interactively (a) . In this example, views be-

low DSC = 80 are faded out. The projection of dimensions

(1,11) for example has a high consistency of DSC = 86,

as shown in (a2). (b) In the WHO example, views below

DC = 80 are faded out. Many irrelevant views are faded-

out and the number of views to look at can be interactively

reduced to a manageable size.

6.2. Comparison with human judgement

We performed a small experiment to show the performance

of our automated consistency measure in comparison to the

human selection of good views. We asked 10 people from

the graphics laboratory at Stanford to select 5 good views

in different scatterplot matrices. We ran our experiments on

a number of real-world and artificial data sets and the size

of the matrices of scatterplots varied from small (4 and 8

dimensions) to very large (13 and 30 dimensions). We com-

puted recall and precision to demonstrate the performance of

our distance consistency.

Figure 7 shows the result of this experiment. The left fig-

ure shows that the performance of distance consistency is

clearly related to the good views selected by humans. Fur-

thermore, even for a large number of dimensions (hundreds

of views) the automatically detected views are consistent
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Figure 6: Normalized max and mean distance consistency

for Iris (a), Olive (b), Wine (c), Boston Housing (d), Bul-

garia Health [Bul08] (e), Health [NHBM98] (f), Artificial

(g), WHO (h) – it shows that the number of good views de-

creases but our technique identifies a number of good 2–D

views for these data sets (left). For the Boston Housing data,

the consistency decreases with increasing number of clusters

due to the decreasing separation between clusters (right).
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Figure 7: Precision and Recall – even for a large number of

dimensions the automatically detected good views correlates

to over 50% with people’s judgement of good views. Addi-

tionally we see that our distance consistency violates the hu-

man understanding of a good view only in a small number

of views.

with at least half of the sample population’s judgments of

what a good view is.

The right figure shows the effectiveness of our distance

consistency. We can see that distance consistency finds some

good views that are not selected by the user. We inspected

these views and made the following two observations. First,

human viewers have little preference when shown views dif-

fer in consistency by about 5% or less as rated by our mea-

sure, so the choice between fairly similar views is somewhat

arbitrary. The second observation is that human observers

may simply fail to notice every good view in datasets with

more than a handful of plots. We can also see that even for a

large number of dimensions our distance consistency detects

almost all good views selected by the human, and therefore

is in line with human judgement.
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6.3. Comparison of consistency methods

Rather than repeating all these evaluations on the distribu-

tion consistency measure, we chose to simply examine the

correlation between this measure and the distance consis-

tency measure. The correlation between these measures is

reasonably strong and is not sensitive to the kernel width (σ)

parameter in the optimal region. This table shows the corre-

lation as a function of σ for the Wine and Iris data:

σ correlation (wine) correlation (iris)

.03 71 81

.04 71 84

.05 70 86

In summary, our experiments show that our consistency

measures are in line with human selection of good views.

7. Summary and Conclusion

In this paper we introduced class consistency as a crite-

rion for automatically ranking and selecting good views to a

class model from among the numerous possible projections

of a high-dimensional data set. Class consistency character-

izes the extent to which the class neighborhood structure in

the high-dimensional data is preserved in a low-dimensional

view. This method can be applied to data with preexisting

categorical labels, or to data that has been organized into

classes with a clustering algorithm.

Two computable measures of consistency were presented.

The first, distance consistency, is easy to implement and is

well suited for data with convex clusters. We found that this

measure is correlated with people’s preferred views of a va-

riety of real world data sets. The second measure, distribu-

tion consistency, is more general and can assess non-convex

and interleaved data distributions. We compared these two

measures on a variety of data sets and found that they were

highly correlated. The use of these consistency measures

can reduce or eliminate the need for the analyst to manually

search among a large number of data projections.

One issue that became apparent during our studies is that

with increasing number of dimensions or clusters it is harder

to find views that are highly consistent. The chances that

clusters mix increases as the dimension and the number of

clusters increase. This is a serious problem in real-world data

analysis, in which case the analyst might consider other vi-

sualization techniques. Thus, class consistency can be used

as a warning sign that suggests other techniques should be

tried.

In this paper, we only considered scatterplot matrices. A

natural question is whether these ideas can be applied to

other types of visualizations. We could consider alternative

projections or embeddings, or completely different visual

metaphors. Consistency is a very powerful idea and could

be generalized in many ways.
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