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Abstract. In this paper, we introduce a new general strategy for active learning.

The key idea of our approach is to measure the expected change of model outputs,

a concept that generalizes previous methods based on expected model change and

incorporates the underlying data distribution. For each example of an unlabeled

set, the expected change of model predictions is calculated and marginalized over

the unknown label. This results in a score for each unlabeled example that can be

used for active learning with a broad range of models and learning algorithms. In

particular, we show how to derive very efficient active learning methods for Gaus-

sian process regression, which implement this general strategy, and link them to

previous methods. We analyze our algorithms and compare them to a broad range

of previous active learning strategies in experiments showing that they outper-

form state-of-the-art on well-established benchmark datasets in the area of visual

object recognition.

Keywords: active learning, Gaussian processes, visual recognition, exploration-

exploitation trade-off.

1 Introduction

Over the last decade, the amount of accessible data has been growing dramatically and

our community discovered the benefits of “big data” for learning robust recognition

models [2,11]. However, in several important applications, e.g., defect detection [15] or

fine-grained categorization of rare categories [7], collecting labeled samples turns out to

be a hard and expensive task, where labeling uninformative samples should be avoided

as much as possible. Therefore, actively selecting an informative set of samples to label

is important, especially if the labeling budget is strictly limited. Furthermore, it is nec-

essary for life-long learning of visual objects, where we are interested in incrementally

enriching object models with minimal user interaction.

In active learning, we are interested in reducing expensive manual labeling efforts.

This goal is achieved by identifying a subset of unlabeled samples from a huge pool,

such that the resulting accuracy (classification or regression accuracy depending on the

application) of a model learned using the additional subset is maximized. The chal-

lenges are that the labels of the selected examples are only available after the selection
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Fig. 1. Illustration of the active learning strategy introduced in this paper: an initial model is

trained from labeled samples (blue and green). Unlabeled samples (gray) are evaluated with re-

spect to the change of model outputs after adding them to the train set. For three exemplary

samples (red, orange, and pink), the resulting model output change (MOC) for three different im-

ages is visualized. The sample leading to the strongest output change marginalized over all data

Ω is finally queried.

and that the accuracy for unseen data can not be correctly measured beforehand and a

proxy for it needs to be optimized. Although approximations exist based on estimated

labels [16] or estimated confidence [1], they have to perform time-consuming extensive

model evaluations and updates. Furthermore, estimating class labels is especially prone

to errors in the presence of only few labeled data – which is the working range of nearly

all active learning scenarios.

To circumvent these drawbacks, a variety of different strategies has been proposed,

which are based on what one assumes to be important for higher accuracies, e.g., a

rapid exploration of the whole feature space [10], the identification of ’hard samples’

among unlabeled points with respect to the current model [17], or combinations of

existing techniques [1,4]. Although being intuitive in their different ways, none of these

strategies can actually guarantee an impact of active learning on future model decisions.

In this paper, we therefore introduce a new general active learning strategy facing the

problem by predicting the influence of an unlabeled example on future model decisions.

If the unlabeled example is likely to change future decisions of the model when being

labeled, it is regarded as an informative sample. An illustration of our strategy is visu-

alized in Fig. 1. In the toy example, the final query is likely to change model outputs

for a whole set of samples and is therefore preferred over samples which would lead

to almost no changes. In summary, the contributions of this paper are two-fold: (1) we

present a novel active learning strategy applicable to different applications and models,

and (2) we derive an efficient algorithm based on Gaussian process regression from our

general strategy.

The active learning strategy most similar to ours is to calculate the expected model

change [6,20], which is mostly realized by measuring the Euclidean distance between

the current model parameters and the expected model parameters after labeling. As we

show in this paper, this strategy completely ignores the underlying data distribution,

which is not the case for our approach, where we consider the change of model out-

puts instead of model parameters. Our technique is rather general and can be used for

several different learning methods; however, we show that in the case of Gaussian pro-

cess regression (or kernel ridge regression), the expected model output change can be

efficiently calculated without learning from scratch. Furthermore, several active learn-

ing methods derived from the new approach are empirically compared with each other
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Fig. 2. Visualizing our active learning technique (EMOC). Figure is best viewed in color and

by zooming in. Current classification scores are color coded, and thickness of unlabeled samples

corresponds to their active learning scores, with large scores being preferred. You are invited to

compare also against results of different strategies given in the supplementary material.

and we demonstrate in our experimental evaluation on well-known visual recognition

datasets the advantage of expected model output change as a tool for active learning.

Why Yet Another Active Learning Technique? While facing active learning and

diving through the enormous amount of great work done in this field, we sought for

gaining clarity about which technique to use in which scenario. We investigated several

playgrounds, among it a 2D toy example simple on first sight (see Fig. 2 and supple-

mentary material). To our surprise, the majority of existing approaches struggled heav-

ily due to either a focus too strong on outliers, or poor discovery abilities (see Table 1

in the suppl. mat. for an overview of our findings). The only positive exception, how-

ever, performed surprisingly poor in experiments on real-world data. As a consequence,

we found the necessity to develop a technique inheriting advantages of previous active

learning approaches, i.e., being capable of discovering new clusters of data while be-

ing resistant to outliers, and on the same time focusing on regions where unconfident

classification boundaries badly need improvements. In the remainder of the paper, we

derive our technique from a theoretical position, prove it on real-world data, and, with-

out further anticipating, show here already on the 2D problem that our technique offers

the desired properties (see Fig. 2).

After reviewing related work in Sect. 2, we derive the main principle of our approach

in Sect. 3. How to obtain efficient query strategies by utilizing Gaussian process models

is shown in Sect. 4 and fast approximations are derived. Sect. 5 shows that the typical

trick of density weighting in active learning can be motivated as a very rough approx-

imation of our approach. We finally analyze the derived strategies on well-established

benchmark datasets for visual object recognition in Sect. 6.

2 Related Work

As mentioned earlier, active learning techniques aim for selecting samples that lead to

the highest improvement in accuracies, or similarly reduce the error as fast as possible.

Since accuracies can not be reliably estimated in the absence of test data, multitudes of

proxies and heuristics have been developed, which can be grouped into several general

strategies. We review a prominent subset of them and list a few representative works.
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Rapid Exploration. In order to quickly obtain label information for the whole fea-

ture space, exploration strategies prefer samples maximally far away from all current

training samples, like KFF by [1] or the Gaussian process predictive variance [10].

However, since recognition problems are often characterized by low-dimensional man-

ifolds of the original input space, these techniques often struggle with querying outliers

rarely related to the class distribution.

Maximum Uncertainty. Similar to exploration, techniques relying on classifier un-

certainty aim for selecting samples the current model is most uncertain about. In con-

trast to the previous strategy, this is done in a supervised manner taking the current

model boundaries into account. Exemplary techniques are given in [21] and [10] for

Support Vector Machines (SVM) or Gaussian process classifiers (GP), respectively.

Maximization of Expected Model Change. To balance exploration and exploitation

and additionally ensure that queried samples affect the current model, techniques in

this area favor samples that result in the largest model change after retraining. Since

the process of model retraining is costly, techniques had been restricted to parametric

models where the model change can be traced back to the change of the gradient of

the objective function [20]. In our earlier work [6], we extended this strategy to non-

linear GP regression models by exploiting efficient closed-form updates. However, a

theoretical connection to the goal of error reduction is missing and assuming that a large

model change results in an acceptable change of predictions is not valid in general.

Reduction of Estimated Classification Error. To overcome the previous shortcom-

ings, this strategy directly aims at reducing the unknown classification error of the

current model under a specified loss function. The technique most famous here was

introduced by [16], where the true conditional distribution is approximated with the pre-

diction of the current model, which leads to an expected entropy minimization scheme.

Although being closest to the goal of active learning, techniques of this strategy suffer

from two drawbacks: (i) they often have to face the computational costs of model re-

training for every unlabeled sample and additionally have to evaluate the error on all

available data, and (ii) the estimation of unknown labels needed for error evaluations is

crucial and prone to errors especially in the presence of only few training data.

Work Most Similar to our Approach. The active learning approach we introduce in

this paper is located in between the general strategies of Maximization of expected model

change and Reduction of estimated classification error. While the first one does not take

the actual change of model decisions into account at all, the latter requires perfectly reli-

able estimates of class labels used for empirical risk estimation. Both drawbacks are less

present in our strategy. Additionally, we show that the density re-weighting technique

introduced by [19] can be derived as an approximation of our proposed method. Fur-

thermore, [22] present a technique to actively pick unlabeled nodes in a CRF to improve

semantic segmentation quality based on the amount of CRF nodes flipping their state,

which is generalized in our approach as well. For the choice of a GP regression model,

we show how to transfer the work in [6] to our approach, which thereby additionally

exploits the density information available in unlabeled data.
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3 Expected Model Output Change (EMOC)

In pool-based active learning, a set L ∈ Ωn of n labeled examples with labels y ∈ Yn

and a set U ⊂ Ω of unlabeled examples is given from a problem domain Ω and an

algorithm should select an example x′ ∈ U to be labeled by an annotator, i.e., assigned

an output value y′ ∈ Y . The selection aims at improving the accuracy of a model

f : Ω → Y (e.g., a classifier for Y = {−1, 1} or a regressor for Y = R) learned by

the given training data. In this paper, we deal with selecting one example at a time also

known as myopic active learning.

As reviewed in the last section, several quite different active learning strategies exist.

However, what we ultimately look for are high accuracy models with less annotated

data, i.e., we should select unlabeled examples x′ that lead to the maximum increase in

accuracy when being labeled and used to improve the current predictor. Unfortunately,

we can never precisely predict the change in accuracy after adding a sample to the

labeled pool in advance1. Therefore, we would like to raise the question: Given a pool

of unlabeled samples – some of them changing your model outputs when being labeled

and added, others do not change anything – which one would you query?

In absence of further knowledge, we argue that examples that lead to high expected

model output changes should be queried. Therefore, we consider how strongly a new

sample x′ influences the model decisions marginalized over all possible inputs x ∈ Ω
and over its yet unknown output y′ ∈ Y:

∆f(x′) = Ey′∈Y Ex∈Ω

(

L
(

f(L,y)(x), f([L,x′],[y,y′])(x)
)

)

, (1)

where f(·,·) is a model trained from labeled data and L is a loss function measuring the

difference between model outputs. In the following, we skip the dependency of L,y,x′

and y′ on f in the notation and instead write f(x) and f ′(x) for models before and

after including (x′, y′) as additional training sample:

∆f(x′) =

∫

Y

(∫

Ω

L(f(x), f ′(x)) p (x) dx

)

p(y′|x′)dy′.

The active learning algorithm we propose evaluates ∆f(x′) for all unlabeled examples

x′ ∈ U and selects the example with the maximum value. In the following, we motivate

the usefulness of this strategy for active learning and derive a specific algorithm from it

by defining probability estimators, loss functions, and model classes.

EMOC Is an Upper Bound for Loss Reduction. Using EMOC for active learning

can be motivated as an upper bound for the expected loss reduction. The additional

assumption we need is that the loss function L obeys the following triangle inequality

for a, b, c ∈ Y:

L(a, b) ≤ L(a, c) + L(c, b) . (2)

1 Note that we can not even precisely measure the accuracy of our system before the update and

instead have to rely on approximations based on validation and test sets.
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Furthermore, we assume that the model g(x) learned from all possible data of the prob-

lem domain Ω exists2 and that

ǫf = Ex∈Ω (L (f(x), g(x))) , (3)

is giving us an error measure for f . The expected decrease in loss for f ′ can now be

defined as ∆ǫ = Ey′∈Y(ǫf − ǫf ′) and the following shows that the expected model

output change defined in Eq. (1) is an upper bound [22]:

∆ǫ = Ey′∈Y Ex∈Ω (L(f(x), g(x))− L(f ′(x), g(x)))

≤ Ey′∈Y Ex∈Ω (L(f(x), f ′(x))) = ∆f(x′).

It is impossible to directly maximize the loss reduction term on the left-hand side for

active learning, because g is unknown. Therefore, our active learning methods search for

the unlabeled example x′ with highest upper bound in loss reduction given by EMOC.

It should be noted that this of course does not guarantee a proper decrease in the loss,

but it at least does not limit it in advance by selecting examples that do not change

model outputs at all.

Possible Choices for L(·, ·) and p(x). The choice of L naturally complies with the

problem settings faced. The absolute difference |f (x) − f ′ (x) | in model response is

well suited for regression tasks with continuous output values. For classification tasks,

where Y is a discrete set, the common choice for measuring model output changes

would be the classification loss, where L(a, b) is 1 for a �= b and zero everywhere else.

However, we will see that for classification decisions based on thresholding underlying

continuous model outputs, simpler losses can be used that avoid estimating a threshold

(Sect. S1 in the supplementary material). Marginalization over y′ is done by computing

estimates based on the current model output and we discuss the details in the next

section. In the future, we are planning to investigate also losses suitable for multi-class

classification tasks.

What remains is how to model the probability distribution over the input space in

practice, i.e., how to specify p(x). Since we only have access to the set S = L ∪ U of

labeled examples L and unlabeled examples U, we approximate p(x) with the empirical

density distribution:

p(x) ≈
1

|S|

∑

xj∈S

δ(x− xj) , (4)

where δ(x) is the Dirac function. Note that this implies a representative data distribution

in S, which however is one of the main assumptions for active learning. In summary,

EMOC scores (see Eq. (1)) for models with continuous outputs can be calculated based

on empirical estimates for given data by:

∆f(x′) = Ey′∈Y

⎛

⎝

1

|S|

∑

xj∈S

|f (xj)− f ′ (xj) |

⎞

⎠ , (5)

independent of the learning algorithm for f .

2 For classification, we need this requirement for g because the label space is not R. However,

for regression, we could even assume that g is the ground-truth function.
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4 Efficient EMOC with GP Regression

Our active learning strategy introduced in the previous section applies to a broad span of

possible models and a naive approach to calculate the scores is to train a new predictor

f ′ for each unlabeled example x′ ∈ U by adding the example to the training set, retrain

the predictor, and evaluate it on the whole set of examples given. In the following,

we show that this is not necessary when using Gaussian process regression models.

Furthermore, we also show how the marginalization over y′ can be directly done.

Gaussian process regression is a kernel approach with the following decision

function:

f(x) =

n
∑

i=1

αi κ(xi,x) = αTk(x) (6)

where κ is a given kernel function. The weight vector α of the model is the result of ker-

nel ridge regression and given by
(

K+ σ2
n
· I
)−1

y, where K is the kernel matrix of the

training set L, y is the vector of outputs of L, and σ2
n

their assumed noise variance [13].

For the model in Eq. (6), the influence of a new sample on all possible predictions can

therefore be computed as follows:

∆f(x′) = Ey′∈Y

⎛

⎝

1

|S|

∑

xj∈S

|k(xj)
Tα− k̄(xj)

Tᾱ|

⎞

⎠

= Ey′∈Y

⎛

⎝

1

|S|

∑

xj∈S

|k̄(xj)
T

([

α

0

]

− ᾱ

)

|

⎞

⎠

where k̄(x) = [k(x) κ(x′,x)] and ᾱ = K̄
−1

[

y

y′

]

is the updated weight vector

computed using the regularized kernel matrix K̄ of L ∪ {x′}.

Efficient Model Updates. Instead of computing expected model output changes

from scratch by retraining the model with each unlabeled example, GP regression al-

lows us to compute the new model and therefore also the change ∆α of model coeffi-

cients efficiently and in closed form for a given output y′:

∆α
·
=

[

α

0

]

− ᾱ =
y′ − k

T
α

σ2
f∗

+ σ2
n

[
(

K+ σ2
n
· I
)−1

k

−1

]

, (7)

where σ2
f∗

is the predictive variance of x′ and k is the vector of pairwise kernel values

of the training set and x′. A proof is given in [6] and is based on block-wise matrix

inversion. Please note that similar derivations for linear models are also possible and

known for several decades [12].

EMOC for Classification with Label Regression. With GP regression as an illus-

trative example, we focused on models with a continuous output. For classification, we

assume the final output to be obtained by maximizing a given p(y | f(x)). In fact,
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a prominent set of popular models used for binary classification, such as SVMs [18],

GP-regression [13], or LDA [9], first compute continuous scores for test samples which

are then transformed to discrete responses, e.g., by comparing against an application-

specific threshold. For the case of GP classification, using GP regression scores as pro-

posed by [10] leads to treating outputs as continuous values with Gaussian random

noise and allows for skipping approximate inference necessary for direct GP classifi-

cation [13]. Since we focus on binary classification settings in the rest of this paper,

we argue to compute model output changes directly on the continuous scores, which

reflects the non-ordinal nature of these models, avoids tricky threshold determinations,

and will also be important to develop a fast version of our active learning algorithms.

Furthermore, we will see in the experiments that label regression leads to an even better

classification performance than proper classification models with approximate infer-

ence (supplementary material, Sect. S1).

Although our computed model output changes are based on continuous scores, the

labels y′ are still binary, i.e., y′ ∈ {−1, 1}, and we need a method to compute the

expectation with respect to y′ in Eq. (1). We know that the output of GP regression

is not only a deterministic estimate but rather a predictive Gaussian distribution with

mean f(x′) and variance σ2
f∗

. Therefore, we compute p(y′ = 1|x′) by calculating the

probability that a sample from this distribution is positive, which directly corresponds

to the manner in which classification decisions are done in [10]3. This probability can

be calculated in closed form:

p(y′ = 1|x′) =
1

2
−

1

2
· erf

(

−f(x′)/
√

2σ2
f∗

)

(8)

using the error function erf(z) and is related to the cumulative Gaussian noise model

presented by [13]. In summary, the inner part of ∆f(x′) is evaluated using Eq. (7) for

y′ = 1 as well as y′ = −1, and both values are used to compute a weighted average

using the probability in Eq. (8).

Fast Approximated EMOC. Even with the efficient model updates presented, we

have to compute k̄(xj)
T∆α for every unlabeled example xj , which can be a huge

computational burden for large sets of unlabeled examples. Fortunately, the computa-

tion time necessary to evaluate EMOC can be significantly reduced by the following

approximation:

∆f(x′) = Ey′∈Y

( 1

|S|

∑

xj∈S

|k̄(xj)
T∆α|

)

(9)

≤ Ey′∈Y

( 1

S

∑

xj∈S

k̄(xj)
T abs(∆α)

)

(10)

3 A more sophisticated estimation might also marginalize over possible thresholds, and future

work should focus on integrating this aspect efficiently.
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where abs(·) denotes element-wise absolute value. Since the model change ∆α itself is

independent of xj , we can write this in short form as

∆ffast(x
′) = Ey′

(

n+1
∑

i=1

(

|∆αi|
1

S

∑

xj∈S

κ (x,xj)
))

. (11)

The computational benefit of the approximation introduced above is two-fold: (i) the

asymptotic runtime reduces (see Table 2), and (ii) instead of demanding the kernel

matrix consisting of kernel values between every two samples of S, computing the

approximated version only needs the resulting row sums. Additionally, note that the

approximation has an interesting interpretation: the right-hand side can be seen as a

Parzen density estimation

PDE(x;S) ∝
1

|S|

∑

xj∈S

κ(x,xj) (12)

of each of the corresponding training samples estimated with both labeled and unlabeled

data (S = {L ∪ U}). Therefore, the changes of model coefficients are weighted with

respect to the data likelihood, i.e., an outlier with a high change in α should not have

a huge impact on EMOC and therefore also not on the selection process during active

learning. Note that kernel density estimation takes place in a possibly high-dimensional

input space, however, we have not seen any issues with respect to the curse of dimen-

sionality in our experiments.

5 Density Weighting as a Special Case of EMOC

In the following section, we do not propose any novel method, but show that a further

approximation of the EMOC principle leads to density-weighted queries [19]. This con-

nection emphasizes the importance of density weighting for active learning in general,

which will be further studied in our experiments. Density weighting has been known

for quite a while for active learning, but to the best of our knowledge, we are the first

ones presenting it as an approximation of a very general active learning strategy.

Let us now denote the vector containing density values of all labeled samples with

p
L
: p

(i)
L

= PDE(xi;S) and let further be px′ = PDE(x′;S) the data density value

of the new sample. We can then even further approximate ∆ffast(x
′):

∆ffast(x
′) = Ey′

(

∣

∣

∣

∣

∆αT ·

[

pL

px′

]∣

∣

∣

∣

)

(13)

≤ Ey′

(

‖∆α‖1 ·

∥

∥

∥

∥

[

pL

px′

]∥

∥

∥

∥

1

)

(14)

∝ Ey′

(

‖∆α‖1 · |px′ |
)

, (15)

where we used the fact that only terms depending on x′ are important for the selection

process during active learning.



Active Learning with Expected Model Output Changes 571

Consequently, we notice that this very rough and simplified approximation of our

proposed active learning strategy is equivalent to taking queries based on expected

model change, e.g., using [6], and to multiply the scores with a Parzen density esti-

mate of the corresponding unlabeled sample. This indeed seems intuitive, since we now

can ensure that the samples being queried not only affect the model, but are also likely

to occur in dense regions of the space with respect to our current subspace of interest.

Note that in contrast to [6], we marginalize over y′ instead of using only the most likely

y′ as proposed by the authors.

Extension to Arbitrary Query Strategies. Based on the previous ideas, we will use

the following straight-forward replacements of arbitrary query strategies4 Q(x) in order

to integrate the data density:

Q∗(x) = px · Q(x) . (16)

The suggested replacement is a heuristic, which is easy to apply and motivated by our

approach. We thereby ensure that samples of high density areas5 are preferred over

outliers from non-important, sparse regions. We show in our experiments that this mod-

ification improves the performance of previous active learning methods and therefore

also offers a fairer comparison to our new active learning methods based on expected

model output change.

Note that the idea for density-based re-weighting of query scores was already intro-

duced in [19] for the task of sequence labeling. However, the authors proposed it as a

heuristic without a clear theoretical motivation and simply note that they would recom-

mend it in practice. In contrast to that, we place this technique in a proper theoretical

background by deriving it as a special approximation of the more general active learn-

ing approach introduced in this paper. Furthermore, the Parzen estimates in Eq. (12)

use all the given samples S = {L ∪ U} in contrast to S = U as proposed in [19]. This

is reasonable, since (1) density estimates do not have to be adapted during the query

process, which naturally changes U and (2) we estimate densities for the actual problem

setting, i.e., we rely on all information and data we have and not only on an arbitrary

subset.

6 Experimental Results

For an experimental evaluation, we have been interested in the following aspects (i) how

do active learning techniques derived from our strategy compare to previous state-of-

the-art strategies (see Sect. 6.1), (ii) how strongly does the density-based re-weighting

affect learning accuracies of state-of-the-art techniques (see Sect. 6.2), (iii) how pow-

erful is the EMOC approach under ideal settings, where we assume a perfect label

estimation for model updates (see Sect. 6.3), and is label regression enough for classi-

fication (supplementary material, Sect. S1)? To answer these questions, we follow the

experimental setup of [6] and use the corresponding evaluation protocol6. We conduct

4 If Q is designed to query samples with minimum score, multiply by 1− p(x) instead.
5 Density is considered with respect to the current problem and its induced data distribution.
6 Evaluation protocol was taken from

https://github.com/cvjena/activeLearning-GP

https://github.com/cvjena/activeLearning-GP
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Fig. 3. Active Learning on binary tasks derived from ImageNet (left) and Caltech 256 (right) .

We compare against active learning strategies ’rapid exploration’, ’maximum uncertainty’, ’max-

imization of expected model change’, and ’reduction of estimated classification error’. See text

for further details. The figure is best viewed in color.

experiments on two well-established benchmark datasets for image categorization: Im-

ageNet [3] and Caltech-256 [8]. Source code of our techniques and experiments will be

made publicly available at our homepage http://www.inf-cv.uni-jena.de/

active learning.

6.1 Comparison to State-of-the-Art

Experimental Setup. As done in [6], we derive 100 random binary tasks from the

ImageNet challenge consisting of a single positive and 9 negative classes. Every task

is repeated with 10 random initializations, which finally results in 1,000 experiments

to allow for reliable conclusions. Images are represented using the publicly available

bag-of-words-features of ILSVRC 20107 and we evaluate our EMOC approach when

using GP regression models as introduced in Sect. 4. In particular, we rely on the ex-

act model output change as introduced in Eq. (4) (EMOC), its approximation given in

Eq. (13) (Fast EMOC), as well as the density-weighted model change (GP-impact ·
density, see Eq. (15)), which is an extension of [6] derived from the EMOC principle.

We compare against passive learning (random), which is the naive baseline for all active

learning settings. Apart from that, we chose representative state-of-the-art methods for

the reviewed strategies: GP-var (using examples with a high predictive GP variance)

and GP-unc (seek for small ratios of predictive GP mean and variance) have been intro-

duced by [10] and are representative for the rapid exploration and maximum uncertainty

strategy, respectively. Additionally, we compare against the technique introduced in [6]

(GP-impact) for the expected model change strategy, and the approach of [16] trans-

ferred to GP (GP-minRisk) for reduction of estimated classification error principle. See

Sect. S4 in the supplementary material for further details of the experimental setup.

Evaluation. Active learning curves on tasks derived from ImageNet are shown in

the left plot of Fig. 3. Dashed curves correspond to strategies existing in the litera-

ture, whereas our techniques are plotted in solid lines. First of all, we observe that the

rapid exploration strategy leads to worse classification accuracies then passive learning,

7
http://www.image-net.org/challenges/LSVRC/2010

http://www.inf-cv.uni-jena.de/active_learning
http://www.inf-cv.uni-jena.de/active_learning
http://www.image-net.org/challenges/LSVRC/2010
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Table 1. Experimental results for ImageNet and Caltech 256: Average AUC value (in %) after 50

queries for 100 random binary tasks averaged over 10 random initializations. (∗) Our approach

significantly outperforms all other approaches verified by a paired t-Test and p < 10−3.

Strategy ImageNet Caltech 256

Random 76.83 81.70
Predictive variance [10] (GP-var) 73.11 77.06
Classification uncertainty [10] (GP-unc) 76.97 84.31
Reduction of classification error [16] (GP-minRisk) 76.08 84.59
Model change [6] (GP-impact) 78.32 84.56

EMOC strategy (Ours)∗ 80.03 85.88

which indicates the preference of outliers being queried. In contrast, nearly all remain-

ing methods improve random sampling. Interestingly, empirical risk minimization leads

to results slightly inferior to passive learning, emphasizing the negative influence of

wrongly estimated labels. In contrast, queries based on expected model output change

result in a significant improvement, confirming the intuition that samples resulting in

different model responses are worth being labeled. As argued in Sect. 4, this partly orig-

inates from the fact that previous methods focus on less important aspects of unlabeled

examples, e.g., looking for unexplainable samples (as done by GP-uncertainty) might

result in interesting samples, but without a clear relation to improvement of accuracy.

To further verify our findings, we performed experiments with an identical setup

on the Caltech-256 dataset and visualized results in the right plot of Fig. 3. The re-

sults clearly indicate the before-mentioned relation between different active learning

approaches. Uncertainty-based strategies obviously have problems querying useful sam-

ples if the size of training data is relatively small. Apart from that, the results are

consistent with the observations from the ImageNet experiment. In addition, Table 1

contains average AUC values obtained after 50 queries. Our approach outperforms all

other strategies significantly (paired t-Test, p < 10−3). It has to be emphasized again

that we obtained this result from experiments with 100 different recognition tasks and

10 different initializations. Furthermore, we compare against representative approaches

of five active learning strategies.

With respect to the approximations of the EMOC principle, we further observe that

for few labeled data in the ImageNet experiment, the approximation performs better

then the exact EMOC scores, whereas for a larger number the relation switches. This

suggests that the introduced approximations are less affected by randomly initialized

training sets, whereas exact EMOC scores are especially valuable when the current

model can be trained more robustly.

Evaluation in a One-vs-All Scenario. We also evaluated our approach in binary

tasks created in a one-vs-all manner as done by [10] (see supplementary material for

further details). As can be seen in Fig. 4, we observe a similar performance benefit of

our methods as in the previous experiments. Visualizations of queried images for the

airplane task as well as some hand-picked, interesting queries for remaining scenarios

are given in the supplementary material (see Sect. S5, Fig. 1).
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Fig. 4. Active learning improvement over passive baseline after 20 queries for 30 one-vs-all bi-

nary tasks derived from Caltech-256. Left: Results on all 30 individual classes with our Fast

EMOC technique. Right: Averaged results for all compared techniques.

Table 2. Computation times needed performing active selection with our method and approxima-

tions (Sect. 4) and n labeled examples as well as u unlabeled examples

Method GP-impact [6] [6] · density Fast EMOC EMOC

Time (n = 10, u = 990) 7.81 · 10−4 s 7.64 · 10−4 s 8.08 · 10−4 s 2.38 · 10−2 s

Asymptotic time O(n2
u) O(n2

u) O(n2
u) O(n2u + nu2)

Runtime Evaluation. An empirical comparison of computation times8 for the de-

rived methods when querying the first sample in the previous experiments is given in

Table 2. As expected, exact EMOC computation is significantly slower than its approx-

imated versions, which are as fast as existing strategies. Furthermore, the asymptotic

time reveals that in case of a large number u of unlabeled examples, Fast EMOC should

be the method of choice, because the selection time only depends linearly on the num-

ber of unlabeled samples. The approach of [16] has the same asymptotic time as exact

EMOC, but we observed a speed-up of 1.6 over [16] in practice.

6.2 Importance of Density-Based Re-weighting

As mentioned earlier, density-based re-weighting of query scores is not limited to our

introduced strategies, but can be extended to arbitrary active learning techniques. In the

left plot of Fig. 5, we show the resulting gains when applying the re-weighting scheme

to GP active learning strategies introduced in the literature. First of all, we observe that

learning results are improved in almost all cases. Apart from this, it is also intuitive why

some of the methods can only benefit from the heuristic in late stages of learning (like

GP-var), whereas others can draw a partial advantage in early stages (e.g., GP-impact).

For example, as stated in [6], relying on the highest estimated model change leads to an

implicit balancing between exploration and exploitation. Consequently, in early stages

of learning, where the exploration aspect is usually more important, the density-based

8 Computation times have been measured using a Matlab implementation on a 3.4 GHz CPU

without parallelization and excluding precomputed kernel values.
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Fig. 5. Left: Gain of density-based re-weighting of active learning scores for several active learn-

ing strategies. Right: Performance of our EMOC method in a real active learning setting with

unknown label y′ (EMOC), when label y′ is known during selection with EMOC (Ideal EMOC),

and when the ground-truth label is used to greedily maximize AUC (AUC oracle).

re-weighting leads to exploration more focused on dense clusters than on outliers. In

later stages, where exploration is less necessary, a focus too strong on dense regions is

also less important and might even decrease performance.

6.3 Ideal EMOC

In a last experiment, we analyze the performance of our approach for a perfect esti-

mation of model updates, i.e., an artificial setup with known labels y′. Although we

could directly use them for performance optimization on U, we are instead interested

in the upper bound for EMOC. Therefore, we follow the previous experimental setup,

and replace the expectation over possible labels in Eq. (1) by ground-truth labels for the

unlabeled pool. As can be seen in the right plot of Fig. 5, working with correct label

estimations again significantly improves learning rates. This observation is interesting

by considering the experimental results in Sect. 6.1, where the EMOC strategy already

outperformed existing techniques. Consequently, it would be highly beneficial to better

infer unknown labels, especially if only few labeled samples are available and the initial

model might be learned poorly. The right plot of Fig. 5 also contains the results of a per-

fect AUC oracle, where examples are chosen that maximize the AUC performance on

U. The plot of this method is the upper bound for all myopic active learning methods.

7 Conclusions

We presented a new general active learning strategy based on calculating the expected

change of model outputs when an unlabeled example would be labeled and incorpo-

rated. The main motivation is that examples with a high overall impact on the model

outputs are most informative during learning. Our approach is flexible and allowed us

to derive several new active learning methods. In particular, we showed how to compute

expected model output changes efficiently for Gaussian process regression models. An

extensive experimental evaluation revealed that our strategies outperform several ex-

isting active learning techniques on established benchmark datasets for image catego-

rization. We further showed that density-based re-weighting of arbitrary active learning
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scores can be derived as a rough approximation of our introduced approach and pre-

sented its benefits. We conclude that our general strategy for active learning – to query

samples which lead to the highest change of model responses – is beneficial in scenar-

ios, where collecting labeled data is expensive or time-consuming.

For future research, several directions are possible: (1) combining our strategy with

others in a reinforcement learning scheme [1,4], (2) improved estimation of class la-

bels for unlabeled samples using semi-supervised learning [23], (3) active learning for

regression and multi-class classification tasks by testing other loss functions, and (4)

using sparsification techniques or efficient kernel evaluations [14,5] to speed up evalu-

ation in the presence of large-scale data, such as the whole ImageNet dataset
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