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Abstract

Selecting informative genes from microarray experi-
ments is one of the most important data analysis steps for
deciphering biological information imbedded in such exper-
iments. However, due to the characteristics of microarray
technology and the underlying biology, namely large num-
ber of genes and limited number of samples, the statistical
soundness of gene selection algorithm becomes question-
able. One major problem is the high false discover rate.
Microarray experiment is only one facet of current knowl-
edge of the biological system under study. In this paper, we
propose to alleviate this high false discover rate problem
by integrating domain knowledge into the gene selection
process. Gene Ontology represents a controlled biologi-
cal vocabulary and a repository of computable biological
knowledge. It is shown in the literature that gene ontology-
based similarities between genes carry significant informa-
tion of the functional relationships [3]. Integration of such
domain knowledge into gene selection algorithms enables
us to remove noisy genes intelligently. We propose an add-
on algorithm applied to any single gene-based discrimina-
tive scores integrating domain knowledge from gene ontol-
ogy annotation. Preliminary experiments are performed on
publicly available colon cancer dataset [2] to demonstrate
the utility of the integration of domain knowledge for the
purpose of gene selection. Our experiments show interest-
ing results.

1. Introduction

Cancer classification traditionally relies upon morpho-
logical appearance of tumor. However, there has been
increasing interest in classifying tumor molecularly with
the advent of DNA microarray technologies for large-scale
transcriptional profiling [13]. A typical DNA microarray

study utilizes several DNA microarray chips on different tis-
sue samples and generates a numerical array with thousands
of rows (genes) and tens of columns (experiments/DNA
chips). Sample classification can be performed by treat-
ing gene expression levels as features describing molecular
states of the tissue in question. Various canned classifica-
tion algorithms in the machine learning literature have been
used for such classification task.

Compared to other disciplines DNA microarray datasets
bare their unique characteristics. The foremost trait of such
datasets is the over abundance of features and lacking of
samples, which renders results of any classification algo-
rithms less statistically significant. Using excessive features
will normally degrade performance of a machine learner
[11] while increasing computational cost at the same time.
It is aslo much more difficult for biologists to understand
classification results when expression levels of thousandsof
genes are used for sample class prediction. As a result, gene
selection is generally performed before microarray dataset
is fed to classification algorithms [2, 4, 5, 12, 15, 16]. How-
ever, the statistical soundness of using feature selectional-
gorithms on microarray dataset becomes questionable. On
one hand, the threshold of selected discriminative scores
needs to be adjusted for multiple selections which has al-
ready attracted a lot of research interest [9]. On the other
hand, selected genes are not always biologically relevant
due to the nature of microarray experiments and the small
sample size. When the sample size is limited, even random
noise could result in some significant discriminative scores.
We will give an example of this in the next section.

In this paper, we propose to use gene ontology [8] anno-
tation to alleviate the problems of gene selection on small
sized samples. GO annotation represents a large repository
of biological knowledge that is accessible to computational
algorithms. Intuition behind our work is simple: while it is
likely that even random gene expression can archive rela-
tively high discriminative scores when the number of sam-



ples is limited, it is less likely that several random genes
annotated with the same GO term all have relatively high
discriminative scores. Gene ontology has been incorpo-
rated into several microarray data analysis and visualiza-
tion algorithms/tools for various purposes, in the contextof
cluster validation [6], visualization of distribution of some
scores over GO terms [7]. Authors in [3, 14] concluded
that the GO-driven similarity and expression correlation are
significantly interrelated. Another avenue of research fo-
cuses on detecting over-represented GO terms in a set of
co-expressed genes [1].

Our algorithm first examines, for each GO term, if genes
annotated with it have statistically higher discriminative
scores. This is an indication of correlation between the cor-
responding GO term and sample class labels. We call these
GO terms “informative”. Informative genes are then se-
lected from genes that are annotated with such informative
GO terms and yield high discriminative scores at the same
time. Our algorithm is a generic add-on algorithm that can
be attached to many if not all gene selection algorithms.

This paper is organized as follows. In Section 2, we
demonstrate the inherent problem of gene selection using
single gene discriminative scores. In Section 3, our new
GO based gene selection algorithm is detailed. In Section
4, experimental results on publicly available colon cancer
dataset are reported. We conclude this paper and give direc-
tion of future work in Section 5.

2 The Problem of Gene Selection on Small-
Sized Samples

In this section, we give an example of the problems fac-
ing gene selection from limited samples. Alon [2] published
their experimental results on colon cancer. The dataset con-
sists of 62 microarray experiments on normal and colon
cancer tissues. Expression levels of 2000 genes are mon-
itored. After log-transformation, expression levels in this
dataset range from 0.76 to 4.32 with mean of 2.30 and stan-
dard deviation of 0.49. This is a commonly used benchmark
dataset for data analysis algorithms on microarray datasets.

Let us examine the statistical significance of gene selec-
tion on such datasets. We use four approaches to assess the
false discovery rate of gene selection algorithms based on t-
scores by calculating t-scores for randomly generated gene
expression arrays. In the first two approaches, we generate
random expression arrays of the same size (2000×62) from
uniform/normal distribution with same parameters as origi-
nal log transformed dataset. We also experimented generat-
ing from empirical distribution of original log transformed
data by assuming the histogram as an approximate proba-
bility density function. Later we generate random expres-
sion array by randomly reassigning sample class labels. The
cutoff t-scores for choosing top 50, 100 and 200 genes from

Table 1. Gene Selection On Random Dataset.
Each entry shows the number of genes that
score greater than cutoff t-scores in each
dataset (original and random generated)

# of Genes Top 50 Top 100 Top 200
t-scores 3.82 3.23 2.7

Orig 50 100 200
Rand. uni 1.06±1.04 5.32±2.28 21±4.41
Rand. nor 0.81±0.89 4.69±2.19 19.55±4.43

Rand. emp 0.71±0.83 4.475±1.97 19.5±4.04
Rand. rel 0.86±6.39 4.50±22.35 20.98±62.32

the original log transformed dataset are 3.82, 3.23 and 2.7,
respectively. Experimental results summarized in Table 1
show the number of random genes having larger-than-cutoff
t-scores in each case. Those random genes would have been
selected by t-score based algorithms. All the random exper-
iments are repeated 1000 times.

From these experiments we observe that even randomly
generated expression levels may result in high discrimina-
tive scores. Suppose we merge the original dataset with a
random dataset, resulting in a 4000 genes by 62 sample ex-
pression matrix. If we were to choose top 200 genes using
t-scores from such merged dataset, more than 10% of se-
lected genes would come from the random generated por-
tion of data. The situation becomes more hopeless if we
add more random genes or the number of samples is even
smaller. When 8000 random genes are added to the merged
dataset, the probability of selecting such random genes in
top 300 gene list is more than 30%.

3 Integrating Biological Knowledge into
Gene Selection Process

One way to overcome this apparent drawback in the fea-
ture selection process is the integration of domain knowl-
edge. Biologists have long been doing this. Gene selec-
tion is only the starting point in many biological studies.
Genes may be addded/removed to/from selected gene set at
a later stage pending on other biological evidences. How-
ever, to our surprise, there are not many feature selection
algorithms proposed in the literature to actually utilize do-
main knowledge. Although there are already a plethora of
online computable biological knowledge bases.

In this section, we propose an add-on algorithm to ex-
isting single gene-based gene selection algorithms. Givena
single gene-based discriminative scores (of the sample class
labels), our algorithm processes the score using biological
information contained within GO annotation. This results in
a new class of discriminative scores prefixed with the name



”GO adjusted”.

Definition 1 Informative Genes are those genes having
discriminative scores larger thanθ, or F (g) > θ. Assume
F be a single gene based discriminative score.

Definition 2 Discriminative Power of a GO term is defined
as the percentage of informative genes among all genes that
are annotated with such GO term. Here g∈ go denotes that
a gene g is annotated by GO term go and|go| denotes the
number of genes that are annotated by GO term go.

DP(go) =
|{g|g∈ go∧F (g) > θ}|

|go|

Definition 3 Informative GO Term is defined as those GO
terms go whose discriminative power is larger thanγ and
the number of informative genes annotated with go is larger
thanβ.

DP(go) > γ and |{g|g∈ go∧F (g) > θ}| > β

Definition 4 GO adjusted discriminative score is defined
using one single gene discriminative scoreF (g) and a GO
term go, where g∈ go.

Fa(g,go) =

{

0 if go is not informative;
F (g) if go is informative.

Definition 5 Best GO adjusted discriminative score is de-
fined as the best GO adjusted discriminative score out of all
possible GO annotations of a single gene.

Fb(g) = max
∀go,g∈go

Fa(g,go)

Given a single gene-based discriminative scoreF and
three parametersθ,β,γ, our algorithm calculates a mod-
ified single gene-based discriminative score named “best
GO adjusted score.” The basic idea behind our algorithm
is straightforward. While the expression levels of random
genes may correlate with sample class labels by chance, it
is far less likely that majority of these random genes will
also have common GO annotation. In other words, it is far
less likely that those random genes will have valid biologi-
cal connections, either participating in the same biological
processes, or manifesting the same molecular functions, or
being found in the same cellular components.

Informative genes are defined by Def. 1 to be those genes
whose single gene discriminative scoresF pass thresholdθ.
Discriminative power of a GO term is defined by Def. 2 as
the percentage of informative genes among all genes that
are annotated with the GO term in question. Discrimina-
tive power of a GO term with respect to sample class labels

measures the collective discriminative power of genes an-
notated with that GO term. This in turn measures how dif-
ferent biological processes, cell components and molecular
functions are affected under different experimental condi-
tions. The higher discriminative power of a GO term, the
stronger a GO term is correlated with sample class labels.
The value ofθ has same range as the corresponding sin-
gle gene discriminative score, which is the user’s estimate
of what a significant score is forF . We further call a GO
term informative GO term if such a GO term satisfies the
two conditions in Def. 3. First, more thanβ informative
genes needs to be annotated by a GO term in order for that
GO term to be called informative. Secondly, the percentage
of informative genes among all genes annotated by the GO
term needs to surpass thresholdγ. These two criteria are set
to fend off the effect of random genes. We will discuss how
to choose these parameters later.

Single gene-based discriminative scoreF is then mod-
ified according to the discriminative power of GO terms.
To get rid of noisy genes, informative genes are only se-
lected from those informative GO terms. We essentially
strengthen single gene-based scores if significant amount
of other genes that share common known biological anno-
tation with the given gene are also discriminative of sample
class labels. We define “GO adjusted discriminative score”
Fa(g,go) according to Def. 4. The score is 0 if the annotat-
ing GO term is non-informative, otherwise it is the same as
the single gene discriminative score, orFa(g,go) = F (g).
Here we assume single gene-based discriminative score is
positive and the larger the score is, the more discriminative
the corresponding gene is. Each gene product is annotated
with potentially multiple GO terms. We define “best GO ad-
justed score”Fb(g) to be the best “GO adjusted score” for
a gene among all its annotation. We assume the transitivity
of gene annotation in this work. If the direct annotating GO
term of a gene is not informative, the gene may still be con-
sidered if any parent GO terms of the direct annotating GO
term are informative.

Details of our algorithm and complexity analysis are
omitted in this paper due to space concern. For details
please refer to our technical report.

4 Experiment

Experiment SetupOur primary concern is the false dis-
covery rate of any given single gene-based algorithm. We
measure this false discovery rate by repeating experiments
on randomized dataset. Our experimental dataset consists
of the original dataset from public available data sources
and the random portion that are generated as noise. We
measure for each single gene-based algorithm the percent-
age of genes that are selected coming from the randomized
portion of data and use this number as an estimate of the



false discovery rate.
The original data set is appended with several repeti-

tion of blocks of random data. Each random block has the
same number of genes and same number of experiments as
the original dataset. The expression levels in each random
block is generated using normal distribution with same pa-
rameters as the original log transformed dataset. Each gene
in a random block corresponds to a real gene in the original
dataset and share the same GO annotations of it. We call
the number of random blocks the random size of a given
experiment. For each experimental setup, we generate 200
sets of random data and report the average number of false
positive.

Data PreparationThe data used in this work are all pub-
licly available. We choose the widely used benchmark mi-
croarray dataset: colon cancer [2]. For gene ontology, we
downloaded a copy from GO web site at 10/15/2004. We
collected GO annotation for genes used in alon colon cancer
microarray experiment from SOURCE [10] online database
on 11/1/2004. We do notice that SOURCE annotation may
have been updated. However, the dataset suffices to test our
algorithm.

Not all genes in the original dataset have GO annota-
tion in SOURCE database. However, a decent majority of
the original genes have been annotated. For colon cancer
dataset, out of original 2000 genes, we found 1495 of them
have been annotated with at least one of the 9137 GO an-
notation. That is, on average, a little more than 6 GO anno-
tation per gene. Since our algorithm relies on gene ontol-
ogy to provide necessary biological insight, we choose only
those genes that currently have GO annotation for further
analysis. We expect more and more GO annotation will be
available in the future.

Result Table 2 and 3 summarizes our experimental re-
sult on colon cancer dataset. It shows the false positive
rate measured as the number of random genes being chosen
by four single gene-based gene selection algorithms: S2N
(signal to noise ratio) tscore and their GO adjusted coun-
terpart. For each experiment we also show the number of
overlapping genes, genes that are selected both both orig-
inal single gene based discriminative scores and their GO
adjusted counterparts. From this table, we observe that GO
adjusted scores perform consistently better as less random
genes (10%) are chosen by GO adjusted scores as infor-
mative genes. The trends shown in the tables are clear:
the more random genes included the more false positive;
the more number genes selected the more false positive.
We generally have no knowledge and control of how many
genes included in microarray dataset are random with re-
spect to sample class labels. However, we do know now
that selecting excessive informative genes from microarray
dataset becomes troublesome. We also report the number
of genes selected by both original discriminative score and

Table 2. Performance of GO adjusted scores
as measured in false positive using S2N score

Rand. # of S2N GO S2N Diff S2N Gene
Size Genes score score score Overlap

1 50 1.40 1.15 0.25 42.45
2 50 2.40 2.15 0.25 39.05
3 50 4.15 3.75 0.40 39.85
4 50 4.05 3.55 0.50 28.64
1 100 5.30 4.09 1.21 68.63
2 100 8.78 7.57 1.21 68.06
3 100 17.24 14.84 2.40 56.38
4 100 15.02 12.55 2.47 59.63
1 200 19.10 17.45 1.65 167.85
2 200 33.15 30.30 2.85 153.90
3 200 43.10 39.45 3.65 144.10
4 200 49.60 46.90 2.70 132.65

the best GO adjusted score. The percentage of overlapping
genes range from 60% to 80%, indicating majority of genes
selected by original single gene based algorithms also clus-
ter in GO annotation.

Now we describe how we choose the three parameters re-
quired by GO adjusted scores:θ,β,γ in these experiments.
For θ, we set it to the cutoff score of selected genes. This
essentially states that if user is to choose top 100 genes, we
deem top 100 ranked genes as informative genes. Using
the transitivity assumption of GO annotation, the virtual top
GO node in our algorithm annotates every genes in ques-
tion. Let the ratio between the number of informative genes
and the number of genes in the virtual top GO node beγ0,
experiments show good results whenγ is set to 1.4-1.6 times
γ0. Whenγ is set toγ0, GO adjusted scores revert to original
single gene-based discriminative score since the virtual top
GO node becomes informative. With the increase inγ, we
are taking information in GO annotation more assertively.
In our experimentsβ is set to 1. We testedβ values from 0
to 2, results are similar.

5 Conclusion and Future Work

Gene selection plays an important role in the analysis of
microarray dataset. Genes that express differently in dif-
ferent sample conditions are selected for further biological
investigation. However, due to the limited sample size and
complex underlying biology, gene selection algorithms are
haunted by excessive false positive rate. In this work, we
proposed to integrate biological domain knowledge imbed-
ded in gene ontology and its annotation into the process of
gene selection. This is the first attempt of such integration,
to our best knowledge. Our experimental result shows this



Table 3. Performance of GO adjusted scores
as measured in false positive using t-score

Rand. # of t GO t Diff t Gene
Size Genes score score score Overlap

1 50 1.40 1.20 0.20 41.85
2 50 2.90 2.25 0.65 38.60
3 50 3.95 3.3 0.65 38.10
4 50 4.90 4.25 0.65 38.55
1 100 5.15 4.26 0.89 66.28
2 100 9.06 7.38 1.68 74.06
3 100 18.11 16.49 1.62 60.14
4 100 15.58 13.20 2.38 67.76
1 200 19.40 17.60 1.80 166.35
2 200 31.95 30.15 1.80 155.30
3 200 44.70 42.30 2.40 136.75
4 200 53.35 49.65 3.70 129.45

is a promising direction. Using gene ontology and its an-
notation, the probability of selecting random genes in our
experiments is reduced more than 10% on average. Our al-
gorithm is a wrapper algorithm upon any if not all single
gene based discriminative scores. Our algorithm behaves
differently with different choice of one parameterγ, taking
GO annotation into consideration within the feature selec-
tion process at various degrees. This provides an interesting
way to integrate “old” knowledge in GO ontology with new
information from microarray experiments.

We ignored genes without GO annotation in this work
for simplicity. Although majority of genes (75%) in our
study are annotated by at least one GO term, genes that are
not currently annotated may be of interest nonetheless. For
these genes, traditional discriminative scores can be used
instead. Best GO adjusted score defined by Def 5 is compa-
rable to original discriminative scores since they are essen-
tially the same if the annotating GO term is informative. A
straightforward way to handle gene selection for genes that
are not currently annotated would be to compute original
discriminative scores. Such discriminative scores can then
be combined with best GO adjusted scores for the purpose
of gene selection.

The discriminative power of a GO term is defined to de-
scribe the correlation between GO terms and sample class
labels. This is different from the previous research in the
correlation between gene expression similarity and GO an-
notation similarity [3, 14], which has some interesting im-
plication by itself. It provides a bridge between gene on-
tology and disease ontology. The ability of coupling GO
terms and disease symptoms may prove useful to provide
biologist new insight into disease pathology.
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