
Citation: Allidina, T.; Deka, L.;

Paluszczyszyn, D.; Elizondo, D.

Selecting Non-Line of Sight Critical

Scenarios for Connected

Autonomous Vehicle Testing.

Software 2022, 1, 244–264. https://

doi.org/10.3390/software1030011

Academic Editors: Tommi Mikkonen

and Anna Rita Fasolino

Received: 31 March 2022

Accepted: 7 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Selecting Non-Line of Sight Critical Scenarios for Connected
Autonomous Vehicle Testing
Tanvir Allidina 1, Lipika Deka 1,* , Daniel Paluszczyszyn 1,2 and David Elizondo 1

1 Institute of Artificial Intelligence, Faculty of Computing, Engineering and Media, De Montfort University,
Leicester LE1 9BH, UK; tanvir.allidina@dmu.ac.uk (T.A.); paluszcol@dmu.ac.uk (D.P.);
elizondo@dmu.ac.uk (D.E.)

2 HORIBA MIRA Ltd., Watling Street, Nuneaton CV10 0TU, UK
* Correspondence: lipika.deka@dmu.ac.uk

Abstract: The on-board sensors of connected autonomous vehicles (CAVs) are limited by their range
and inability to see around corners or blind spots, otherwise known as non-line of sight scenarios
(NLOS). These scenarios have the potential to be fatal (critical scenarios) as the sensors may detect an
obstacle much later than the amount of time needed for the car to react. In such cases, mechanisms
such as vehicular communication are required to extend the visibility range of the CAV. Despite there
being a substantial body of work on the development of navigational and communication algorithms
for such scenarios, there is no standard method for generating and selecting critical NLOS scenarios
for testing these algorithms in a scenario-based simulation environment. This paper puts forward a
novel method utilising a genetic algorithm for the selection of critical NLOS scenarios from the set of
all possible NLOS scenarios in a particular road environment. The need to select critical scenarios is
pertinent as the number of all possible driving scenarios generated is large and testing them against
each other is time consuming, unnecessary and expensive. The selected critical scenarios are then
validated for criticality by using a series of MATLAB based simulations.

Keywords: connected autonomous vehicle; non line of sight; critical scenario; evolutionary algorithm;
concrete scenario

1. Introduction

Connected autonomous vehicles (CAVs) utilise sensors to perceive their environment.
This data is brought together using sensor fusion algorithms and integrated onto the maps
available within the vehicle or in the cloud to support navigation. These sensors can
perceive up to a certain range (150–250 m at a maximum speed of 120 km/h [1–3]). This
perception range can be further limited due to sensor occlusion, sensor noise or scenarios
with blind spots, such as corners and intersections [4,5]. Such scenarios in which a vehicle’s
perception is occluded due to a blind-spot or geometry of the road are referred to as non-
line of sight scenarios (NLOS). Such scenarios are the main focus of this paper. In such
cases, scenario perception range of autonomous vehicles (AVs) needs to be extended by
enabling the receipt of information about obstacles far in advance of being detected by
on-board sensors in order to avoid a collision. The need to increase vehicle perception
range in the presence of blind spots has been a focus of research within both academia and
industry [6–13]. The most common method within the literature for extending perception
range in NLOS scenarios is through vehicle-to-everything (V2X) communication [14–19].
There are a number of studies that have looked into developing algorithms (obstacle
detection, trajectory planning, collision avoidance, etc.) and communication protocols (e.g.,
routing protocols [19]) for such NLOS scenarios. These algorithms need to be tested to
ensure quality and adherence to system requirements, paving the way for safe deployment
of autonomous vehicles. Testing is primarily conducted through on-road testing, simulation
or scenario-based methods. On-road testing incurs enormous resources in terms of time,

Software 2022, 1, 244–264. https://doi.org/10.3390/software1030011 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software1030011
https://doi.org/10.3390/software1030011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0001-8986-884X
https://orcid.org/0000-0003-2838-060X
https://doi.org/10.3390/software1030011
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software1030011?type=check_update&version=1

Software 2022, 1 245

cost and human resources, while simulation-based testing requires a large volume of
data; both methods cannot ensure coverage of all critical scenarios. A scenario-based
approach facilitates the development of suitable driving scenarios that can incorporate
specific requirements, such as critical scenarios.

Menzel et al. [20] proposed a three-terminology framework along V-model-based
scenario development of the ISO26262 standard for the development of scenarios to test and
validate the functionalities of autonomous vehicles. This consists of functional scenarios,
which are the most abstract way of describing a scenario and involve the description
of on-road scenario concepts (e.g., road segments) and their relation (e.g., road segment
has a relation to lane segment) in a linguistic manner, as well as logical scenarios, which
specify a value range for each attribute of a concept in a scenario state space (e.g., a road
segment has an attribute length which consists of a range of values for possible lengths),
and concrete scenarios which specify a specific value for each parameter from within the
respective value range. The scenario development process can be visualised in Figure 1.
However, the scenarios generated from functional and logical scenarios are a substantial
number, equivalent to the number of combinations of every value of each attribute (for
example, the speed and position of the roads in the scenario) making up the scenario. Not
all scenarios within this scenario space will be relevant for desired functionality testing and
testing against each one will be costly and time consuming. Therefore, there is a need to
select concrete scenarios which are relevant to certain functional requirements, for example,
scenarios that are critical in nature.

Software 2022, 1, FOR PEER REVIEW 2

testing, simulation or scenario-based methods. On-road testing incurs enormous re-

sources in terms of time, cost and human resources, while simulation-based testing re-

quires a large volume of data; both methods cannot ensure coverage of all critical scenar-

ios. A scenario-based approach facilitates the development of suitable driving scenarios

that can incorporate specific requirements, such as critical scenarios.

Menzel et al. [20] proposed a three-terminology framework along V-model-based

scenario development of the ISO26262 standard for the development of scenarios to test

and validate the functionalities of autonomous vehicles. This consists of functional sce-

narios, which are the most abstract way of describing a scenario and involve the descrip-

tion of on-road scenario concepts (e.g., road segments) and their relation (e.g., road seg-

ment has a relation to lane segment) in a linguistic manner, as well as logical scenarios,

which specify a value range for each attribute of a concept in a scenario state space (e.g.,

a road segment has an attribute length which consists of a range of values for possible

lengths), and concrete scenarios which specify a specific value for each parameter from

within the respective value range. The scenario development process can be visualised in

Figure 1. However, the scenarios generated from functional and logical scenarios are a

substantial number, equivalent to the number of combinations of every value of each at-

tribute (for example, the speed and position of the roads in the scenario) making up the

scenario. Not all scenarios within this scenario space will be relevant for desired function-

ality testing and testing against each one will be costly and time consuming. Therefore,

there is a need to select concrete scenarios which are relevant to certain functional require-

ments, for example, scenarios that are critical in nature.

Figure 1. Scenario Development Process.

There have been numerous studies on concrete scenario generation for various ap-

plications, for example, free driving, following, lane keeping, traffic scenarios, overtaking

obstacle detection, etc. [21–24]. However, there are none that cover the selection of NLOS

critical scenarios. Subsequently, the focus of this paper is the selection of critical concrete

NLOS scenarios. To search the large scenario space and identify critical scenarios, this

paper proposes an innovative way of utilising a genetic algorithm (GA). The selected crit-

ical scenarios are then tested and validated on a MATLAB simulated driving environ-

ment. As the majority of the proposed algorithms developed to safely manoeuvre a NLOS

scenario utilise vehicular communication to detect and avoid obstacles, the implementa-

tion platform presented in this paper incorporates vehicular communication as a means

for allowing the testing of these algorithms in the future.

Thus, the primary contribution of the paper is:

 The development of a new and effective methodology to search for critical NLOS

scenarios from a large scenario space. This involved defining a critical scenario as

used in this paper and included the development of a methodology to evaluate crit-

ical scenarios for NLOS cases. This has been performed by combining several indica-

tors, for example, time to collision (TTC) and total stopping time (TST), as presented

Figure 1. Scenario Development Process.

There have been numerous studies on concrete scenario generation for various ap-
plications, for example, free driving, following, lane keeping, traffic scenarios, overtaking
obstacle detection, etc. [21–24]. However, there are none that cover the selection of NLOS
critical scenarios. Subsequently, the focus of this paper is the selection of critical concrete
NLOS scenarios. To search the large scenario space and identify critical scenarios, this paper
proposes an innovative way of utilising a genetic algorithm (GA). The selected critical
scenarios are then tested and validated on a MATLAB simulated driving environment. As
the majority of the proposed algorithms developed to safely manoeuvre a NLOS scenario
utilise vehicular communication to detect and avoid obstacles, the implementation platform
presented in this paper incorporates vehicular communication as a means for allowing the
testing of these algorithms in the future.

Thus, the primary contribution of the paper is:

• The development of a new and effective methodology to search for critical NLOS
scenarios from a large scenario space. This involved defining a critical scenario as
used in this paper and included the development of a methodology to evaluate critical
scenarios for NLOS cases. This has been performed by combining several indicators,
for example, time to collision (TTC) and total stopping time (TST), as presented in
Section 3. This is followed by searching for critical scenarios within the scenario search
space through the unique use of a genetic algorithm.

Software 2022, 1 246

• The subsequent implementation framework that simulates the scenarios selected by
the GA. This platform incorporates vehicular communication.

We envisage this contribution to be utilised for testing AV algorithms developed for NLOS
road scenarios and these algorithms include built-for-purpose communication protocols.

The paper is organised as follows: Section 2 discusses the related works on AV testing
methods, critical scenario selection and the use of evolutionary algorithms to search the sce-
nario space. Section 3 discusses the methodology for determining the metric for identifying
NLOS critical scenarios (adopted as a fitness function for the GA); details of the GA and
simulation environment were used to validate GA output. The experiments and results are
presented in Section 4, followed by discussion in Section 5 and conclusion in Section 6.

2. Related Work

This section reviews related work on testing and validating CAV algorithms (Section 2.1)
and metrics for selecting safety critical concrete scenarios (Section 2.2). Finally, Section 2.3
provides a brief introduction of genetic algorithms and their application in the current context.

2.1. Automotive Software Testing

There are several methods for assessing the safety capabilities of AVs. These in-
clude: formal verification [25–28], a function-based approach [29], shadow mode [30–32],
real-world testing [33–35], a simulation-based approach [36–40] and a scenario-based
approach [41–45]. Throughout the literature, the most common approaches used are
real-world testing, the simulation-based approach and the scenario-based approach [46].

Real-world testing is the most realistic of the validation methods, but it necessitates
more effort and comes at a higher cost due to the high level of realism required. Further-
more, the authors Kalra and Paddock [47] stated that driving 11 billion miles is required
to prove statistically with 95% confidence that an autonomous vehicle is 20% better than
a human driver (based on the failure rate). They concluded that in the real world, the
traditional “miles driven” approach is not economically viable. Another issue with this
statistical approach is that it fails to account for how eventful the miles driven are. For ex-
ample, an AV can complete the miles requirement by driving on a relatively simple road. To
address this, companies in California are now required to publish “disengagement reports”
as per California State law. Disengagements are situations in which human intervention is
required during an automated operation due to an unsafe decision made by an AV due to
the criticality of the situation or a technological failure [48].

AVs can be tested through simulations with varying levels of fidelity instead of being
tested in real-world settings. Dedicated software with a simple or complex mathematical
representation of the subsystems can be used depending on the purpose. In April 2020,
Waymo announced that it had driven 20 million miles on public roads and 15 billion miles
in its simulator [49]. Tesla’s Dojo supercomputer replays recorded data in order to retrain
its full self-driving software stack [38]. Scalability and cost-efficiency are two advantages of
simulation testing. Simulation models, on the other hand, must be tested in the real world.
Nonetheless, AV testing can be accelerated by combining simulation and real-world testing.

Scenario-based testing focuses on specific scenarios, such as safety-critical scenario
cases, to reduce testing time and effort by generating proof of correct functionality using a
scenario coverage matrix rather than relying on the statistical distribution used in real-world
testing. In the PEGASUS project, scenario-based testing was used to test ADAS systems.
The ability to use only the data that are required is a significant benefit of scenario-based
testing. Several proposed methods, including clustering, rule-based and machine learning-
based methods, are used to identify representative scenarios [41–43]. Other methods focus
on categorising scenarios based on their rarity. Scenario-based testing, in which individual
traffic scenarios are tested using virtual simulation, is a promising method [50,51]. It has
a number of advantages. It can be significantly faster than other approaches because it
does not require real-time execution and testing can be used in parallel. Another significant
advantage of this method is the assurance of safety during testing. Critical accident

Software 2022, 1 247

scenarios can be simulated in a virtual environment without endangering real-world traffic
participants. However, because the simulated world deviates from the real world at times,
model–world mismatches can occur. The primary goal of reproducing failure scenarios
after they have occurred is to reduce as many failures as possible ahead of time.

Although there has been some research looking at test case generation using scenario-
based methods, none of these focused on incorporating scenarios that included blind spots,
i.e., the presence of obstacles that are not in direct sight of the onboard sensors. This
research uses a scenario-based approach to generate NLOS safety-critical scenarios for
connected autonomous vehicles.

2.2. Metrics

To evaluate the safety of a concrete scenario, Key Performance Indicators (KPIs) are
required. Since accidents are rare, criticality metrics such as KPIs are advantageous [52].
The most well-known criticality measure is time-to-collision (TTC) [53]. The goal is to
detect scenarios which jeopardise vehicle safety by using criticality measurements. Some
of the metrics used in previous works are summarised in Table 1.

Table 1. Review of Safety Indicators.

Indicator Description Collision Type Reference

Time-to-collision (TTC) or
Time-measured-to-collision (TMTC)

The time it would take for the
vehicles to collide if they

continued on their current paths
at their current speeds.

Rear-end collision,
weaving/turning, colliding with
objects/parked vehicles, crossing
and colliding with a pedestrian.

[54,55]

Time exposed time-to-collision (TET)

Sum of all times (during the time
period under consideration) when

a driver approaches a front
vehicle with a TTC value less than

TTC.

As a result of a rear-end collision,
turning/weaving, hitting

objects/parked vehicles, crossing,
hitting a pedestrian and
vehicle–vehicle collision.

[56]

Time integrated time-to-collision
(TIT)

The integral when TTC is below
the threshold.

As a result of a rear-end collision,
turning/weaving, hitting

objects/parked vehicles, crossing,
hitting a pedestrian and
vehicle–vehicle collision.

[56]

Modified time-to-collision (MTTC)

Models that were modified to
account for all possible

longitudinal conflict scenarios
caused by acceleration or

deceleration discrepancies.

As a result of a rear-end collision,
turning/weaving, hitting

objects/parked vehicles, crossing,
hitting a pedestrian and
vehicle–vehicle collision.

[57,58]

Crash index (CI) The effect of collision speed on
the kinetic energy involved.

As a result of a rear-end collision,
turning/weaving, hitting

objects/parked vehicles, crossing,
hitting a pedestrian and
vehicle–vehicle collision.

[57]

Headway (H)

The time it takes for the front of
the leading vehicle to pass a point

on the road and for the front of
the following vehicle to pass the

same point.

As a result of a rear-end collision,
turning/weaving, hitting

objects/parked vehicles, crossing,
hitting a pedestrian and
vehicle–vehicle collision.

[59,60]

Software 2022, 1 248

Table 1. Cont.

Indicator Description Collision Type Reference

Time-to-accident (TA)

The time-to-accident (TA) is the
amount of time it takes for an

accident to occur from the time
one of the road users begins an
evasive action and continues at
the same speed and direction.

As a result of a rear-end collision,
turning/weaving, hitting

objects/parked vehicles, crossing,
hitting a pedestrian and
vehicle–vehicle collision.

[61,62]

Post-encroachment time (PET)

The time between the moment
that a road user (vehicle) leaves

the area of potential collision and
the other road user arrives at the

collision area.

Mostly for right-angle or crossing
crashes that result in a pedestrian
being hit. Head-on collision when
merging/diverging (to a certain

extent).

[63,64]

As mentioned earlier, TTC is a well-known representative temporal metric and it is
presented in the works of Saffarzadeh et al. [65]. The TTC measure, while simple to calculate
and interpret, is unable to account for the participants’ acceleration and deceleration
behaviour because it is a stationary metric. As a result, combining different metrics from
different basic methods for a comprehensive assessment is required. This paper will discuss
combining different metrics in order to determine NLOS safety-critical scenarios.

2.3. Evolutionary Algorithm

An evolutionary algorithm is an optimisation-based approach that uses the design
variables, the constraints, the fitness function, and the optimiser (i.e., the solver) to search
the scenario space for critical scenarios [66]. The fitness function is the quantified criticality
measure and has been further discussed in Section 3.1.

The problem formulation, particularly the transparency and complexity of the under-
lying models, has a significant impact on the optimiser chosen. When estimating criticality
measures, a simulator is frequently used. Because of high model complexity, simulation and
system analysis of the system of interest (SoI) can be computationally expensive in many
cases. As a result, the SoI’s behaviour is treated as a black box. Thus, the corresponding
search procedure can be considered as a black-box optimisation problem.

The relationship between the input (i.e., scenario parameters) and the output (i.e.,
simulation results) for a black-box optimisation problem can only be analysed by external
observation through simulations [67]. Various heuristic methods, such as a genetic algo-
rithm [68–70], Bayesian optimisation [71,72] and simulated annealing [68], can be used to
approximate the fitting function and find the global minimum iteratively to solve this prob-
lem. Furthermore, domain-specific heuristic techniques, such as rule-based searching [73],
heuristic simulation-based gradient descent [74] and zoom-in sampler [75], help to identify
multiple local minimums of feasible solutions. Feng et al. [76,77] formulated scenario
searching as a two-step optimisation problem. The first step in the optimisation process
is to find as many local optimal solutions as possible. The neighbourhood of the local
optimal solutions is searched in the second step to find all the scenarios whose criticalities
are within a certain threshold.

It is a well-known approach to use genetic algorithms for test generation and optimi-
sation. Stahmer [78] demonstrated in his Ph.D. thesis in 1995 that using genetic algorithms
to generate test data is an order of magnitude more efficient than using random selection.
Abdessalem et al. [69] were also inspired by the idea of using evolutionary algorithms. They
demonstrated in their paper that evolutionary algorithms are well-suited for testing vision-
based control systems and characterising critical input space regions. In addition, [79]
proposed a genetic algorithm-based approach for testing an autonomous parking system.
Bueheler et al. [80] used a similar technique to perform evolutionary functional testing of a
vehicle brake assistant system, concluding that system errors discovered by evolutionary
function testing are fairly unlikely to be discovered using traditional testing techniques.

Software 2022, 1 249

Acknowledging the power of evolutionary algorithms to search through solution
spaces to identify optimum solutions based on certain criteria and associated constraints, in
this research a genetic algorithm approach is used to select NLOS safety-critical scenarios
which require communication in order to avoid a collision. Unlike previous works, this
work uses a GA to select critical scenarios for testing the functionalities for connected
autonomous vehicles. The use of a GA for scenario selection has been further discussed in
Section 3.

3. Methodology

To test autonomous vehicle algorithms against test scenarios requires the selection of
a set of scenarios complying with testing criteria from the entire range of scenarios which
would help with evaluation of the algorithm [29]. It must be noted that selecting scenarios
is an essential step as the number of possible test scenarios a vehicle can encounter is very
large and it would be very time consuming to test against each scenario. In addition, many
scenarios are trivial in that they will not lead to a safety critical event. Furthermore, many
scenarios are essentially similar and hence testing against one is enough for the cluster of
similar scenarios. The research presented in this paper will select scenarios that have the
potential to lead to a collision as a result of the ego vehicle (vehicle under test) not being
aware of the obstacle until it is too late to avoid collision. These scenarios are referenced to
as critical scenarios in this paper. The selection of critical scenarios comes under concrete
scenarios within the development process of functional, logical and concrete scenarios along
the V-model based development process of ISO26262. Concrete scenarios correspond to the
selection of a scenario from the scenario space (logical scenario). For the test case, we have
used a T-junction scenario to determine critical NLOS scenarios; statistically T-junctions
have a high number of collisions as discussed in [81–83]. This simple yet powerful scenario
can be easily expanded to include more roads (forming crossroads and roundabouts) or
adapted to form blind bends on the same road. Similarly, more cars and road users can be
added. Figure 2 illustrates an example of a NLOS T-junction scenario.

Software 2022, 1, FOR PEER REVIEW 6

[79] proposed a genetic algorithm-based approach for testing an autonomous parking sys-

tem. Bueheler et al. [80] used a similar technique to perform evolutionary functional test-

ing of a vehicle brake assistant system, concluding that system errors discovered by evo-

lutionary function testing are fairly unlikely to be discovered using traditional testing

techniques.

Acknowledging the power of evolutionary algorithms to search through solution

spaces to identify optimum solutions based on certain criteria and associated constraints,

in this research a genetic algorithm approach is used to select NLOS safety-critical scenar-

ios which require communication in order to avoid a collision. Unlike previous works,

this work uses a GA to select critical scenarios for testing the functionalities for connected

autonomous vehicles. The use of a GA for scenario selection has been further discussed in

Section 3.

3. Methodology

To test autonomous vehicle algorithms against test scenarios requires the selection of

a set of scenarios complying with testing criteria from the entire range of scenarios which

would help with evaluation of the algorithm [29]. It must be noted that selecting scenarios

is an essential step as the number of possible test scenarios a vehicle can encounter is very

large and it would be very time consuming to test against each scenario. In addition, many

scenarios are trivial in that they will not lead to a safety critical event. Furthermore, many

scenarios are essentially similar and hence testing against one is enough for the cluster of

similar scenarios. The research presented in this paper will select scenarios that have the

potential to lead to a collision as a result of the ego vehicle (vehicle under test) not being

aware of the obstacle until it is too late to avoid collision. These scenarios are referenced

to as critical scenarios in this paper. The selection of critical scenarios comes under concrete

scenarios within the development process of functional, logical and concrete scenarios

along the V-model based development process of ISO26262. Concrete scenarios corre-

spond to the selection of a scenario from the scenario space (logical scenario). For the test

case, we have used a T-junction scenario to determine critical NLOS scenarios; statistically

T-junctions have a high number of collisions as discussed in [81–83]. This simple yet pow-

erful scenario can be easily expanded to include more roads (forming crossroads and

roundabouts) or adapted to form blind bends on the same road. Similarly, more cars and

road users can be added. Figure 2 illustrates an example of a NLOS T-junction scenario.

Figure 2. Example NLOS scenario (T-junction). Figure 2. Example NLOS scenario (T-junction).

As illustrated in Figure 2, both vehicles (ego and CAV) have a range of NLOS positions
they can occupy, as represented by the black bounding box and speed as detailed in
Section 3.3. The bounding box position was determined through simulation and represents
locations from where the ego vehicle’s on-board sensors do not detect the CAV, even though
it is within the range of the sensors, as a result of obstacles present in its line-of-sight. This
creates a large scenario space where a scenario is made up of a combination of attribute

Software 2022, 1 250

values over the underlying T-junction layout. Figure 3 (with each vertical line representing
an attribute and where the attributes included are the starting position and speed of both
the ego and CAV) shows a sample of 1000 possible scenarios (represented by the blue and
red lines that connect the values of the attributes for that particular scenario) within the
scenario space. Not all scenarios within this scenario space will lead to a collision and not
all collision scenarios are critical in nature. In this Figure, the red and blue lines are mapped
to the corresponding fitness value (detailed in the next section) and subsequently to its
collision status; red lines indicate parameter value combinations that result in a collision
and blue lines indicate those scenarios where collision is not possible.

Software 2022, 1, FOR PEER REVIEW 7

though it is within the range of the sensors, as a result of obstacles present in its line-of-
sight. This creates a large scenario space where a scenario is made up of a combination of
attribute values over the underlying T-junction layout. Figure 3 (with each vertical line
representing an attribute and where the attributes included are the starting position and
speed of both the ego and CAV) shows a sample of 1000 possible scenarios (represented
by the blue and red lines that connect the values of the attributes for that particular sce-
nario) within the scenario space. Not all scenarios within this scenario space will lead to a
collision and not all collision scenarios are critical in nature. In this Figure, the red and
blue lines are mapped to the corresponding fitness value (detailed in the next section) and
subsequently to its collision status; red lines indicate parameter value combinations that
result in a collision and blue lines indicate those scenarios where collision is not possible.

Figure 3. Sample Scenario Space.

3.1. Critical Scenarios
The most common measure used in the literature to determine the criticality of sce-

nario is time-to-collision (TTC) [56]. This can be defined as the remaining time from the
current time to the time for two objects to collide if they persist on their current planned
trajectory (speed and direction). The lower the value of TTC, the more critical a scenario.

This paper focuses on scenarios where TTC represents the time for the two NLOS
vehicles (ego and CAV) to collide. Given the current planned trajectory, td is the point in
time along the planned trajectory after which, if the ego detects the CAV, there is not suf-
ficient time for the vehicle to react, manoeuvre or brake in order to avoid a collision (and
to note that the presence of an obstacle or the geometry of the road prevents early detec-
tion of the CAV before td). In such a scenario, if the ego vehicle receives information re-
garding an oncoming object before the td, this would allow for an early reaction that would
change speed or direction in order to avoid the collision. The TTC is determined via the
simulation-based approach rather than mathematically. A simulation-based approach is
used as this can be easily implemented for any scenario with any underlying road network
with no or little change to the function to determine TTC. This is more advantageous than
any mathematical calculation as it takes into consideration all varying parameters, such
as yaw, and can be easily implemented for corner scenarios.

The total time taken for an ego vehicle to detect and react is termed as total stopping
time (TST), as depicted in Equation 1. This is the time taken for the vehicle to travel the
total stopping distance which is made up of the braking distance and reaction time. The
time to react is the product of perception–reaction time and speed of the vehicle [84].

𝑇𝑆𝑇 = 𝑇𝑇𝑆 + 𝑇𝑇𝐷 + 𝑇𝑇𝑅 (1)

Figure 3. Sample Scenario Space.

3.1. Critical Scenarios

The most common measure used in the literature to determine the criticality of scenario
is time-to-collision (TTC) [56]. This can be defined as the remaining time from the current
time to the time for two objects to collide if they persist on their current planned trajectory
(speed and direction). The lower the value of TTC, the more critical a scenario.

This paper focuses on scenarios where TTC represents the time for the two NLOS
vehicles (ego and CAV) to collide. Given the current planned trajectory, td is the point
in time along the planned trajectory after which, if the ego detects the CAV, there is not
sufficient time for the vehicle to react, manoeuvre or brake in order to avoid a collision
(and to note that the presence of an obstacle or the geometry of the road prevents early
detection of the CAV before td). In such a scenario, if the ego vehicle receives information
regarding an oncoming object before the td, this would allow for an early reaction that
would change speed or direction in order to avoid the collision. The TTC is determined via
the simulation-based approach rather than mathematically. A simulation-based approach is
used as this can be easily implemented for any scenario with any underlying road network
with no or little change to the function to determine TTC. This is more advantageous than
any mathematical calculation as it takes into consideration all varying parameters, such as
yaw, and can be easily implemented for corner scenarios.

The total time taken for an ego vehicle to detect and react is termed as total stopping
time (TST), as depicted in Equation (1). This is the time taken for the vehicle to travel the
total stopping distance which is made up of the braking distance and reaction time. The
time to react is the product of perception–reaction time and speed of the vehicle [84].

TST = TTS + TTD + TTR (1)

Software 2022, 1 251

where TTS is time to stop, TTD is time to detect and TTR is time to react. TTS can be
acquired by first determining the braking distance. The braking distance is shown in
Equation (2) [85,86].

d =
1

2Ka
ln
(

1 +
Ka

Kt
v2
)

(2)

where:
Ka =

ρ

2m
(CD) (3)

Kt = (0.01 + µ)g (4)

and v, ρ, m, g , µ and CD depict velocity, atmospheric density, mass, acceleration due to
gravity, road friction coefficient and drag factor, respectively.

TTS can be determined using Equation (5):

TTS =
v
d

(5)

To calculate time to detect (TTD), the following inputs are required: the starting
position xp, position of detection xd and velocity v, as shown in Equation (6). Time to React
(TTR) has been calculated incorporating vehicle dynamics.

TTD =

(
xd − xp

)
v

(6)

Therefore, a critical scenario is defined as a scenario involving at least two dynamic
objects (for example, the ego vehicle or the vehicle under test and a CAV) such that the ego
and CAV are in NLOS from each other and their planned trajectories and speed will lead
to a collision. Therefore, a criticality metric is developed using TTC and TST (obtained as
explained above) which meets the following conditions:

• The position of both dynamic objects must be within NLOS (i.e., the ego vehicle’s
on-board sensors have not detected the CAV) from each other.

• There must exist a point of interaction between the trajectories of both dynamic objects,
which is also known as the collision point (CP).

• The time taken for both dynamic objects to reach the CP must be within TTC.
• The time taken for the ego vehicle to perceive and react to the oncoming dynamic

object and reach a velocity of zero is known as the TST.
• A scenario is therefore critical if TTC < TST or within a safety parameter.

Section 3.2 discusses the selection of a critical scenario using a T-junction scenario
whose boundaries and parameters are depicted in Figure 6.

3.2. Simulation Environment

The simulation environment used was MATLAB/Simulink with Automated Driving
Toolbox which streamlines the implementation and evaluation of autonomous driving concepts.

In this work, the design and simulation of the environment (Figure 4) and vehicle
dynamics (Figure 5) have been carried out with the use of MATLAB built-in libraries,
models and algorithms. The vehicle model used was the force input bicycle model, as seen
in Figure 5. The kinematic bicycle model, while a simplification of the kinematic four-wheel
model, is considered to be sufficiently representative over a large range of operations, hence
it has been widely adopted in many studies by academia and industry [87,88].

Software 2022, 1 252
Software 2022, 1, FOR PEER REVIEW 9

Figure 4. MATLAB/Simulink model of a vehicle and environment.

Figure 5. MATLAB/Simulink vehicle dynamics model.

Automated Driving Toolbox and MATLAB-based functions were also used to com-
pute TTC. A simulation-based approach is used as this can be easily implemented for any
scenario with any underlying road network with no or little change to the function to
determine TTC. This is more advantageous to mathematical calculation as it incorporates
the dynamics of the environment and actors in a scenario.

A dedicated MATLAB function has been written to send/receive messages at regular
intervals when the vehicles are within communication range. It must be noted here that
aspects of the communication such as latency, maximum range of communication and
other protocols can be tested using the generated scenarios to validate, for example, how
suitable a particular communication technology is to mitigate arising critical scenarios.

The genetic algorithm presented in Section 3.3 was also implemented within a
MATLAB/Simulink environment.

3.3. Genetic Algorithm
A GA is an optimisation algorithm that is utilised in the current context to identify a

set of safety-critical scenarios from the set of all NLOS scenarios for a given road layout.
For proof of concept, this research will use a T-junction as an example of NLOS scenarios
as illustrated in Figure 6. This scenario consists of a road layout as well as an obstacle to
obscure vehicle perception.

Figure 4. MATLAB/Simulink model of a vehicle and environment.

Software 2022, 1, FOR PEER REVIEW 9

Figure 4. MATLAB/Simulink model of a vehicle and environment.

Figure 5. MATLAB/Simulink vehicle dynamics model.

Automated Driving Toolbox and MATLAB-based functions were also used to com-
pute TTC. A simulation-based approach is used as this can be easily implemented for any
scenario with any underlying road network with no or little change to the function to
determine TTC. This is more advantageous to mathematical calculation as it incorporates
the dynamics of the environment and actors in a scenario.

A dedicated MATLAB function has been written to send/receive messages at regular
intervals when the vehicles are within communication range. It must be noted here that
aspects of the communication such as latency, maximum range of communication and
other protocols can be tested using the generated scenarios to validate, for example, how
suitable a particular communication technology is to mitigate arising critical scenarios.

The genetic algorithm presented in Section 3.3 was also implemented within a
MATLAB/Simulink environment.

3.3. Genetic Algorithm
A GA is an optimisation algorithm that is utilised in the current context to identify a

set of safety-critical scenarios from the set of all NLOS scenarios for a given road layout.
For proof of concept, this research will use a T-junction as an example of NLOS scenarios
as illustrated in Figure 6. This scenario consists of a road layout as well as an obstacle to
obscure vehicle perception.

Figure 5. MATLAB/Simulink vehicle dynamics model.

Automated Driving Toolbox and MATLAB-based functions were also used to compute
TTC. A simulation-based approach is used as this can be easily implemented for any
scenario with any underlying road network with no or little change to the function to
determine TTC. This is more advantageous to mathematical calculation as it incorporates
the dynamics of the environment and actors in a scenario.

A dedicated MATLAB function has been written to send/receive messages at regular
intervals when the vehicles are within communication range. It must be noted here that
aspects of the communication such as latency, maximum range of communication and
other protocols can be tested using the generated scenarios to validate, for example, how
suitable a particular communication technology is to mitigate arising critical scenarios.

The genetic algorithm presented in Section 3.3 was also implemented within a MAT-
LAB/Simulink environment.

Software 2022, 1 253

3.3. Genetic Algorithm

A GA is an optimisation algorithm that is utilised in the current context to identify a
set of safety-critical scenarios from the set of all NLOS scenarios for a given road layout.
For proof of concept, this research will use a T-junction as an example of NLOS scenarios
as illustrated in Figure 6. This scenario consists of a road layout as well as an obstacle to
obscure vehicle perception.

Software 2022, 1, FOR PEER REVIEW 10

Figure 6. T−junction scenario.

The GA will seek to identify critical scenarios by determining the fitness value of a

scenario given a set of input parameters. For the purpose of this experiment, we will fix

the number of road users to two: the ego vehicle and the connected autonomous vehicle.

The speed ranges use UK government data [89] acquired from the probability of speed

distribution given a particular speed limit; a function for the probability distribution is an

input to the GA. The scenario space for each individual scenario is made up of a set of

parameters which are inputted to the GA. The scenario space has these parameters:

 Position of the ego vehicle [XEgo, YEgo, ZEgo].

 Position of the CAV [XCAV, YCAV, ZCAV].

 The position is based on bounding box range as shown in Figure 2. Upper and lower

limits for the X and Y position of the ego vehicle and CAV are within NLOS range. As

mentioned above, this has been determined through simulation.

 Speed of the ego vehicle.

 Speed of the CAV.

The speed for the initial population is selected from the speed distribution depicted

in Figure 7. The likelihood of a speed being selected is directly proportional to its proba-

bility within the speed probability distribution. A MATLAB function has been defined to

facilitate this selection. Algorithm 1 below shows the genetic algorithm steps.

Figure 6. T−junction scenario.

The GA will seek to identify critical scenarios by determining the fitness value of a
scenario given a set of input parameters. For the purpose of this experiment, we will fix
the number of road users to two: the ego vehicle and the connected autonomous vehicle.
The speed ranges use UK government data [89] acquired from the probability of speed
distribution given a particular speed limit; a function for the probability distribution is
an input to the GA. The scenario space for each individual scenario is made up of a set of
parameters which are inputted to the GA. The scenario space has these parameters:

• Position of the ego vehicle [XEgo, YEgo, ZEgo].
• Position of the CAV [XCAV, YCAV, ZCAV].
• The position is based on bounding box range as shown in Figure 2. Upper and lower

limits for the X and Y position of the ego vehicle and CAV are within NLOS range. As
mentioned above, this has been determined through simulation.

• Speed of the ego vehicle.
• Speed of the CAV.

The speed for the initial population is selected from the speed distribution depicted in
Figure 7. The likelihood of a speed being selected is directly proportional to its probability
within the speed probability distribution. A MATLAB function has been defined to facilitate
this selection. Algorithm 1 below shows the genetic algorithm steps.

Software 2022, 1 254

Software 2022, 1, FOR PEER REVIEW 11

Figure 7. Speed distribution for different speed limits. Adopted from [89].

Algorithm 1 below shows the genetic algorithm steps.

Algorithm 1: Genetic algorithm for NLOS critical scenario selection

Input:

Population size, n

Maximum number of iterations, MAX

Output:

Critical scenario

Begin:

Generate initial population (randomly) of n chromosomes Yi (i = 1, 2, …, n)

Set iteration counter t = 0

Compute the fitness values of each chromosome

while (t < MAX)

Step 1: The individuals are ranked according to fitness value

Step 2: The elitism rate is checked and, depending on the value, the appropriate number of individuals are taken over to

the next generation

Step 3: Select a pair of chromosomes from the current generation based on fitness

Step 4: Apply crossover operation on the selected pair with crossover probability

Step 5: Select a chromosome from the current generation based on fitness

Step 6: Apply mutation on the selected individual with mutation probability

Step 7: Replace the old population with a newly generated population

Step 8: Increment the current iteration t by 1

end while

return the critical scenario

end

The input parameters to the GA are as follows: population size, number of genera-

tions, probability of crossover (Pc), probability of mutation (Pm) and elitism rate (Er). The

Figure 7. Speed distribution for different speed limits. Adopted from [89].

Algorithm 1 below shows the genetic algorithm steps.

Algorithm 1: Genetic algorithm for NLOS critical scenario selection

Input:
Population size, n
Maximum number of iterations, MAX
Output:
Critical scenario
Begin:
Generate initial population (randomly) of n chromosomes Yi (i = 1, 2, . . . , n)
Set iteration counter t = 0
Compute the fitness values of each chromosome
while
(t < MAX) Step 1: The individuals are ranked according to fitness value
Step 2: The elitism rate is checked and, depending on the value, the appropriate number of individuals are
taken over to the next generation
Step 3: Select a pair of chromosomes from the current generation based on fitness
Step 4: Apply crossover operation on the selected pair with crossover probability
Step 5: Select a chromosome from the current generation based on fitness
Step 6: Apply mutation on the selected individual with mutation probability
Step 7: Replace the old population with a newly generated population
Step 8: Increment the current iteration t by 1
end while
return the critical scenario
end

The input parameters to the GA are as follows: population size, number of generations,
probability of crossover (Pc), probability of mutation (Pm) and elitism rate (Er). The values

Software 2022, 1 255

for these have been determined empirically through experimentation. The chromosomes
are represented using real-value encoding. The genes of each chromosome include Position
of the Ego, Position of the Car, Speed of the Ego and Speed of the Car.

The fitness function evaluates the fitness value f (Y) of each individual, Yi, in the
population. To determine the fitness value of each individual, the metric that represents
the criticality of the scenarios is used (as discussed in Section 3.1). The fitness value is
then evaluated (by using a normalised value of the difference between TTC and TST) by
comparing the TTC and the TST (TTC < TST). The lower the fitness value, the lower the
difference between TTC and TST. A roulette wheel selection function [90] is used to select
individuals with lower fitness values for the next generation.

An individual or a scenario outputted from the GA can be within one of the following
categories as discussed below and shown in Figure 8.

Software 2022, 1, FOR PEER REVIEW 13

for example, road surface conditions become icy. The individuals in this category require
communication despite the possibility of being able to avoid a collision narrowly.
• Category 3:

The individuals in this category have TST < TTC and would therefore not require
communication in order to avoid a collision. However, if any parameter is changed nega-
tively, the individuals in this category can move to Category 2.
• Category 4:

Category 4 comprises those individuals in which no collision occurs. Since there
would have been no collision that would have occurred, there would be no value for TTC.
The TTC for individuals in this category is equal to the total run time of the simulation.
Thus, having a larger value for TTC.

Figure 8. Categories for scenarios.

The GA is used to search for solutions that lay within Category 1 and Category 2.

4. Results
To guide the GA, a fitness value is assigned to each scenario using the metrics time-

to-collision (TTC) and total stopping time (TST). The lower a fitness value, the more criti-
cal a scenario and the more likely that a scenario is taken to the next generation. The entire
implementation of the GA was conducted within the MATLAB environment utilising the
Automated Driving Toolbox. The parameters used to run the GA are as follows:
• Population Size: 50.
• Number of Generations: 100.
• Crossover Rate: 0.85.
• Mutation Rate: 0.1.
• Elitism Rate: 0.2.

To conduct the experiment, the GA was executed multiple times (greater than 100)
for the selected road layout with a different combination of speed limits. For each speed
limit combination, the GA outputs a slightly different optimum scenario, e.g., a T-junction
with a chosen speed limit for the road segment with the GA selecting a certain value of
road user positions and speeds (corresponding to the speed limit) that leads to a critical
scenario. As part of implementation for each speed limit combination (within the UK con-
text which is in mph and is as follows: [20,30,50,60,70]), the optimum chromosome is out-
putted after maximum generation has been reached.

Figure 8. Categories for scenarios.

• Category 1:

This comprises individuals whose TTC < TST. Individuals in this category require
information before hand in order to avoid a collision. These individuals make up a small
percentage within the large scenario space.

• Category 2:

This comprises individuals whose TTC is not less than TST but is within a certain
safety parameter (which has been assumed to be 5 m). Individuals in this category could
result in a collision and can move to category 1 if any parameter is changed negatively,
for example, road surface conditions become icy. The individuals in this category require
communication despite the possibility of being able to avoid a collision narrowly.

• Category 3:

The individuals in this category have TST < TTC and would therefore not require
communication in order to avoid a collision. However, if any parameter is changed
negatively, the individuals in this category can move to Category 2.

• Category 4:

Category 4 comprises those individuals in which no collision occurs. Since there
would have been no collision that would have occurred, there would be no value for TTC.
The TTC for individuals in this category is equal to the total run time of the simulation.
Thus, having a larger value for TTC.

The GA is used to search for solutions that lay within Category 1 and Category 2.

4. Results

To guide the GA, a fitness value is assigned to each scenario using the metrics time-to-
collision (TTC) and total stopping time (TST). The lower a fitness value, the more critical

Software 2022, 1 256

a scenario and the more likely that a scenario is taken to the next generation. The entire
implementation of the GA was conducted within the MATLAB environment utilising the
Automated Driving Toolbox. The parameters used to run the GA are as follows:

• Population Size: 50.
• Number of Generations: 100.
• Crossover Rate: 0.85.
• Mutation Rate: 0.1.
• Elitism Rate: 0.2.

To conduct the experiment, the GA was executed multiple times (greater than 100) for
the selected road layout with a different combination of speed limits. For each speed limit
combination, the GA outputs a slightly different optimum scenario, e.g., a T-junction with
a chosen speed limit for the road segment with the GA selecting a certain value of road
user positions and speeds (corresponding to the speed limit) that leads to a critical scenario.
As part of implementation for each speed limit combination (within the UK context which
is in mph and is as follows: [20,30,50,60,70]), the optimum chromosome is outputted after
maximum generation has been reached.

Table 2 shows the results of a sample of 25 experiments (the best 25 of all the GA runs
or the most critical scenarios with lowest fitness values) each resulting in the optimum
chromosome being selected with its corresponding fitness value. Next, a test is conducted
to ensure all scenarios selected by the GA do lead to a collision and hence validate the
approach. To conduct this test, the chromosome is inputted to the simulation environment,
where through simulation it is determined whether a collision will occur or not. All
scenarios within Table 2 lead to a collision. The scenario crash validates that none of
the outputted scenarios lay within scenario Category 4 (as discussed in Section 3.3). The
simulations within this section assumed that the ego vehicle did not react, even when the
sensors detected the other vehicle (of course detection range is still satisfying the criticality
scenario), and hence these tests are termed as lower bound tests as they depict tests in the
most pessimistic layout.

Table 2. Genetic Algorithm Simulation Results.

U.K
Speed
Limit
(mph)

Scenario
No.

Best Chromosome

Fitness ValueEgo
Speed
(m/s)

CAV
Speed
(m/s)

Ego
Initial

Position
[x, y, z] (m)

CAV
Initial

Position
[x, y, z] (m)

20

1 17.12 16.67 [13.91, 0.97, 0] [37.26, −24.12, 0] 264.50
2 20.39 17.17 [10.86, 1.41, 0] [38.37, −22.81, 0] 261.94
3 15.87 17.52 [13.97, 1.69, 0] [38.37, −26.86, 0] 248.93
4 11.31 14.31 [15.24, 1.25, 0] [38.12, −26.79, 0] 247.71
5 16.99 13.81 [14.59, 1.33, 0] [38.35, −21.87, 0] 282.01

30

6 17.66 16.14 [13.94, 1.96, 0] [37.65, −25.83, 0] 226.72
7 13.44 3.62 [13.91, 1.82, 0] [38.57, −26.99, 0] 227.47
8 19.36 18.42 [15.17, 2.13, 0] [38.35, −22.87, 0] 291.26
9 15.84 13.87 [15.46, 1.68, 0] [38.24, −25.00, 0] 250.67
10 13.08 15.04 [16.74, 1.76, 0] [37.81, −23.86, 0] 194.25

50

11 28.39 24.10 [15.11, 1.32, 0] [37.30, −24.77, 0] 137.22
12 25.85 24.21 [14.67, 1.60, 0] [38.54, −25.51, 0] 151.71
13 24.18 28.68 [15.28, 1.51, 0] [38.46, −25.80, 0] 158.10
14 27.96 24.15 [15.42, 1.66, 0] [38.01, −22.36, 0] 147.22
15 25.03 22.31 [11.98, 1.96, 0] [38.61, −27.08, 0] 142.73

Software 2022, 1 257

Table 2. Cont.

U.K
Speed
Limit
(mph)

Scenario
No.

Best Chromosome

Fitness ValueEgo
Speed
(m/s)

CAV
Speed
(m/s)

Ego
Initial

Position
[x, y, z] (m)

CAV
Initial

Position
[x, y, z] (m)

60

16 39.26 39.17 [14.02, 1.47, 0] [37.86, −22.98, 0] 111.79
17 24.75 27.11 [16.46, 2.05, 0] [37.59, −27.42, 0] 130.46
18 25.67 24.02 [16.68, 1.53, 0] [38.04, −26.41, 0] 138.12
19 35.58 32.86 [16.87, 1.14, 0] [37.30, −23.20, 0] 107.88
20 28.30 23.88 [14.28, 2.08, 0] [37.61, −25.60, 0] 137.09

70

21 37.37 34.69 [12.13, 2.14, 0] [38.61, −27.60, 0] 107.47
22 20.12 22.11 [15.13, 1.56, 0] [38.12, −27.66, 0] 178.85
23 35.18 34.11 [15.85, 1.62, 0] [38.70, −27.38, 0] 173.33
24 19.53 23.00 [17.13, 1.87, 0] [38.73, −26.59, 0] 175.19
25 21.77 20.92 [15.37, 1.16, 0] [38.57, −26.94, 0] 165.69

However, the ego vehicle will react depending upon its software algorithms (for
example, collision avoidance algorithm or trajectory planning) and control systems.

5. Discussion

This section discusses the efficacy of the proposed GA approach in identifying crit-
ical scenarios. This has been performed by discussing the validation of the GA selected
scenarios on the MATLAB simulation platform and categorising them as discussed in
Section 3.3. We highlight that experiments have been conducted in ideal scenarios and
factored in realistic attributes, such as weather and road surface condition, that will make
the selected scenarios more critical in nature. We go on to discuss that the scenarios and
MATLAB platform can be utilised to test algorithms incorporating vehicular communica-
tion through another experiment and discuss a possible way to validate the success of the
tested algorithms, i.e., through measurement of TTC.

In Section 4, a lower bound test was conducted to ensure all scenario outputted
from the GA are within the first three categories. A lower bound test is one that was
conducted in the most pessimistic setting assuming that the ego vehicle does not react
and apply brakes on detection of the obstacle. As discussed earlier, a critical scenario
resides within Category 1 and 2. To determine this, a second experiment was conducted.
This experiment differs from the initial experiment by including straightforward braking
(assuming negligible algorithm processing and reaction time) such that when the sensors
detect an oncoming obstacle, braking is applied. This experiment measures the distance
from the point where the trajectories of the ego vehicle and CAV intersect (otherwise known
as the collision point).

Furthermore, a third experiment was set up which incorporated vehicular commu-
nication which was configured to send information from the CAV to the ego vehicle. The
information included its current time, position, speed and heading [83]. The third ex-
periment was set up to determine how early detection has an effect on distance from
collision point.

The sample results which consisted of critical scenarios from Section 4 (Table 2) were
inputted into both simulation environments: a scenario with no communication (Experi-
ment 2) and a scenario with communication (Experiment 3). Table 3 shows the stopping
distance from the collision point without communication and with communication for the
same underlying scenario.

Software 2022, 1 258

Table 3. Results for Experiments 2 and 3.

Scenario Number Distance to Collision
without Communication (m)

Distance to Collision with
Communication (m)

1 2.52 17.88
2 2.42 17.63
3 2.96 16.64
4 1.39 14.36
5 2.52 18.13
6 3.64 17.58
7 5.24 18.85
8 4.76 17.31
9 5.21 18.92
10 3.23 17.28
11 9.25 23.25
12 3.00 16.32
13 2.76 14.66
14 3.95 17.92
15 4.01 18.10
16 5.16 20.33
17 7.55 19.48
18 6.60 17.61
19 5.42 18.15
20 6.02 18.37
21 8.71 20.85
22 7.39 20.74
23 2.60 14.43
24 4.14 17.06
25 5.61 21.49

From Table 3, it can be observed that the distance from the collision point is much
greater when communication is introduced or when the ego vehicle is aware of the obstacle
much earlier. Looking into the results of Table 3 under column 1 more minutely, in scenario
number 4 the ego vehicle was only 1.39 m away from the collision point when it came to a
stop on braking initiation. Similarly, several other scenarios have less than 3 m distance
from the collision point. This distance is the distance where the ego vehicle comes to a
complete halt upon initiating braking from the point the sensors detect the oncoming CAV.
This is in the most optimistic road and weather condition, or in other words the best-case
scenario, and hence if any of these parameters were to change slightly, Category 3 scenarios
would move to Category 2 and Category 2 scenarios would likewise be in Category 1.
These results show the GA was successfully able to search the scenario space for critical
scenarios. Figure 9 illustrates the results from Table 3 and the corresponding scenario
categories of the simulation without communication.

Figure 9 shows the scenario categories; the red dots indicate scenarios in Category
2 and the orange dots indicate scenarios in Category 3. From Figure 9 it can be observed
that a large number of scenarios have a stopping distance from collision point of less than
5 m (Category 2) with many coming under 3 m. From the results it can be seen that the
scenarios outputted from the GA fit within the definition of critical scenarios as discussed in
Section 3.1. A scenario is considered critical if TTC < TST (Category 1) or within a threshold
safety value (Category 2). The safety value is when the stopping distance is within a small
distance from the collision point, which has been assumed to be 5 m. If there was a change
in weather condition which would lead to the need for a much larger braking distance, this
could result in a collision and the Category 2 scenarios would very likely be Category 1
scenarios. Furthermore, if system performance or reaction time was to change as suggested
by Hammerschmidt et al. [84], an autonomous vehicle could have a reaction time of up
to 0.5 s and, with these parameters, all the scenarios from Category 2 would be within
Category 1 and all scenarios within Category 3 would be either within Category 1 or within

Software 2022, 1 259

the upper limits of Category 2. Figure 10 compares these results with communication to
determine the braking distance if communication was received beforehand.

Software 2022, 1, FOR PEER REVIEW 15

11 9.25 23.25

12 3.00 16.32

13 2.76 14.66

14 3.95 17.92

15 4.01 18.10

16 5.16 20.33

17 7.55 19.48

18 6.60 17.61

19 5.42 18.15

20 6.02 18.37

21 8.71 20.85

22 7.39 20.74

23 2.60 14.43

24 4.14 17.06

25 5.61 21.49

From Table 3, it can be observed that the distance from the collision point is much

greater when communication is introduced or when the ego vehicle is aware of the obsta-

cle much earlier. Looking into the results of Table 3 under column 1 more minutely, in

scenario number 4 the ego vehicle was only 1.39 m away from the collision point when it

came to a stop on braking initiation. Similarly, several other scenarios have less than 3 m

distance from the collision point. This distance is the distance where the ego vehicle comes

to a complete halt upon initiating braking from the point the sensors detect the oncoming

CAV. This is in the most optimistic road and weather condition, or in other words the

best-case scenario, and hence if any of these parameters were to change slightly, Category

3 scenarios would move to Category 2 and Category 2 scenarios would likewise be in

Category 1. These results show the GA was successfully able to search the scenario space

for critical scenarios. Figure 9 illustrates the results from Table 3 and the corresponding

scenario categories of the simulation without communication.

Figure 9. Scenario categories (orange dots indicate Category 3 scenarios and red dots Category 2).

Figure 9 shows the scenario categories; the red dots indicate scenarios in Category 2

and the orange dots indicate scenarios in Category 3. From Figure 9 it can be observed

that a large number of scenarios have a stopping distance from collision point of less than

5 m (Category 2) with many coming under 3 m. From the results it can be seen that the

scenarios outputted from the GA fit within the definition of critical scenarios as discussed

in Section 3.1. A scenario is considered critical if TTC < TST (Category 1) or within a thresh-

old safety value (Category 2). The safety value is when the stopping distance is within a

Figure 9. Scenario categories (orange dots indicate Category 3 scenarios and red dots Category 2).

Software 2022, 1, FOR PEER REVIEW 16

small distance from the collision point, which has been assumed to be 5 m. If there was a

change in weather condition which would lead to the need for a much larger braking dis-

tance, this could result in a collision and the Category 2 scenarios would very likely be

Category 1 scenarios. Furthermore, if system performance or reaction time was to change

as suggested by Hammerschmidt et al. [84], an autonomous vehicle could have a reaction

time of up to 0.5 s and, with these parameters, all the scenarios from Category 2 would be

within Category 1 and all scenarios within Category 3 would be either within Category 1

or within the upper limits of Category 2. Figure 10 compares these results with commu-

nication to determine the braking distance if communication was received beforehand.

Figure 10. Comparison of distances from collision point.

Figure 10 shows the comparison of the results of distance to collision point with and

without communication. From Figure 10 it can be observed that most of the critical sce-

narios acquired from the GA have a stopping distance of less than 5 m, with a few a little

over 5 m and an outlier at just under 10 m. These scenarios are critical scenarios, as dis-

cussed earlier, where any change in parameters leads to a collision. These scenarios can

be used as test scenarios to test algorithms, for example, obstacle detection, trajectory

planning or collision avoidance. Comparing this to results acquired with a communica-

tion network, it can be observed that the stopping distance from the collision point for

most of the scenarios was over 15 m. This confirms the need for communication before-

hand in order to avoid a collision. From this it is clearly seen that the scenarios are also

capable of being used as test scenarios for any new development within the V2X com-

muncation area and not just for autonomous vehicle navigation algorithms.

6. Conclusions and Future Work

This paper discuses a methodology for selecting NLOS critical scenarios. This has

been achieved using a GA. The fitness function in the GA uses the criticality metric dis-

cussed in Section 3 to search the scenario space and filter out identified scenarios. From

Figure 11, results demonstrating how effectively the genetic algorithm searched the sce-

nario space can be seen. Several simulations of the genetic algorithm were run (with set-

ting parameters as discussed in Section 4), and results are visualised in the graphs below:

Figure 10. Comparison of distances from collision point.

Figure 10 shows the comparison of the results of distance to collision point with
and without communication. From Figure 10 it can be observed that most of the critical
scenarios acquired from the GA have a stopping distance of less than 5 m, with a few a
little over 5 m and an outlier at just under 10 m. These scenarios are critical scenarios, as
discussed earlier, where any change in parameters leads to a collision. These scenarios
can be used as test scenarios to test algorithms, for example, obstacle detection, trajectory
planning or collision avoidance. Comparing this to results acquired with a communication
network, it can be observed that the stopping distance from the collision point for most
of the scenarios was over 15 m. This confirms the need for communication beforehand in
order to avoid a collision. From this it is clearly seen that the scenarios are also capable of
being used as test scenarios for any new development within the V2X communcation area
and not just for autonomous vehicle navigation algorithms.

6. Conclusions and Future Work

This paper discuses a methodology for selecting NLOS critical scenarios. This has been
achieved using a GA. The fitness function in the GA uses the criticality metric discussed in
Section 3 to search the scenario space and filter out identified scenarios. From Figure 11,
results demonstrating how effectively the genetic algorithm searched the scenario space
can be seen. Several simulations of the genetic algorithm were run (with setting parameters
as discussed in Section 4), and results are visualised in the graphs below:

Software 2022, 1 260

Software 2022, 1, FOR PEER REVIEW 17

(A) (B)

Figure 11. Fitness value convergence curves of two example scenarios (Scenario 19 in (A) and Sce-

nario 8 in (B) of Table 2).

From the graphs (A and B) in Figure 11, it can be seen that the genetic algorithm was

searching the scenario space effectively by having a population with a lower fitness after

each generation. Based on the empirical data collated when testing the scenario, we can

assume that there is high probability of obtaining a collision scenario. From this data, it

can be noted that the GA is able to effectively locate valid scenarios. From the categories

defined in Section 3.3, most scenarios seem to fall between Category 2 and 3. This is per-

haps because the GA is getting stuck in a local minima and hence Category 1 is not iden-

tified. An improvement to the GA would be to locate Category 1 scenarios by coming out

of the local minima. Another possibility is that they are not sufficiently complex because

the current test scenarios are not Category 1. A more complex scenario would include

more traffic participants, various driving manoeuvres and more underlying parameters,

such as weather and road surface conditions. Furthermore, this research also addresses

the need for vehicle-to-vehicle communication, as shown from the results. When the ve-

hicle receives information beforehand, the distance to the collision point increases and

thus reverts the criticality of the scenario.

The methodology outlined within this paper can be easily expanded to a crossroad,

developed into a roundabout or adapted to be a simpler curve (with blind corners) on the

same road by removing one outgoing road. Once the underlying road network is selected,

additional genes (to represent additional road user parameters, weather conditions, road

surface conditions, etc.) can be added to an individual chromosome. Much of the GA will

remain the same, with a need to review the fitness function so that it incorporates addi-

tional factors such as road surface conditions, thus identifying critical NLOS test scenarios

which can be used to validate algorithms as discussed.

Author Contributions: Conceptualization, T. A., L.D. and D.P.; methodology, T.A. and L.D.; soft-

ware, T.A., and D.P.; validation, T. A., L.D. and D.P.; investigation, T.A.; resources, T. A., L.D. and

D. P..; data curation, T. A.; writing—original draft preparation, T.A.; writing—review and editing,

T.A., L.D. and D.P.; visualization, T.A., L.D. and D.P.; supervision, D.E., L.D. and D.P.; project ad-

ministration, L.D.; funding acquisition, No external funding. PhD project. All authors have read and

agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Can be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 11. Fitness value convergence curves of two example scenarios (Scenario 19 in (A) and
Scenario 8 in (B) of Table 2).

From the graphs (A and B) in Figure 11, it can be seen that the genetic algorithm was
searching the scenario space effectively by having a population with a lower fitness after
each generation. Based on the empirical data collated when testing the scenario, we can
assume that there is high probability of obtaining a collision scenario. From this data, it
can be noted that the GA is able to effectively locate valid scenarios. From the categories
defined in Section 3.3, most scenarios seem to fall between Category 2 and 3. This is perhaps
because the GA is getting stuck in a local minima and hence Category 1 is not identified.
An improvement to the GA would be to locate Category 1 scenarios by coming out of the
local minima. Another possibility is that they are not sufficiently complex because the
current test scenarios are not Category 1. A more complex scenario would include more
traffic participants, various driving manoeuvres and more underlying parameters, such as
weather and road surface conditions. Furthermore, this research also addresses the need
for vehicle-to-vehicle communication, as shown from the results. When the vehicle receives
information beforehand, the distance to the collision point increases and thus reverts the
criticality of the scenario.

The methodology outlined within this paper can be easily expanded to a crossroad,
developed into a roundabout or adapted to be a simpler curve (with blind corners) on the
same road by removing one outgoing road. Once the underlying road network is selected,
additional genes (to represent additional road user parameters, weather conditions, road
surface conditions, etc.) can be added to an individual chromosome. Much of the GA will
remain the same, with a need to review the fitness function so that it incorporates additional
factors such as road surface conditions, thus identifying critical NLOS test scenarios which
can be used to validate algorithms as discussed.

Author Contributions: Conceptualization, T.A., L.D. and D.P.; methodology, T.A. and L.D.; software,
T.A. and D.P.; validation, T.A., L.D. and D.P.; investigation, T.A.; resources, T.A., L.D. and D.P.; data
curation, T.A.; writing—original draft preparation, T.A.; writing—review and editing, T.A., L.D. and
D.P.; visualization, T.A., L.D. and D.P.; supervision, D.E., L.D. and D.P.; project administration, L.D.;
funding acquisition, No external funding. PhD project. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Can be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Software 2022, 1 261

References
1. Van Brummelen, J.; O’brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow.

Transp. Res. Part C 2018, 89, 384–406. [CrossRef]
2. Rasshofer, R.H.; Gresser, K. Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions. Adv. Radio

Sci. 2005, 3, 205–209. [CrossRef]
3. Mohammed, A.S.; Amamou, A.; Ayevide, F.K.; Kelouwani, S.; Agbossou, K.; Zioui, N. The perception system of intelligent

ground vehicles in all weather conditions: A systematic literature review. Sensors 2020, 20, 6532. [CrossRef] [PubMed]
4. Leibe, B.; Seemann, E.; Schiele, B. Pedestrian detection in crowded scenes. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–25 June 2005; Volume I,
pp. 878–885.

5. Bogdoll, D.; Breitenstein, J.; Heidecker, F.; Bieshaar, M.; Sick, B.; Fingscheidt, T.; Zöllner, J.M. Description of Corner Cases in
Automated Driving: Goals and Challenges. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, BC, Canada, 7 October 2021; pp. 1023–1028.

6. Elliott, D.; Keen, W.; Miao, L. Recent advances in connected and automated vehicles. J. Traffic Transp. Eng. 2019, 6, 109–131.
[CrossRef]

7. Saito, Y.; Sugaya, F.; Inoue, S.; Raksincharoensak, P.; Inoue, H. A context-aware driver model for determining recommended
speed in blind intersection situations. Accid. Anal. Prev. 2021, 163, 106447. [CrossRef]

8. Hussein, M.; Erol-Kantarci, M.; Sorour, S. Connected and Autonomous Vehicles in Smart Cities; CRC Press: Boca Raton, FL, USA, 2020.
9. Payen de La Garanderie, G.; Atapour Abarghouei, A.; Breckon, T.P. Eliminating the blind spot: Adapting 3D object detection

and monocular depth estimation to 360◦ Panoramic Imagery. In Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, 8–14 September 2018; pp. 789–807.

10. Kwon, D.; Malaiya, R.; Yoon, G.; Ryu, J.-T.; Pi, S.-Y. A Study on Development of the Camera-Based Blind Spot Detection System
Using the Deep Learning Methodology. Appl. Sci. 2018, 9, 2941. [CrossRef]

11. Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles.
IEEE Consum. Electron. Mag. 2018, 7, 18–25. [CrossRef]

12. Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.N.; Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.; et al.
Autonomous driving in Urban environments: Boss and the Urban Challenge. In The DARPA Urban Challenge; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 56, pp. 1–59.

13. Chu, K. Methods and Systems for Blind Spot Detection in an Autonomous Vehicle. U.S. Patents 20190011913A1, 7 May 2017.
Available online: https://patents.google.com/patent/US20190011913A1/en (accessed on 17 January 2020).

14. HMinn, H.; Zeng, M.; Bhargava, V. Towards a definition of the {Internet of Things (IoT)}. IEEE Internet Initiat. 2015, 1, 1–86.
15. Anaya, J.J.; Talavera, E.; Gimenez, D.; Gomez, N.; Felipe, J.; Naranjo, J.E. Vulnerable Road Users Detection Using V2X Commu-

nications. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria,
Spain, 15–18 September 2015; pp. 107–112.

16. Hobert, L.; Festag, A.; Llatser, I.; Altomare, L.; Visintainer, F.; Kovacs, A. Enhancements of V2X communication in support of
cooperative autonomous driving. IEEE Commun. Mag. 2015, 53, 64–70. [CrossRef]

17. Hussein, A.; Marín-Plaza, P.; García, F.; Armingol, J.M. Autonomous cooperative driving using V2X communications in off-road
environment. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC),
Yokohama, Japan, 16–19 October 2019.

18. Naranjo, J.E.; Jiménez, F.; Anaya, J.J.; Talavera, E.; Gómez, O. Application of vehicle to another entity (V2X) communications for
motorcycle crash avoidance. J. Intell. Transp. Syst. 2016, 21, 285–295. [CrossRef]

19. Alodadi, K.; Al-Bayatti, A.H.; Alalwan, N. Cooperative volunteer protocol to detect non-line of sight nodes in vehicular ad hoc
networks. Veh. Commun. 2017, 9, 72–82. [CrossRef]

20. Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for Development, Test and Validation of Automated Vehicles. In Proceedings of
the 2018 IEEE Intelligent Vehicles Symposium, Changshu, China, 26–30 June 2018.

21. Chen, J.; Yuan, B.; Tomizuka, M. Model-free Deep Reinforcement Learning for Urban Autonomous Driving. In Proceedings of the
2019 IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 27–30 October 2019; pp. 2765–2771.

22. Amersbach, C.; Winner, H. Functional decomposition—A contribution to overcome the parameter space explosion during
validation of highly automated driving. Traffic Inj. Prev. 2019, 20 (Suppl. S1), S52–S57. [CrossRef] [PubMed]

23. Riedmaier, S.; Schneider, D.; Watzenig, D.; Diermeyer, F.; Schick, B. Model validation and scenario selection for virtual-based
homologation of automated vehicles. Appl. Sci. 2021, 11, 35. [CrossRef]

24. Ortega, J.; Lengyel, H.; Szalay, Z. Overtaking maneuver scenario building for autonomous vehicles with PreScan software. Transp.
Eng. 2020, 2, 100029. [CrossRef]

25. Wongpiromsarn, T.; Murray, R.M. Formal Verification of an Autonomous Vehicle System. In Proceedings of the Conference on
Decision and Control 2008, Cancún, Mexico, 9–11 December 2008.

26. Ireland, M.L.; Hoffmann, R.; Miller, A.; Norman, G.; Veres, S.M. A Continuous-Time Model of an Autonomous Aerial Vehicle to
Inform and Validate Formal Verification Methods. arXiv 2016, arXiv:1609.00177.

27. Althoff, M.; Rajhans, A.; Krogh, B.H.; Yaldiz, S.; Li, X.; Pileggi, L. Formal verification of phase-locked loops using reachability
analysis and continuization. Commun. ACM 2013, 56, 97–104. [CrossRef]

http://doi.org/10.1016/j.trc.2018.02.012
http://doi.org/10.5194/ars-3-205-2005
http://doi.org/10.3390/s20226532
http://www.ncbi.nlm.nih.gov/pubmed/33203155
http://doi.org/10.1016/j.jtte.2018.09.005
http://doi.org/10.1016/j.aap.2021.106447
http://doi.org/10.3390/app9142941
http://doi.org/10.1109/MCE.2018.2828440
https://patents.google.com/patent/US20190011913A1/en
http://doi.org/10.1109/MCOM.2015.7355568
http://doi.org/10.1080/15472450.2016.1247703
http://doi.org/10.1016/j.vehcom.2017.03.001
http://doi.org/10.1080/15389588.2019.1624732
http://www.ncbi.nlm.nih.gov/pubmed/31381443
http://doi.org/10.3390/app11010035
http://doi.org/10.1016/j.treng.2020.100029
http://doi.org/10.1145/2507771.2507783

Software 2022, 1 262

28. Shalev-Shwartz, S.; Shammah, S.; Shashua, A. On a Formal Model of Safe and Scalable Self-driving Cars. arXiv 2017,
arXiv:1708.06374.

29. Riedmaier, S.; Ponn, T.; Ludwig, D.; Schick, B.; Diermeyer, F. Survey on Scenario-Based Safety Assessment of Automated Vehicles.
IEEE Access 2020, 8, 87456–87477. [CrossRef]

30. Koenig, A.; Witzlsperger, K.; Leutwiler, F.; Hohmann, S. Overview of HAD validation and passive HAD as a concept for validating
highly automated cars. Automatisierungstechnik 2018, 66, 132–145. [CrossRef]

31. Wachenfeld, W.; Winner, H. Virtual Assessment of Automation in Field Operation. A New Runtime Validation Method. Rob.
Auton. Syst. 2015, 10, 60.

32. Zong, W.; Zhang, C.; Wang, Z.; Zhu, J.; Chen, Q. Architecture design and implementation of an autonomous vehicle. IEEE Access
2018, 6, 21956–21970. [CrossRef]

33. Waymo, Safety Report and Whitepapers—Waymo. 2020. Available online: https://waymo.com/safety/ (accessed on
4 December 2021).

34. Barnard, Y.; Innamaa, S.; Koskinen, S.; Gellerman, H.; Svanberg, E.; Chen, H. Methodology for Field Operational Tests of
Automated Vehicles. Transp. Res. Procedia 2016, 14, 2188–2196. [CrossRef]

35. Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C. Making Bertha Drive—An Autonomous Journey on a
Historic Route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [CrossRef]

36. Althoff, M.; Dolan, J.M. Online verification of automated road vehicles using reachability analysis. IEEE Trans. Robot. 2014, 30,
903–918. [CrossRef]

37. Waymo, Waymo Opens Robo-Taxi Service to the Public in US City of Phoenix | Technology News. 2020. Available online: https:
//gadgets.ndtv.com/transportation/news/google-waymo-self-driving-cars-phoenix-launch-2307438 (accessed on 4 December
2021).

38. Tesla, Tesla’s ‘Dojo’ Deployment in 2021 Will Make Autopilot and FSD a ‘Distant First’ against Rivals. 2020. Available online:
https://www.teslarati.com/tesla-dojo-autopilot-fsd-improvements-release-date/ (accessed on 4 December 2021).

39. Bach, J.; Holzäpfel, M.; Otten, S.; Sax, E. Reactive-Replay Approach for Verification and Validation of Closed-Loop Control
Systems in Early Development. SAE Technol. Pap. 2017. [CrossRef]

40. Nilsson, J. Computational Verification Methods for Automotive Safety Systems; Chalmers Tekniska Hogskola: Gothenburg,
Sweden, 2014.

41. Kruber, F.; Wurst, J.; Botsch, M. An Unsupervised Random Forest Clustering Technique for Automatic Traffic Scenario Catego-
rization. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018; pp. 2811–2818.

42. Bolte, J.A.; Bar, A.; Lipinski, D.; Fingscheidt, T. Towards corner case detection for autonomous driving. In Proceedings of the 2019
IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 438–445.

43. Lenard, J.; Badea-romero, A.; Danton, R. Typical pedestrian accident scenarios for the development of autonomous emergency
braking test protocols. Accid. Anal. Prev. 2014, 73, 73–80. [CrossRef]

44. Tuncali, C.E.; Pavlic, T.P.; Fainekos, G. Utilizing S-TaLiRo as an automatic test generation framework for autonomous vehicles. In
Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016; pp. 1470–1475.

45. Tuncali, C.E.; Fainekos, G.; Ito, H.; Kapinski, J. Simulation-based Adversarial Test Generation for Autonomous Vehicles with
Machine Learning Components. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30
June 2018; pp. 1555–1562.

46. Nalic, D.; Mihalj, T.; Baumler, M.; Lehmann, M. Scenario Based Testing of Automated Driving Systems: A Literature Survey. Proc.
FISITA Web Congr. 2020, 30, 1–10.

47. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle
reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [CrossRef]

48. Ma, J.; Schwarz, C.; Wang, Z.; Elli, M.; Ros, G.; Feng, Y. New simulation tools for training and testing automated vehicles. In
Proceedings of the Automated Vehicles Symposium 2019, Orlando, FL, USA, 15 July 2019; pp. 111–119.

49. Waymo. 2020. Available online: https://waymo.com/ (accessed on 7 April 2021).
50. Weber, H.; Bock, J.; Klimke, J.; Roesener, C.; Hiller, J.; Krajewski, R.; Zlocki, A.; Eckstein, L. Traffic Injury Prevention A framework

for definition of logical scenarios for safety assurance of automated driving A framework for definition of logical scenarios for
safety assurance of automated driving. Traffic Inj. Prev. 2019, 20, S65–S70. [CrossRef]

51. Nitsche, P. Safety-Critical Scenarios and Virtual Testing Procedures for Automated Cars at Road Intersections. Ph.D. Thesis,
Loughborough University, Loughbrough, UK, 2018.

52. Mahmud, S.M.S.; Ferreira, L.; Hoque, M.S.; Tavassoli, A. Application of proximal surrogate indicators for safety evaluation: A
review of recent developments and research needs. IATSS Res. 2017, 41, 153–163. [CrossRef]

53. Hayward, J.C. Near-Miss Determination through use of a scale of danger. Highw. Res. Board 1972, 24–35. Available online:
https://onlinepubs.trb.org/Onlinepubs/hrr/1972/384/384-004.pdf (accessed on 30 March 2022).

54. Junietz, P.; Bonakdar, F.; Klamann, B.; Winner, H. Criticality Metric for the Safety Validation of Automated Driving using Model
Predictive Trajectory Optimization. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems, Maui, HI, USA, 4–7 November 2018; pp. 60–65.

http://doi.org/10.1109/ACCESS.2020.2993730
http://doi.org/10.1515/auto-2017-0113
http://doi.org/10.1109/ACCESS.2018.2828260
https://waymo.com/safety/
http://doi.org/10.1016/j.trpro.2016.05.234
http://doi.org/10.1109/MITS.2014.2306552
http://doi.org/10.1109/TRO.2014.2312453
https://gadgets.ndtv.com/transportation/news/google-waymo-self-driving-cars-phoenix-launch-2307438
https://gadgets.ndtv.com/transportation/news/google-waymo-self-driving-cars-phoenix-launch-2307438
https://www.teslarati.com/tesla-dojo-autopilot-fsd-improvements-release-date/
http://doi.org/10.4271/2017-01-1671
http://doi.org/10.1016/j.aap.2014.08.012
http://doi.org/10.1016/j.tra.2016.09.010
https://waymo.com/
http://doi.org/10.1080/15389588.2019.1630827
http://doi.org/10.1016/j.iatssr.2017.02.001
https://onlinepubs.trb.org/Onlinepubs/hrr/1972/384/384-004.pdf

Software 2022, 1 263

55. Matthias, S.; Volker, W.; Jurgen, A. An Integrated Approach to Maneuver-Based Trajectory Prediction and Criticality Assessment
in Arbitrary Road Environments. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2751–2766.

56. Minderhoud, M.M.; Bovy, P.H.L. Extended time-to-collision measures for road traffic safety assessment. Accid. Anal. Prev. 2001,
33, 89–97. [CrossRef]

57. Yang, H.; Ozbay, K.; Bartin, B. Application of Simulation-Based Traffic Conflict Analysis for Highway Safety Evaluation. Sel. Proc.
World Conf. Transp. Res. 2010, 12, 14.

58. Yang, H. Simulation-Based Evaluation of Traffic Safety Performance Using Surrogate Safety Measures; Rutgers The State University of
New Jersey-New Brunswick: New Brunswick, NJ, USA, 2012.

59. Taieb-Maimon, M.; Shinar, D. Minimum and Comfortable Driving Headways: Reality versus Perception. Hum. Factors 2016, 43,
159–172. [CrossRef] [PubMed]

60. Vogel, K. A comparison of headway and time to collision as safety indicators. Accid. Anal. Prev. 2003, 35, 427–433. [CrossRef]
61. Shbeeb, L. Development of Traffic Conflicts Technique for Different Environments: A Comparative Study of Pedestrian Conflicts

in Sweden and Jordan. 2000. Available online: https://lup.lub.lu.se/search/publication/19830 (accessed on 1 September 2021).
62. Archer, J.; Kungl, T. Indicators for Traffic Safety Assessment and Prediction and Their Application in Micro-Simulation Modelling:

A Study of Urban and Suburban Intersections. Ph.D. Dissertaion, KTH Royal Institute of Technology, Stockholm, Sweden, 2005.
63. Songchitruksa, P.; Tarko, A.P. Practical Method for Estimating Frequency of Right-Angle Collisions at Traffic Signals. Transp. Res.

Rec. 2006, 1953, 89–97. [CrossRef]
64. Cunto, F. Assessing Safety Performance of Transportation Systems using Microscopic Simulation. Ph.D. Dissertation. UWSpace.

Available online: http://hdl.handle.net/10012/4111 (accessed on 1 September 2021).
65. Saffarzadeh, M.; Nadimi, N.; Naseralavi, S.; Mamdoohi, A.R. A general formulation for time-to-collision safety indicator. Proc.

Inst. Civ. Eng. Transp. 2013, 166, 294–304. [CrossRef]
66. Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization; The MIT Press Cambridge: London, UK, 2019.
67. Li, W.; Xiao, J.K.; Li, W.M.; Xiao, X.R. Optimization on Black Box Function Optimization Problem. Math. Probl. Eng. 2015,

2015, 647234.
68. Kluck, F.; Zimmermann, M.; Wotawa, F.; Nica, M. Genetic Algorithm-Based Test Parameter Optimization for ADAS System

Testing. In Proceedings of the 19th IEEE International Conference on Software Quality, Reliability, and Security, QRS 2019, Sofia,
Bulgaria, 22–26 July 2019; pp. 418–425.

69. Abdessalem, R.B.; Nejati, S.; Briand, L.C.; Stifter, T. Testing vision-based control systems using learnable evolutionary algo-
rithms. In Proceedings of the International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018;
pp. 1016–1026.

70. Cutrone, S.; Liew, C.W.; Utter, B.; Brown, A. A Framework for Identifying and Simulating Worst-Case Animal-Vehicle Interactions.
In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018, Miyazaki, Japan, 7–10
October 2018; pp. 1995–2000.

71. Gladisch, C.; Heinz, T.; Heinzemann, C.; Oehlerking, J.; von Vietinghoff, A.; Pfitzer, T. Experience Paper: Search-Based Testing in
Automated Driving Control Applications. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated
Software Engineering, San Diego, CA, USA, 10–15 November 2019; pp. 26–37.

72. Gangopadhyay, B.; Khastgir, S.; Dey, S.; Dasgupta, P.; Montana, G.; Jennings, P. Identification of Test Cases for Automated Driving
Systems Using Bayesian Optimization. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019,
Auckland, New Zealand, 27–30 October 2019; pp. 1961–1967.

73. Masuda, S.; Nakamura, H.; Kajitani, K. Rule-based searching for collision test cases of autonomous vehicles simulation. IET Intell.
Transp. Syst. 2018, 12, 1088–1095. [CrossRef]

74. Huang, Z.; Lam, H.; Zhao, D. Sequential experimentation to efficiently test automated vehicles. In Proceedings of the IEEE Winter
Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; p. 3078.

75. Beglerovic, H.; Stolz, M.; Horn, M. Testing of autonomous vehicles using surrogate models and stochastic optimization. In
Proceedings of the IEEE Conference on Intelligent Transportation Systems, ITSC, Yokohama, Japan, 16–20 October 2017.

76. Feng, S.; Feng, Y.; Yan, X.; Shen, S.; Xu, S.; Liu, H.X. Safety assessment of highly automated driving systems in test tracks: A new
framework. Accid. Anal. Prev. 2020, 144, 105664. [CrossRef]

77. Feng, S.; Feng, Y.; Sun, H.; Bao, S.; Zhang, Y.; Liu, H.X. Testing Scenario Library Generation for Connected and Automated
Vehicles, Part II: Case Studies. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5635–5647. [CrossRef]

78. Sthamer, H.-H. The Automatic Generation of Software Test Data Using Genetic Algorithms—ProQuest; ProQuest Dissertations
Publishing (University of South Wales): Pontypridd, UK, 1995.

79. Bühler, O.; Wegener, J. Automatic Testing of an Autonomous Parking System Using Evolutionary Computation; SAE Technical Papers;
Soceity of Automotive Engineers: Warrendale, PA, USA, 2004; pp. 115–122.

80. Buehler, O.; Wegener, J. Evolutionary Functional Testing of a Vehicle Brake Assistant System Introduction to Evolutionary Testing.
In Proceedings of the 6th Metaheuristics International Conference, Wien, Austria, 22–26 August 2005; pp. 157–162.

81. O’Kelly, M.; Abbas, H.; Mangharam, R. Computer-aided design for safe autonomous vehicles. In Proceedings of the 2017
Resilience Week, RWS 2017, Wilmington, DE, USA, 18–22 September 2017; pp. 90–96.

82. Nitsche, P.; Thomas, P.; Stuetz, R.; Welsh, R. Pre-crash scenarios at road junctions: A clustering method for car crash data. Accid.
Anal. Prev. 2017, 107, 137–151. [CrossRef] [PubMed]

http://doi.org/10.1016/S0001-4575(00)00019-1
http://doi.org/10.1518/001872001775992543
http://www.ncbi.nlm.nih.gov/pubmed/11474761
http://doi.org/10.1016/S0001-4575(02)00022-2
https://lup.lub.lu.se/search/publication/19830
http://doi.org/10.1177/0361198106195300111
http://hdl.handle.net/10012/4111
http://doi.org/10.1680/tran.11.00031
http://doi.org/10.1049/iet-its.2018.5335
http://doi.org/10.1016/j.aap.2020.105664
http://doi.org/10.1109/TITS.2020.2988309
http://doi.org/10.1016/j.aap.2017.07.011
http://www.ncbi.nlm.nih.gov/pubmed/28841448

Software 2022, 1 264

83. Sandin, J. Analysis of intersection crash statistics to define pre-crash test scenarios for detection sensors. In SAFER Report Project
Scenario Based Testing of Pre-Crash Systems; SAFER-Vehicle and Traffic Safety Centre at Chalmers: Gothenburg, Sweden, 2009.

84. Liang, X.; Guler, S.I.; Gayah, V.V. Joint Optimization of Signal Phasing and Timing and Vehicle Speed Guidance in a Connected
and Autonomous Vehicle Environment. Transp. Res. Rec. 2019, 2673, 70–83. [CrossRef]

85. Kavitha, C.; Ashok, B.; Nanthagopal, K.; Desai, R.; Rastogi, N.; Shetty, S. Braking distance algorithm for autonomous cars using
road surface recognition. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 062034. [CrossRef]

86. Greibe, P. Determination of Braking Distance and Driver Behaviour Based on Braking Trials. In Proceedings of the 87th
Transportation Research Board Annual Meeting, Washington DC, USA, 13–17 January 2008.

87. Kong, J.; Pfeiffer, M.; Schildbach, G.; Borrelli, F. Kinematic and dynamic vehicle models for autonomous driving control design.
In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Korea, 28 June–1 July 2015; pp. 1094–1099.

88. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

89. UK GOV, Speed Limits—GOV.UK. 2020. Available online: https://www.gov.uk/speed-limits. (accessed on 9 August 2021).
90. Sharma, P.; Wadhwa, A.; Komal, K. Analysis of Selection Schemes for Solving an Optimization Problem in Genetic Algorithm. Int.

J. Comput. Appl. 2014, 93, 1–3. [CrossRef]

http://doi.org/10.1177/0361198119841285
http://doi.org/10.1088/1757-899X/263/6/062034
http://doi.org/10.1109/TIV.2016.2578706
https://www.gov.uk/speed-limits.
http://doi.org/10.5120/16256-5714

	Introduction
	Related Work
	Automotive Software Testing
	Metrics
	Evolutionary Algorithm

	Methodology
	Critical Scenarios
	Simulation Environment
	Genetic Algorithm

	Results
	Discussion
	Conclusions and Future Work
	References

