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Abstract

Background: Partitioning involves estimating independent models of molecular evolution for different subsets of

sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for

estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100

loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics.

Methods: We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic

datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to

cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been

proposed elsewhere.

Results: We compare the performance of our methods to each other, and to existing methods for selecting

partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational

efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns

dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores.

Conclusions: These two methods provide the best current approaches to inferring partitioning schemes for

very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We

hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.

Keywords: Model selection, Partitioning, Partitionfinder, BIC, AICc, AIC, Phylogenetics, Phylogenomics, Clustering,

Hierarchical clustering

Background
Choosing an appropriate model of molecular evolution

(model selection) is an important part of phylogenetics,

and can affect the accuracy of phylogenetic trees, diver-

gence dates, and model parameters [1-11]. One of the

most important aspects of model selection is to find a

model that can account for variation in the substitution

process among the sites of the alignment. This variation

may include differences in rates of evolution, base fre-

quencies, and substitution patterns, and the challenge

is to account for all such variation found in any given

dataset. There are many different ways to approach

this problem, of which the simplest and most widely

used is partitioning. In the broadest sense, partitioning

involves estimating independent models of molecular

evolution for different groups of sites in an alignment.

These groups of sites are often user-defined (in which

case we call them ‘data blocks’ here), for example based

on genes and codon positions [7]. It is also increasingly

common to refine user-defined partitioning scheme by

combining similar data blocks algorithmically [2]. A vast

number of phylogenetic studies have used partitioned

models of molecular evolution, and it is widely appreci-

ated that partitioning often leads to large improvements of

the fit of the model to the data (see e.g. [2]). Many studies

also report that partitioning has improved phylogenetic

inference, including the estimation of tree topologies,

branch lengths, and divergence dates [6,10,12-14].

Partitioning is one of many methods to account for

variation in substitution processes among sites. Some ap-

proaches automatically assign sites to different substitution
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models (e.g. [15,16]), and others estimate more than one

model of molecular evolution for each site (e.g. [17-19]).

Many of these methods are better and more elegant than

the form of partitioning we focus on here, because they do

not rely on user-defined data blocks and can more effect-

ively scale to the true variation in substitution processes

present in the data. However, partitioning remains the most

widely-used method to account for variation in rates and

patterns of substitution among sites [9,17,20,21]. Its en-

during popularity is part historical contingency and part

practical: many of the superior methods are more recent

and have not yet become widely adopted, and partitioning

is implemented in many popular phylogenetic inference

programs. Most importantly for this study, partitioning is

still the most practical method with which to account for

variation in rates and patterns of substitution in very large

datasets. Because of this, it is important that we work to

ensure that partitioned models of molecular evolution are

as accurate as possible, particularly when they are applied

to large datasets, and that is the focus of this study.

It is important to note that all of the commonly used

methods to account for variation in substitution patterns

among sites (including partitioning) assume that sequences

evolved under a stationary, reversible, and homogeneous

process. These assumptions are necessary to make the

methods efficient enough to allow for searches of phylo-

genetic tree space, although they are far from guaranteed

to hold for empirical datasets (e.g. [22]). It is possible to

relax these assumptions, but the computational cost of

doing so is extremely high and precludes effective tree

searches in all but the simplest cases. So for the time being

it is necessary to make these assumptions in order to esti-

mate tree topologies from very large datasets.

The biggest challenge in partitioning is to select the

most appropriate partitioning scheme for a given align-

ment, i.e. to divide the alignment into groups of sites that

account for variation in patterns of molecular evolution,

while avoiding over- or under-parameterisation [2,4]. To

select a partitioning scheme, phylogeneticists typically

start by grouping together putatively similar sites in an

alignment into homogenous data blocks, using a priori

knowledge of the variation in patterns of molecular

evolution among sites [7,10]. The challenge is then to

find an optimal partitioning scheme by combining suf-

ficiently similar data blocks, which is usually done by

finding the combination of data blocks that minimises

a metric such as the corrected Akaike’s Information

Criterion (AICc) or the Bayesian Information Criterion

(BIC) [2]. For smaller datasets of up to about 100 initial

data blocks, this optimisation step can be achieved auto-

matically using a greedy heuristic search algorithm imple-

mented in the software PartitionFinder [2]. However,

recent reductions in DNA sequencing costs mean that it is

now routine to produce very large ‘phylogenomic’ datasets

which can contain hundreds or thousands of loci [23-25].

Current methods [2] are not computationally efficient

enough to optimise partitioning schemes for these data-

sets. For example, the greedy algorithm implemented in

PartitionFinder would have to analyse almost 9 million

subsets of sites to estimate the optimal partitioning scheme

for a sequence alignment of 1000 protein-coding loci,

which is well beyond the bounds of practicality. This is

a problem, because we have no methods to optimise

partitioning schemes for the largest, and potentially

most useful, datasets in phylogenetics.

Hierarchical clustering is a statistical method that has

some attractive properties for optimising partitioning

schemes for phylogenomic datasets. To use hierarchical

clustering to optimise partitioning schemes, molecular

evolutionary parameters (such as base frequencies and

rates of molecular evolution) are first estimated for each

initial data block, and data blocks are then combined based

on the similarity of their parameter estimates. Hierarchical

clustering and related methods (such as k-means clustering)

have been used to select partitioning schemes in a number

of previous studies with datasets of various sizes [4,26-30].

Hierarchical clustering is far more computationally efficient

than the greedy algorithm implemented in PartitionFinder:

if N is the number of data blocks specified by the user,

hierarchical clustering is O(N), while the greedy algorithm

is O(N2). For example, with an alignment of 1000 protein-

coding genes, the strict hierarchical clustering approach

we describe below requires the analysis of only 1999

subsets of sites (see methods, below), which is more

than 3 orders of magnitude more efficient than existing

approaches.

One drawback of hierarchical clustering is that a-

priori decisions have to be made about the best way to

determine the ‘similarity’ of different data blocks. Re-

searchers typically estimate up to four parameter categor-

ies for each data block: (i) a parameter to describe the

overall substitution rate of that data block (often called a

rate multiplier); (ii) one or more parameters to describe

the relative rates at which nucleotides replace each other

(e.g. the 6 parameters of the General Time Reversible

(GTR) model, known as the rate matrix); (iii) parameters

to describe the proportions of nucleotides or amino acids

in the data block (base or amino acid frequencies); and

(iv) one or two parameters to describe the distribution of

substitution rates among sites (a proportion of invariant

sites and/or an alpha parameter describing a gamma

distribution). In principle, data block similarity can be

defined using any combination of these parameters.

However, different studies have used different parameter

combinations, and there has been no attempt to system-

atically understand the best way to define the similarity

of different data blocks when estimating partitioning

schemes [4,26-30].
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In this study, we set out to investigate the performance

of hierarchical clustering approaches for optimising par-

titioning schemes for phylogenomic datasets. We first

developed a generalised strict hierarchical clustering

method that allows the user to define relative import-

ance of different model parameters when defining the

similarity of subsets. We found that the choice of weight-

ing scheme can have very large effects on the performance

of the algorithm, and that regardless of the weighting

scheme strict hierarchical clustering always performed

substantially worse than the existing greedy algorithm. To

remedy this, we developed a new method, which we call

relaxed hierarchical clustering, that incorporates many of

the benefits of strict hierarchical clustering while avoiding

many of its disadvantages. We show that relaxed hierarch-

ical clustering outperforms strict hierarchical clustering on

all of the datasets that we examined. The computational

demands of this method can be scaled to the dataset and

computational resources available. It is therefore a prag-

matic approach to estimating best-fit partitioning schemes

on phylogenomic datasets, where more rigorous methods

are computationally infeasible.

We have implemented all of the methods described in

this study in the open-source software PartitionFinder,

which is available for download from www.robertlanfear.

com/partitionfinder. The PartitionFinder source code is

available from https://github.com/brettc/partitionfinder/.

Methods
Terminology

Following previous studies [2,4], we define a “data block”

as a user-specified set of sites in an alignment. A data

block may consist of a contiguous set of sites (e.g. an

intron), or a non-contiguous set (e.g. 1st codon positions

of a protein coding gene). A “subset” is a collection of one

or more data blocks. Therefore, all data blocks are also

subsets, but the converse is not true. A “partitioning

scheme” is a collection of subsets that includes all data

blocks once and only once. We do not use the term “parti-

tion” because it has conflicting meanings in phylogenetics

and set theory – in phylogenetics a “partition” is used

colloquially to denote what we call a “subset” here,

whereas in set theory it defines what we call a “partitioning

scheme” [2].

Strict hierarchical clustering algorithm

We developed a strict hierarchical clustering algorithm

inspired by a popular previous implementation [4],

with some improvements. This algorithm is extremely

efficient – given a set of N initial data blocks it creates

a set of N partitioning schemes with between 1 and N

subsets, and then selects the best partitioning scheme

from this set. The algorithm has seven steps, which we

summarise here and describe in more detail below:

1. Estimate a phylogenetic tree topology from the

sequence alignment;

2. Start with a partitioning scheme that has all

user-defined data blocks assigned to independent

subsets;

3. Calculate the ML model parameters and log likelihood

of each subset in the current partitioning scheme;

4. Calculate the similarity of all pairs of subsets in the

current partitioning scheme;

5. Create a new partitioning scheme by combining the

two most similar subsets in the current partitioning

scheme;

6. Return to step 3, until a partitioning scheme with all

sites combined into a single subset is created

(i.e. terminate after N iterations);

7. Choose the best-fit partitioning scheme based on

information theoretic metrics.

In principle this algorithm could be applied to DNA

or amino acid alignments, but for simplicity we focus

only on DNA alignments in this study.

All ML calculations in this algorithm are performed

with a modified version of RAxML [21] available at https://

github.com/brettc/standard-RAxML because RAxML is

the most widely-used and computationally efficient soft-

ware for analysing extremely large alignments. We substan-

tially modified the PartitionFinder code (https://github.

com/brettc/partitionfinder) to enable it to perform model

selection and partitioning scheme selection by calling

RAxML, and parsing the output produced by RAxML.

In step 1 of the strict hierarchical clustering algorithm,

we estimate a maximum parsimony (MP) starting topology

in RAxML which is then fixed for the rest of the analysis.

Fixing the topology is crucial in increasing computational

efficiency when searching for best-fit partitioning schemes

[2]. Although MP is known to perform poorly relative to

maximum likelihood (ML) when estimating phylogenetic

trees, previous studies have shown that any non-random

tree topology is adequate for accurate model selection

[31,32]. Nevertheless, our implementation of this algorithm

in PartitionFinder allows users to specify a starting tree

topology calculated using any method, so that datasets

for which MP has known issues may still be analysed

rigorously.

In step 2 we calculate the log likelihood and parameters

of a GTR +G model on each new subset of sites using

RAxML. A new subset of sites is defined as a subset that

the algorithm has not yet encountered. The log likelihood

and ML parameters of each subset are then stored in

memory so that they do not have to be recalculated in

subsequent iterations of the algorithm. We use the

GTR + G model rather than the GTR + I + G model be-

cause the ‘I’ parameter, which describes the proportion of

invariant sites, is not independent from the ‘G’ parameter,
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which describes the gamma distribution of rates across

sites, making it impossible to estimate both parameters

accurately [33]. This dependency between ‘G’ and ‘I’

compromises attempts to infer the similarity of subsets

using their parameter estimates (step 3). In principle,

however, step 2 could include the selection of the best

model of molecular evolution for any given subset.

In step 3 we calculate the similarity of subsets based

on their ML model parameters. To do this, we group pa-

rameters into four categories and use a distance metric

that allows users to specify the relative importance of

different parameter categories. The four parameter cat-

egories are: (i) the overall rate of evolution of the subset,

calculated as the sum of the maximum likelihood branch

lengths for that subset; (ii) the 6 parameters of the General

Time Reversible (GTR) model; (iii) the four base frequen-

cies; and (iv) the alpha parameter that describes the

gamma distribution of rates across sites. The parameters

from categories (ii) and (iii) are not independent of each

other, but we include both because we do not have prior

information on which parameters are more important, or

which may be most useful for optimising partitioning

schemes. To calculate the similarity of all pairs of subsets,

we first calculate a pairwise Euclidean distance matrix for

each of the four parameter categories. We then normalise

each distance matrix so that the maximum distance is

one, and then scale each matrix by a user-specified weight

(set using the ‘–weights’ command line option in Parti-

tionFinder v1.1.0). The similarity of a pair of subsets is

then calculated as the sum of the distances across the four

matrices, which gives the Manhattan or city block distance

between a pair of subsets. In this approach, the user-

specified weights have a natural interpretation as the rela-

tive importance of different parameters in defining subset

similarity.

This approach to calculating subset similarity has a

number of advantages over previous methods. Many

previous approaches have used fewer than the four cat-

egories we define to calculate subset similarity, and most

have implicitly assumed that all parameter categories are

equally important in determining subset similarity [4]. In

contrast, our method allows for any combination of

parameter categories to be specified, and for the relative

importance of each category to be specified. For example,

a parameter category can be excluded from similarity esti-

mates by setting its weight to zero. Similarly, a parameter

category can be defined as tenfold less important than

other categories by setting its weight to 0.1, and the

weights of the other categories to 1. Another limitation

of previous clustering approaches is that they have es-

timated the parameters of larger subsets directly from

the parameter estimates of subsets they contain [4].

This approach is problematic because it is difficult to

predict how the information in two smaller subsets will

combine to determine the parameters of the larger subset,

and simply averaging the ML parameters of the smaller

subsets is unlikely to produce parameters close to the ML

parameters for the larger subset. Furthermore, error in the

parameter estimates of the smaller subsets may limit their

accuracy in the first place [2]. Our approach circum-

vents these problems by calculating ML parameter es-

timates for every subset that is analysed, including

subsets that were created by merging together two smaller

subsets. This approach ensures that the hierarchical cluster-

ing procedure is as accurate as possible, given the limita-

tions of estimating model parameters from finite datasets.

In each iteration of our algorithm, we find the most

similar pair of subsets from the focal partitioning scheme

(step 4), and then merge these subsets to create a new

subset and a new partitioning scheme (step 5). In this

manner, the algorithm iteratively merges subsets to create

a set of N partitioning schemes from N initial data blocks.

These N schemes contain from 1 to N subsets. The final

step of the algorithm (step 7) simply involves comparing

the information theoretic score (e.g. AIC, AICc, or BIC) of

all N partitioning schemes, and choosing the scheme with

the best score. Choosing the best partitioning scheme does

not involve any further ML calculations, because the log

likelihood of each partitioning scheme can be calculated

from the sum of the log likelihoods of the subsets con-

tained in that scheme [2].

Relaxed hierarchical clustering algorithm

The strict hierarchical clustering algorithm is computa-

tionally efficient, but it has some obvious drawbacks.

First, it can merge subsets that make the information

theoretic score of a partitioning scheme worse, rather

than better. This is because there is no guarantee that

any given measure of ‘similarity’ will translate into an

improvement in the information theoretic score. Second,

even if a given similarity measure does translate into robust

improvements in the information theoretic score, the

algorithm may be misled when the accuracy of ML par-

ameter estimates is limited, as can be the case with

small subsets [2].

To overcome these limitations, we propose a relaxed

hierarchical clustering algorithm. This algorithm has eight

steps:

1-4. Identical to strict hierarchical clustering

5. Select the top P% of most similar subset pairs;

6. Create S new partitioning schemes, each of which

includes one of the subset pairs from step 5;

7. Choose the partitioning scheme from step 6 with

the best information-theoretic score (AIC, AICc,

BIC);

8. Return to step 3, until no further improvements in

the information theoretic score are found;
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Steps 1–4 proceed precisely as in the strict hierarchical

clustering algorithm. In step 5 we create a ranked list of

all possible subset pairs from the current partitioning

scheme, where the rank is defined by the similarity of

the subsets. We then use a user-defined percentage, P

(‘–rcluster-percent’ in PartitionFinder), to choose the S

most similar subsets pairs. In step 6 we create a new

partitioning scheme for each of the S subset pairs, by

merging the two subsets in each pair and calculating the

new log-likelihood and maximum likelihood parameter

estimates. In step 7, we calculate the information theoretic

score (AIC, AICc, BIC) of each of the S new partitioning

schemes, and select the partitioning scheme with the best

score. The algorithm then iterates (step 8) until no further

improvements in the information theoretic score can be

found.

The key difference between the relaxed and strict hier-

archical clustering algorithms is the ability to set the

parameter P, which controls the thoroughness of the

heuristic search algorithm. When P is set to 0%, the re-

laxed clustering algorithm will behave similarly to the

strict hierarchical clustering algorithm, and only evaluate

the single partitioning scheme that includes the most

similar pair of subsets (although it differs insofar as the

relaxed clustering algorithm is a hill-climbing algorithm,

while the strict hierarchical clustering algorithm is not).

When P is set to 100%, the relaxed clustering algorithm

will behave similarly to the existing greedy algorithm in

PartitionFinder [2], and evaluate all possible subset pairs

at each iteration of the algorithm. Larger values of P will

take more computational time, but are also likely to pro-

duce better solutions because they will search the space

of partitioning schemes more thoroughly. In preliminary

analyses we observed that even very small values of P (e.g.

0.1-1.0 percent) can often lead to the discovery of parti-

tioning schemes that dramatically outperform those found

by the strict hierarchical clustering algorithm.

Datasets

As described above, we expect both of the new methods

we describe here to perform worse than the greedy algo-

rithm implemented in PartitionFinder, simply because

they are less thorough heuristic searches. The true utility

of the new methods is to find partitioning schemes for

datasets that are too large to analyse with existing methods

[2]. Nevertheless, to properly assess the new algorithms

described here, it is necessary to compare them to existing

approaches. Because of this, we focussed our analyses on

data sets to which we could apply both the new and exist-

ing methods.

We used 10 publicly available datasets (Table 1) to

compare the clustering methods to existing approaches.

These datasets comprise a range of different sequence types

(exons, introns, rRNAs, mithochondrial DNA, nuclear

DNA), and come from a range of different taxa. The

largest dataset comes from a phylogenomic study of

birds (Hackett_2008, Table 1), and comprises 171 taxa,

52383 sites, and 168 data blocks. This dataset is close

to the upper size limit of datasets that can be analysed

using the greedy algorithm implemented in Partition-

Finder 1.1.0 [2], so represents the practical limit of

datasets that we can include in this study. In two cases

(the Fong_2012 and Pyron_2011 datasets, Table 1) we

reduced the number of taxa in the original dataset, by

removing the taxa with the most gaps, in order that we

could analyze the dataset using the greedy algorithm in

PartitionFinder. Precise details of the taxa we removed

are provided in the figShare repository associated with this

article (http://dx.doi.org/10.6084/m9.figshare.938920). Re-

moving taxa does not reduce the complexity of the task of

selecting partitioning schemes, but simply reduces the

computational burden of analysing each subset. Note that

this is done to provide a suitable set of test datasets for

comparing new and old methods, and we do not mean to

imply that partitioning schemes estimated from reduced-

taxon datasets should be used on the full-taxon dataset.

All of the datasets, as well as the associated input files for

PartitionFinder, are available from figShare (http://dx.doi.

org/10.6084/m9.figshare.938920), and references for the

datasets and the studies that they are associated with are

provided in Table 1.

Analyses

We exhaustively compared the two new algorithms to

existing methods using the largest dataset in this study

(Hackett_2008, Table 1). Based on the results of these

analyses, we compared the two new algorithms to exist-

ing methods across the ten datasets described in Table 1.

The analyses were run in PartitionFinder version 1.1.0

with the following settings common to all analyses: we

used the RAxML version of PartitionFinder developed

for this study (i.e. using the ‘–raxml’ commandline op-

tion, see above), because the older PhyML version of

PartitionFinder is not computationally efficient enough

to analyse the very large datasets that are the focus of

this study (see above); all analyses were performed

twice – once with model selection performed under

the AICc, and once under the BIC; all branch lengths

were set to ‘linked’ in all analyses, meaning that rela-

tive branch lengths were estimated at the start of the

analysis using a GTR + G model in RAxML, and that

these relative branch lengths were then fixed for the

rest of the analysis, with each subset afforded its own

rate multiplier to account for differences in rates of

evolution between subsets [2]; only the GTR + G model

of evolution was considered (see above). We do not con-

sider analyses using the AIC, because the AICc should be

preferred to the AIC in all cases [47].
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We note that the approach we have implemented here,

using a rate multiplier and a single set of molecular

branch lengths, does not allow for heterotachy (variation

in the pattern of rates among sites over time), although

this is known to be an important source of variation in

patterns of substitution [1,11]. In principle, our approach

can account for heterotachy by allowing each subset to

have an independent set of branch lengths, and this can

be achieved in PartitionFinder by setting ‘branchlengths’

option to ‘unlinked’. However, in practice this way of

accounting for heterotachy adds so many parameters to

the overall model that it is inferior to using a rate multi-

plier. A better approach is to use a covarion model or a

mixture of branch lengths [1,11], but since our focus

here is producing partitioning schemes for very large

datasets that can be subsequently analysed in RAxML,

and since neither of these models is available in RAxML,

we do not consider them further here.

For every analysis, we recorded: (i) the best partition-

ing scheme and it’s information theoretic score (i.e. AICc

or BIC score); (ii) the information theoretic score of each

partitioning scheme visited by each algorithm during the

heuristic search; and (iii) the time taken to complete the

analysis on a desktop a Mac Pro with 2 2.26 GHz Quad-

Core Intel Xeon processors and 32GB RAM. The details

of the absolute computational times are not important,

but a comparison of the analysis times is informative

(see below) because it allows us to empirically compare

the computational efficiency of the different methods.

Analyses using the phylogenomic bird dataset

For the phylogenomic dataset from birds we first removed

all sites in the alignment that were removed by the

original authors [43], and then defined data blocks

based on each intron, and each codon position in each

exon. This resulted in a total of 168 data blocks. We then

performed a total of 12,002 searches for partitioning

schemes on this dataset, described below.

We performed 2 searches for optimal partitioning

schemes using the greedy algorithm [2]: one with the

AICc, and one with the BIC.

We performed 2000 searches for optimal partitioning

schemes using the strict hierarchical clustering algorithm

described above. The 2000 searches comprise 1000 searches

using the BIC and 1000 using the AICc, where each search

used one of 1000 distinct clustering weights (the ‘–weights’

commandline option in PartitionFinder). The clustering

weights are defined by a vector of four numbers that specify

the relative importance of four parameter categories (the

overall subset rate, the base frequencies, the GTR model

parameters, and the alpha parameter of the gamma distri-

bution; see above). Analysing 1000 sets of weights allows

us to empirically compare the performance of different

weighting schemes, and to determine the relative import-

ance of the different parameter categories when searching

for partitioning schemes, as well as the variation in the al-

gorithm’s performance under different weighting schemes.

The first 15 sets of weights comprise all possible combina-

tions of setting at least one weight to 1.0, and other

weights to 0.0 (setting all weights to 0.0 is nonsensical, as

it would lead to all subsets appearing to be equally similar).

These represent 15 of the 16 corners of a four dimensional

hypercube, and allow us to compare the 15 cases where

either all parameter categories are given equal weight

(i.e. –weights “1, 1, 1, 1”) or where one or more parame-

ters are given zero weight (e.g. –weights “1, 0, 0, 1”). The

other 985 points were chosen using Latin Hypercube

Sampling in the ‘lhs’ package, version 0.1 in R [48]. This

procedure ensures that the sampled points are relatively

evenly distributed in four-dimensional space, and is a

more efficient way of sampling high-dimensional space

than using a grid-based sampling scheme.

We performed 10,000 searches for optimal partitioning

schemes using the relaxed clustering algorithm described

above. These 10,000 searches comprised 5000 searches

using the AICc, and 5000 using the BIC, each of which

Table 1 Details of the 10 datasets used in this study

Dataset name Clade (common) Clade (Latin) Taxa Sites Data blocks Study reference Dataset reference

Ward_2010 Ants Dolichoderinae 54 9173 27 [34] NA

Wainwright_2012 Fishes Acanthomorpha 188 8439 30 [35] [36]

Pyron_2011 Amphibians Amphibia 18 12712 34 [37] [38]

Li_2008 Fishes Actinopterygii 56 7995 30 [4] NA

Leavitt_2013 Grasshoppers Acridoidea 34 15404 87 [12] NA

Kaffenberger_2011 Frogs Gephyromantis 54 6548 26 [39] [40]

Irisarri_2012 Frogs Neobatrachia 37 11136 34 [41] [42]

Hackett_2008 Birds Aves 171 52383 168 [43] NA

Fong_2012 Vertebrates Vertebrata 16 25919 168 [44] [45]

Endicott_2008 Humans Homo sapiens 179 13857 41 [46] NA

The original study describing each dataset is referenced, the dataset itself is also referenced where it is archived under a separate DOI.
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was performed with 1000 different clustering weights, and

at 5 different values of the parameter P. The 1000 weight-

ing schemes we used were identical to those used above,

and the values of the parameter P (which defines the

percentage of possible partitioning schemes that are

considered at each step of the relaxed clustering algo-

rithm) that we used were 1%, 2%, 5%, 10%, and 20%.

The results of all 12002 analyses presented here

are available at figShare (http://dx.doi.org/10.6084/

m9.figshare.938920).

Analyses across all datasets

Based on the results of our analyses of the phylogenomic

bird dataset, we set some pragmatic default values for

the clustering weights and the P parameter (see below).

We then analysed the performance of the greedy algo-

rithm, the strict hierarchical clustering algorithm, and

the relaxed hierarchical clustering algorithm across all

10 datasets in Table 1 using these default settings. We

compared both the computational time and the perform-

ance of all three algorithms across all 10 published datasets.

This involved a total of 60 analyses: 10 datasets, 2 informa-

tion theoretic scores (AICc, and BIC), and 3 algorithms

(greedy, strict clustering, and relaxed clustering). Details of

all of the datasets are given in Table 1, input files for Parti-

tionFinder, and results of these analyses are available from

figShare (http://dx.doi.org/10.6084/m9.figshare.938920).

Results and discussion
All three algorithms we discuss in this paper start with a

user-defined set of data blocks, and progressively merge

data blocks to improve the information-theoretic score

of the partitioning scheme. Better algorithms will lead to

larger improvements in the information theoretic score.

We discuss algorithm performance below in two ways:

in terms of the amount (in AICc or BIC units) that they

improve the score of the partitioning scheme relative to

the starting scheme which has each data block assigned

to an independent subset; and in terms of the percentage

improvement that an algorithm achieves relative to the

existing greedy algorithm in PartitionFinder. Thus, a

good algorithm will score highly on both counts.

Strict hierarchical clustering

The strict hierarchical clustering algorithm performed

substantially worse than the greedy algorithm on the

phylogenomic bird dataset (Figure 1, Table 1). This was

the case regardless of the way in which subset similarity

was defined, or whether partitioning schemes were selected

using the AICc or the BIC (Figure 1). The greedy algorithm

improved the AICc and BIC scores of the partitioning

scheme by 1689 and 13013 units respectively. Across all

1000 different sets of clustering weights analysed, the

best-scoring partitioning schemes found by the strict

hierarchical clustering algorithm improved the AICc and

BIC scores by 376 and 9347 units respectively (Figure 1).

These improvements represent 22% and 72% of the poten-

tial improvement in AICc and BIC scores estimated from

the greedy algorithm.

The performance of the strict hierarchical clustering

algorithm also varied substantially depending on the way

in which subset similarity was defined. Across all 1000

different sets of clustering weights analysed, the worst-

scoring partitioning schemes found by the strict hier-

archical clustering algorithm improved the AICc and

BIC scores by 42 and 862 units respectively (Figure 1).

These improvements represent 2% and 7% of the potential

improvement in AICc and BIC scores estimated from the

greedy algorithm. The mean improvement in AICc and

BIC scores across all 1000 different sets of clustering

weights was 8% and 51% of the potential improvement in

AICc and BIC scores.

The weights used to define subset similarity have a

complex relationship to the performance of the strict

hierarchical clustering algorithm. Figure 2 shows that the

performance of the strict hierarchical clustering algorithm

was better when the weights given to the overall rate of a

subset and the alpha parameter were higher, and when the

weight given to the base frequencies of a subset was lower.

However, all of these relationships show substantial vari-

ation. Furthermore, the set of weights that resulted in the

best partitioning scheme (shown in red dots on Figure 2)

differed depending on whether the AICc or the BIC was

used to evaluate partitioning schemes, and would be very

difficult to predict from first principles. One of the clearest

results from this analysis is that grouping together subsets

based on their base frequencies always led to worse per-

formance for this dataset (Figure 2). This suggests that

base frequencies can provide misleading information on

subset similarity. This is likely to be most severe when

subsets are small and base frequencies are estimated from

limited data, which in turn will be most problematic at the

start of the algorithm.

These results suggest that in most practical cases (in

which many fewer than 1000 different definitions of sub-

set similarity would be compared), the strict hierarchical

clustering algorithm is likely to perform very poorly.

Although some methods of defining subset similarity

performed better than others, our results suggest that

there is no one method of defining subset similarity

that works well for the duration of the algorithm. This

is likely to be because the parameters of molecular evolu-

tion that we are able to measure (overall rate of evolution,

base frequencies, GTR model parameters, and alpha par-

ameter) are not sufficient to determine whether clustering

a given pair of subsets will result in an improvement of

the AICc or BIC scores. As a result, the algorithm often

clusters together subsets that result in a worsening of the
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Figure 1 The strict clustering algorithm performs poorly, but the relaxed clustering algorithm performs almost as well as the greedy

algorithm. All analyses were conducted on a phylogenomic dataset of birds (Table 1, Hackett_2008). Note that lower scores indicate a better fit

of the model to the data. The dashed line in each plot shows the score of the best partitioning scheme found by the greedy algorithm. Each

boxplot represent the distribution of scores for 1000 runs of the strict or relaxed clustering algorithms, where each run uses a different definition

of the similarity of two subsets (see main text). The figure shows that the relaxed clustering algorithm’s performance approaches that of the

greedy algorithm as P increases, and that analysing 10% of partitioning schemes results in information theoretic scores that are very close to that

of the greedy algorithm.

Figure 2 The performance of the strict clustering algorithm varies dramatically depending on the weighting schemes used to define

subset similarity. The Y axis shows the difference in the AICc or BIC score compared to the best scheme found by the strict hierarchical

clustering algorithm on the phylogenomic dataset from birds (Table 1). The X axes show the weights assigned to each of four parameter classes

used to define subset similarity. Each panel shows 1000 data points, where each datapoint represents a single run of the strict hierarchical

clustering algorithm under a particular weighting scheme. The set of four weights under which the best scheme was found by the strict

hierarchical clustering algorithm are shown in red.
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AICc or BIC score. This problem is compounded by the

fact that it is difficult to predict, either from first principles

or empirical tests (Figure 2), the best way to define subset

similarity given the parameters that we can measure.

Performance of the relaxed hierarchical clustering algorithm

The relaxed hierarchical clustering algorithm performed

better than the strict hierarchical clustering algorithm,

and its performance approached that of the existing

greedy algorithm (Figure 1). When 20% of all possible

partitioning schemes were examined, the best-scoring

partitioning schemes found by the relaxed hierarchical

clustering algorithm improved the AICc and BIC scores

by 1565 and 12655 units respectively (Figure 1). These

improvements represent 93% and 97% of the potential

improvement in AICc and BIC scores estimated from

the greedy algorithm.

The performance of the relaxed hierarchical clustering

algorithm improved as the percentage of schemes exam-

ined was increased (Figure 1). When 1% of all possible

partitioning schemes were examined the mean improve-

ment in AICc and BIC scores was 785 and 8903 units

respectively. These improvements represent 46% and

68% of the potential improvement in AICc and BIC scores

estimated from the greedy algorithm. These improvements

increased with the percentage of all possible partitioning

schemes that were examined, rising to >80% when 10% of

schemes were examined, and >90% when 20% of schemes

were examined. In Figure 1, this is demonstrated by the

AICc and BIC scores from the relaxed clustering algorithm

approaching those from the greedy algorithm as P in-

creases. Concomitant with this improvement, dependence

of the relaxed hierarchical clustering algorithm on the way

in which subset similarity is defined decreased as the per-

centage of schemes examined increased (demonstrated by

the reduction of the height of the boxes in Figure 1).

These results suggest that although our estimates of

subset similarity are highly imperfect, they do contain

information that can be used to help optimise partitioning

schemes more efficiently. Unlike the strict hierarchical

clustering algorithm, the relaxed hierarchical clustering

algorithm does not rely solely on the estimated similarity

of subsets in order to decide whether to cluster them

together. Instead, it considers a collection of the most

similar pairs of subsets and then chooses the pair that

gives the largest improvement in the AICc or BIC score.

This approach circumvents the limitation of the strict

hierarchical clustering method by reducing the reliance of

the algorithm on the estimates of subset similarity.

The performance of the strict and relaxed clustering

algorithms on 10 datasets

To ensure that the results we obtained on the phyloge-

nomic dataset of birds were not idiosyncratic to a single

dataset, we compared the strict and relaxed clustering

algorithms to each other and to the greedy algorithm on

a collection of 10 datasets (Table 1). In these analyses,

we defined subset similarity based solely on the overall

substitution rate (i.e. we used –weights “1, 0, 0, 0”),

based on our analyses of the phylogenomic dataset of

birds (Figure 2), and on the results of previous phyloge-

nomic studies that have relied on overall substitution

rates to combine subsets in partitioning schemes (e.g.

[29]). We fixed the proportion of partitioning schemes

analysed by the relaxed clustering algorithm to 10%

(i.e. –rcluster-percent 10), based on the observation

that for the phylogenomic dataset of birds this cutoff

represented a good balance between computational effi-

ciency and performance. For the same reasons, we defined

default settings in PartitionFinder such that subset similar-

ity is based solely on the overall substitution rate (i.e. we

used –weights “1, 0, 0, 0”), and the proportion of partition-

ing schemes analysed by the relaxed clustering algorithm is

10% (i.e. –rcluster-percent 10). While it is possible that

these parameters are idiosyncratic to the phylogenomic bird

dataset, our results below suggest that they produce broadly

similar results across all of the datasets we have analysed.

Furthermore, using a single set of parameters in the

analyses of 10 datasets more accurately reflects the

likely behaviour of the end users of these algorithms,

who are unlikely to run thousands of analyses to determine

the best parameters for partitioning scheme selection.

Thus, using a single set of parameters represents the most

useful basis for comparing the three algorithms. We

provide recommendations for the use of each of these

algorithms, based on the results of all of our analyses, in

the Conclusions section at the end of this article.

The relaxed clustering algorithm found better parti-

tioning schemes than the strict clustering algorithm on

all 10 of the datasets we examined (Figure 3, Table 2).

For the relaxed clustering algorithm, the mean improve-

ment in AICc and BIC scores across all 10 datasets was

80% and 88% of the potential improvement estimated

from the greedy algorithm respectively (Figure 3, Table 2).

For the strict clustering algorithm, the mean improvement

in AICc and BIC scores was 7% and 55% of the poten-

tial improvement estimated from the greedy algorithm

(Figure 3, Table 2).

The computational efficiency of the strict and relaxed

clustering algorithms on 10 datasets

Both the relaxed clustering algorithm and the strict clus-

tering algorithm took less computational time than the

greedy algorithm, but the identity of the fastest algorithm

depended on the size of the dataset (Figure 4, Table 3).

The relaxed clustering algorithm was the fastest method

for 6/10 datasets when using the AICc, and for 4/10 data-

sets when using the BIC (Figure 4, Table 3). The datasets
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for which the relaxed clustering algorithm was faster

tended to be those with smaller numbers of data blocks.

Across all datasets and information theoretic scores, the

relaxed clustering algorithm finished in 11% of the time it

took the greedy algorithm to finish, and the strict cluster-

ing algorithm finished in 9% of the time it took the greedy

algorithm to finish. But for the two largest datasets that

we analysed [43,44], the relaxed clustering algorithm

finished in 9% of the time it took the greedy algorithm

to finish, and the strict clustering algorithm finished in

2% of the time it took the greedy algorithm to finish

(Figure 4, Table 3).

These differences in the speed of the strict and relaxed

clustering algorithms result from two effects: search space

and stopping conditions. The relaxed clustering algorithm

analyses many more partitioning schemes than the strict

clustering algorithm, which tends to make it slower.

However, the relaxed clustering algorithm stops when

the information theoretic score stops improving, whereas

the strict clustering algorithm always computes the likeli-

hood of N partitioning schemes for a dataset with N data

blocks. The interplay of these two effects determines

which algorithm will be quicker on any given dataset.

Although the fastest algorithm depends to some extent on

the number of data blocks in the optimal partitioning

scheme, a general rule of thumb is that the strict clustering

algorithm will be quicker on very large datasets, but will

produce poorer results.

Figure 3 The relaxed clustering algorithm outperforms the strict clustering algorithm across the 10 datasets shown in Table 1. All

scores are standardised by the score increase achieved by the greedy algorithm (i.e. the score of the best partitioning scheme from the greedy

algorithm minus the score of the starting scheme), so that performance can be compared across datasets. Thus, the greedy algorithm always

scores 100%, and is shown only for reference. Each line connects the results from a single dataset, demonstrating that in all cases using both the

AICc and the BIC, the greedy algorithm performed best, the relaxed clustering algorithm (with 10% of schemes analysed) performed second best,

and the strict clustering algorithm performed the worst. All analyses use the RAxML version of PartitionFinder.

Table 2 AICc and BIC scores of the best partitioning scheme found by different algorithms on each dataset

AICc BIC

Dataset Greedy Relaxed clustering Strict clustering Greedy Relaxed clustering Strict clustering

(AICc) (ΔAICc) (ΔAICc) (BIC) (ΔBIC) (ΔBIC)

Ward_2010 103258 −34 −61 104877 −294 −606

Wainwright_2012 473537 −7 −59 477322 −73 −663

Pyron_2011 154838 −42 −173 156039 −177 −383

Li_2008 252583 −6 −242 254327 −183 −769

Leavitt_2013 424129 −216 −757 426143 −837 −3176

Kaffenberger_2011 120020 −6 −75 121452 −62 −150

Irisarri_2012 214655 −41 −187 216209 −152 −1151

Hackett_2008 1830824 −356 −1442 1837230 −964 −6362

Fong_2012 276517 −254 −1508 278400 −900 −2129

Endicott_2008 66966 −90 −479 70139 −455 −752

The greedy algorithm performed best in all cases, as expected, and the AICc/BIC score is shown for each run with that algorithm. The relaxed clustering algorithm

typically performed almost as well as the greedy algorithm, and always performed better than the strict clustering algorithm. ΔAICc or ΔBIC scores are shown for

the clustering algorithms, and represent the difference in AICc or BIC score from the greedy algorithm.
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Conclusions
Partitioning is an important part of many phylogenetic

analyses, and can dramatically improve the fit of models

to data for almost all datasets. This is particularly true of

very large datasets, which contain more genomic regions,

and thus more variation in rates and patterns of molecular

evolution than smaller datasets. As the analysis of very

large datasets becomes more common, methods to infer

partitioning schemes need to keep pace so that we can

make the best possible inferences from the datasets we

have.

In this study, we compared three methods for estimating

partitioning schemes: an existing greedy algorithm [2]; a

strict hierarchical clustering method which extends the

work of Li et al. [4]; and a relaxed hierarchical clustering

method which we developed here. Our results allow us to

make clear recommendations for those wishing to esti-

mate partitioning schemes.

Preference should always be given to using the greedy

algorithm in PartitionFinder over the two algorithms

developed here [2]. The substantial improvements made

to PartitionFinder for this study now permit the greedy

algorithm to analyse datasets that include up to 200 data

blocks on a desktop computer (although exact numbers

will, of course, depend on the size of each data block,

the number of taxa in the alignment, and the computer

Figure 4 The strict and relaxed clustering algorithms are computationally much more efficient than the greedy algorithm. This figure

shows the time taken by the relaxed and strict hierarchical clustering algorithms on the 10 datasets shown in Table 1, relative to the time taken

by the greedy algorithm. All times are standardised by the time taken by the greedy algorithm, so that performance can be compared across

datasets. Thus, the greedy algorithm always scores 100%, and is shown only for reference. Each line connects the results from a single dataset.

The results show that the relaxed clustering algorithm (with 10% of schemes analysed) consistently takes about 10% of the time taken by the

greedy algorithm, and that the strict hierarchical clustering algorithm takes between around 1% to 20% of the time taken by the greedy

algorithm, depending on the dataset. All analyses use the RAxML version of PartitionFinder.

Table 3 Analysis times (seconds) of different algorithms on different datasets, and using different information

theoretic metrics to choose partitioning schemes

AICc BIC

Dataset Greedy Relaxed clustering Strict clustering Greedy Relaxed clustering Strict clustering

Ward_2010 396 42 58 587 56 58

Wainwright_2012 3305 400 603 5664 568 603

Pyron_2011 602 58 74 790 73 74

Li_2008 1246 130 165 1557 194 165

Leavitt_2013 5829 843 288 7997 973 288

Kaffenberger_2011 580 78 104 877 102 104

Irisarri_2012 935 87 112 1172 134 112

Hackett_2008 102011 9536 3140 130359 12686 3140

Fong_2012 10468 987 183 13961 1094 183

Endicott_2008 1947 189 126 2135 207 126

The two clustering algorithms are roughly an order of magnitude faster than the greedy algorithm. Analyses were conducted on a Mac Pro with 2 2.26GHz Quad-

Core Intel Xeon processors and 32 GB RAM.

Lanfear et al. BMC Evolutionary Biology 2014, 14:82 Page 11 of 14

http://www.biomedcentral.com/1471-2148/14/82



itself ). Many datasets being collected today, however,

contain hundreds or thousands of loci [23-25,44,49,50].

In these cases, it would be computationally infeasible to

use the greedy algorithm to select partitioning schemes,

and where possible the relaxed hierarchical clustering

algorithm should be used instead.

When using the relaxed hierarchical clustering algorithm,

the percentage of schemes analysed at each step of the algo-

rithm (−−rcluster-percent option in PartitionFinder) should

be set as high as practically possible. Determining what

is practical for a given dataset on a given computer may

require some trial and error, but we suggest first run-

ning the analysis using the default setting of 10%. If this

run finishes quickly, the percentage should be increased

and the analysis re-run. If it runs too slowly, the analysis

can be cancelled and re-started with a smaller percent-

age. Subsequent runs will be much faster than the initial

run, because PartitionFinder saves and reloads the results

of previous analyses. Determining whether a given per-

centage of schemes analysed will produce a partitioning

scheme of a similar score to the greedy algorithm may be

possible by examining the results of at least three runs of

the relaxed clustering algorithm using different percent-

ages (e.g. one with the maximum practical percentage,

one with a percentage of half maximum, and one with a

very small percentage). This is because as the percentage

of schemes analysed is increased, the results of the relaxed

clustering algorithm will asymptotically approach those of

the greedy algorithm (Figure 1). Finally, if the percentage

of schemes analysed is very low, then it may be prudent to

perform more than one run with different sets of cluster-

ing weights.

The strict hierarchical clustering algorithm should be

used only if an analysis using the relaxed hierarchical

clustering algorithm is computationally infeasible. The

strict hierarchical clustering algorithm is still likely to

provide large improvements in the fit of the model to

the data when compared to not attempting to optimise

the partitioning scheme, but it may be sensible to try a

number of different methods of defining subset similarity

in order to ensure the best possible results (−−weights op-

tion in PartitionFinder, for which the default is to define

subset similarity based solely on their rates of evolution).

For example, one option would be to optimise partitioning

schemes under all possible combinations of setting at least

one weight to 1.0, and other weights to 0.0. The best-fit

partitioning scheme could then be chosen from the set of

15 estimated partitioning schemes. For simplicity, this set

of 15 weights can be found in the figShare repository

that accompanies this paper (http://dx.doi.org/10.6084/

m9.figshare.938920).

In the future, it would be interesting to explore more

complex partitioned models of molecular evolution. For

example, our study considers only partitioning schemes

in which each subset of sites has an independent model

of molecular evolution from all other subsets. This deci-

sion was results from the practical consideration that

this is the only partitioned model available in RAxML,

the primary software for analysing extremely large phylo-

genomic datasets. However, the most recent version of

other maximum-likelihood phylogenetic software, PhyML

[51], allows for different subsets to share any number of

parameters with any number of other subsets. This hugely

increases the number of possible partitioning schemes,

and in particular it allows for complex models of heterota-

chy to be estimated. As a result, this approach is likely to

allow for partitioned models that dramatically improve

on those we can currently estimate using PartitionFinder.

However, searching among the space of these possible

partitioned models, and estimating the optimal model for

any given dataset, remains an unsolved problem.

Availability of supporting data

The data sets supporting the results of this article are

available in the figShare repository, http://dx.doi.org/

10.6084/m9.figshare.938920 [52]. This repository con-

tains all of the datasets from Table 1, as well as the results

of all analyses and the R script used to produce the figures

in this manuscript.

All of the methods we have developed and described

here of the latest version of PartitionFinder are available

from: www.robertlanfear.com/partitionfinder.
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