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Summary

1. Species distribution models are increasingly used to address questions in conservation biology,

ecology and evolution. The most effective species distribution models require data on both species
presence and the available environmental conditions (known as background or pseudo-absence

data) in the area. However, there is still no consensus on how and where to sample these pseudo-
absences and howmany.
2. In this study, we conducted a comprehensive comparative analysis based on simple simulated

species distributions to propose guidelines on how, where and how many pseudo-absences should
be generated to build reliable species distribution models. Depending on the quantity and quality of

the initial presence data (unbiased vs. climatically or spatially biased), we assessed the relative effect
of the method for selecting pseudo-absences (random vs. environmentally or spatially stratified)

and their number on the predictive accuracy of seven common modelling techniques (regression,
classification andmachine-learning techniques).

3. When using regression techniques, the method used to select pseudo-absences had the greatest
impact on the model’s predictive accuracy. Randomly selected pseudo-absences yielded the most
reliable distribution models. Models fitted with a large number of pseudo-absences but equally

weighted to the presences (i.e. the weighted sum of presence equals the weighted sum of pseudo-
absence) produced the most accurate predicted distributions. For classification and machine-learn-

ing techniques, the number of pseudo-absences had the greatest impact on model accuracy, and
averaging several runs with fewer pseudo-absences than for regression techniques yielded the most

predictivemodels.
4. Overall, we recommend the use of a large number (e.g. 10 000) of pseudo-absences with equal

weighting for presences and absences when using regression techniques (e.g. generalised linear
model and generalised additive model); averaging several runs (e.g. 10) with fewer pseudo-absences

(e.g. 100) with equal weighting for presences and absences with multiple adaptive regression splines
and discriminant analyses; and using the same number of pseudo-absences as available presences
(averaging several runs if few pseudo-absences) for classification techniques such as boosted regres-

sion trees, classification trees and random forest. In addition, we recommend the random selection
of pseudo-absences when using regression techniques and the random selection of geographically

and environmentally stratified pseudo-absences when using classification and machine-learning
techniques.

Key-words: background data, bias, biomod, ecological niche modelling, sampling design, vir-

tual species

Introduction

Species distribution models (SDM) are increasingly used to

address numerous questions in conservation biology, ecology
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and evolution (Guisan & Thuiller 2005). They have been used

to test biogeographical, ecological and evolutionary hypothe-

ses (Graham et al. 2004a), to predict species’ invasion and pro-

liferation (Peterson & Vieglais 2001), to assess the impact of

climate, land use and other environmental changes on species

distributions (Thuiller et al. 2005), to improve surveys for rare

species by identifying sites where the probability of occurrence

is high (Engler, Guisan & Rechsteiner 2004) and to support

conservation planning and reserve selection (Marini et al.

2009).

The SDM widely used in these studies can be categorised in

two groups: methods that only require presence data vs. those

that require both presence and absence data (Brotons et al.

2004). Contrary to popular belief, there are very few presence-

only SDM, the most common being rectilinear envelope (e.g.

BIOCLIM, Busby 1991) and distance-based envelope (e.g.

Mahalanobis distance, Farber & Kadmon 2003). SDM such

as Maxent or GARP, sometimes misleadingly referred to as

presence-only methods, actually do require the use of back-

ground data or pseudo-absence data. As confirmed absences

are very difficult to obtain, especially for mobile species, and

require higher levels of sampling effort to ensure their reliabil-

ity compared with presence data (Mackenzie & Royle 2005),

presence-only models have often been used to cope with the

lack of absence data (Graham et al. 2004b). However, compar-

isons of various SDM show that presence–absence models

tend to perform better than presence-only models (Elith et al.

2006). Thus, presence–absence models are increasingly used

when only presence data is available, by creating artificial

absence data (usually called pseudo-absences or background

data).

As false absence data can have negative effects on SDM (Gu

& Swihart 2004), different strategies have been proposed to

improve the selection of an appropriate pseudo-absence data

set. Some studies have suggested using pseudo-absence data

selected outside a pre-defined region based on a simple preli-

minary model or based on a minimum distance to the presence

(Zaniewski, Lehmann & Overton 2002; Engler, Guisan &

Rechsteiner 2004; Lobo, Jimenez-Valverde & Hortal 2010). If

presences of the studied species have been collected during field

surveys that also considered other species, such that bias in the

sampling design is the same for all species, better results can be

obtained by taking pseudo-absences within the presence points

of these other species (Phillips et al. 2009). To our knowledge,

the influence of the number of pseudo-absences selected has

rarely been investigated. For the Maxent technique, Phillips &

Dudik (2008) found that predictive accuracy was higher with

around 10 000 background pseudo-absences. Nevertheless,

prevalence (defined here as the ratio of the quantity of presence

data to the quantity of absence data used to fit the model) has

been shown to influence model accuracy (McPherson, Jetz &

Rogers 2004). Although very informative, most of these previ-

ous studies used empirical data without knowing the true dis-

tribution of the species, the sampling design or presence data

bias (for discussion on bias and sampling design, see Albert

et al. 2010). Indeed, besides the obvious problems related to

unreliable absence data, the presence data may also be biased

or incomplete, depending on the sampling scheme, accuracy of

the data and species detection probability (Barbet-Massin,

Thuiller & Jiguet 2010). Generalisation and application of the

conclusions of these empirical studies are therefore of limited

interest in general compared with conclusions from virtual

experiments where results or patterns can be compared with

the known truth (Zurell et al. 2010).

The goal of this study is to systematically test the effect of

known sources of variability related to the selection of pseudo-

absence data to deliver a comprehensive guideline on how,

where and how many pseudo-absences should be generated to

build unbiased and reliable SDM. Here, we aimed to answer

the following questions:

(a) Which ratio of presences ⁄ absences achieves the highest

model accuracy?

(b) What is the optimal number of replicate sets of pseudo-

absences?

(c) What is the optimal number and weighting scheme of

pseudo-absences per replicate?

(d) Which method for generating pseudo-absences results in

themost accuratemodels?

(e) How does bias in the sampling design influence the opti-

mal use of pseudo-absences?

(f) Which parameters (number of pseudo-absences, method

of generating pseudo-absences and weighting scheme) have

the greatest influence on the models’ predictive accuracy?

For each one of these six questions, we further tested for an

effect of the number of presences available and the choice of

the modelling technique, using seven different SDM. To do so,

we performed a comparative analysis based on virtual data.

We thus knew the species’ true distribution and were able to

simulate different realisations of this distribution that were

either unbiased or purposely biased geographically or climati-

cally. Geographically biased presence data could arise from

sampling along main roads or railways, or within a subset

of the countries where the species occurs (Kadmon, Farber &

Danin 2004; Albert et al. 2010). Geographical bias matches

some large-scale surveys like the North American Breeding

Bird Survey with sampling sites along the main roads or some

common data sets used for species distribution modelling

which follow political boundaries (e.g. European breeding

birds, Huntley et al. 2008). Climatically biased presence data

can result either from a spatially biased sampling design, that

is, when data from an area with climatically different charac-

teristics are missing (Barbet-Massin, Thuiller & Jiguet 2010),

or from sampling that was not carried out over the whole

environmental range of a given species, which is often the case

for species ranging from low to very high altitude, because the

latter is usually less thoroughly surveyed.

Methods

CREATING VIRTUAL SPECIES

To make sure that our results were not influenced by the choice of a

species and the peculiarities thereof, we created two geographically

distinct virtual species (Fig. S1). To produce the simplest possible
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potential distributions based on uncorrelated variables, we con-

strained the distributions of these virtual species by two explanatory

variables. To include realistic environmental conditions, we chose

these two uncorrelated environmental variables as the first two axes

of a principal component analysis (PCA) conducted on eight vari-

ables related to temperature and precipitation at European scale

(from the Worldclim data base at a 10 arc-min resolution): (i) annual

mean temperature, (ii) mean temperature of the warmest month, (iii)

mean temperature of the coldest month, (iv) temperature seasonality,

(v) annual precipitation, (vi) precipitation of the wettest month, (vii)

precipitation of the driest month, (viii) precipitation seasonality. For

each species, we assumed a bell-shaped relationship between the

probability of occurrence and each composite environmental vari-

able. Each fundamental niche is therefore an ellipsoid in the principal

component space, as previously used by Godsoe (2010) and Soberon

& Nakamura (2009), although the geographical points falling within

that environmental ellipsoid can result in a distorted ellipsoid,

depending on its position in the environmental space cloud (Soberon

& Nakamura 2009) (Fig. S1). Although Gaussian response curves

might seem unrealistic at a first glance, this is what is expected from a

theoretical point of view (Lawton 1999). Whilst the SDM accuracy

(in absolute terms) may depend upon the response curves chosen to

create the virtual species, this choice should not influence how differ-

ent methods for generating pseudo-absences affect the quality of a

given SDM (in relative terms). The virtual species reflect similar eco-

logical constraints (same shape of response curves to the same envi-

ronmental variables), to ensure our results reflect differences resulting

from the methods used to generate pseudo-absences and not differ-

ences arising from species characteristics.

The probability of occurrence of each species in a given pixel was

calculated by multiplying the probabilities linked to both variables.

This final probability distribution was then rescaled so that the maxi-

mum probability was equal to 1. Finally, a binary realisation of the

potential distribution was generated by applying an arbitrary proba-

bility of occurrence threshold of 0Æ25.
Given that in the real world, a species may not totally fill its poten-

tial distribution and is more likely to be present where the climate is

most suitable, we computed an ‘actual’ distribution by generating

presences following a binomial distribution, with a different probabil-

ity of success for each pixel (i.e. the probability previously calculated).

Each ‘actual’ distribution wasmade up of c. 2700 presence points.

SELECTING SETS OF PRESENCES USED FOR MODEL

CALIBRATION

Sampling bias

To investigate the effects of sampling bias in presence data on the

models’ predictive accuracy (question e), we created three biased sub-

distributions from the actual species distributions. Firstly, we created

a climatically biased distribution by considering a probability surface

whose Gaussian response curve means were slightly different from

the means of the potential distribution (Fig. S2). Presence points of

the climatically biased distribution were then sampled from the actual

distribution following a binomial distribution, the probability of suc-

cess for each pixel being extracted from the biased probability surface.

As a result, the presence points from this sample did not include the

full extent of the fundamental climatic niche of the virtual species.

Secondly, we created two spatially biased samples. One was made by

removing presences from several countries on one side of the distribu-

tion, and the second by only selecting presences along transport

routes (roads or railways) (Fig. S1). It should be noted that the first

spatial bias considered can also be interpreted as a species that does

not fully occupy its potential distribution because of dispersal limita-

tions, historical legacies and exclusion through biotic interactions.

Each one of the biased samples contained approximately 1000

presence points (Fig. S1).

Number of presence points

To answer each question relative to the best use of pseudo-absences,

we further tested what would be the influence of the amount of pres-

ence data. We used sample sizes of 30, 100, 300 or 1000 presence

points randomly chosen from the actual distribution, the climatically

biased distribution, and from each of the two spatially biased distri-

butions (for each virtual species).

GENERATING ABSENCE DATA: TRUE ABSENCES AND

PSEUDO-ABSENCES

Five different sample sizes of absence data were considered: 100, 300,

1000, 3000 or 10 000 absences. Depending on the question under con-

sideration, we used either true absences or pseudo-absences as

absence data. We considered as true absences all points located out-

side the potential distribution of the species, whereas pseudo-absences

were always generated without considering the species potential dis-

tribution. True absences were randomly sampled among all true

absences available. We used four different methods to generate the

pseudo-absences (using the biomod package in R, Thuiller et al. 2009):

(i) random selection from all points within the studied area excluding

available presence points (‘random’), (ii) random selection of points

from all points outside of the suitable area estimated by a rectilinear

surface envelope from the presence sample (surface range envelope

model using only presence-only data, Thuiller et al. 2009; hereafter,

the ‘SRE’ method), (iii) random selection of any point located at least

one degree in latitude or longitude from any presence point (the

‘1"far’ method) and (iv) random selection of any available point

located at least two degrees away from any presence point (the ‘2"far’
method). Note that pseudo-absences can be presences that were not

retained within the presence sample used to build themodels (i.e. false

absences).

FITT ING AND ASSESSING DISTRIBUTION MODELS

For any given set of presences and absences, we used seven SDM (to

detect a potential effect of the choice of the modelling method) as

found in the biomod package in R (see Thuiller et al. 2009 for further

details on these modelling methods): three regression methods

(GLM, GAM and MARS), two classification methods (MDA and

CTA) and two machine-learning methods (BRT and RF). The mod-

els were fitted either by assigning an equal weight to each presence

and absence point or by balancing the weight of presences vs.

absences (question c), such that all presence data combined had the

sameweight as the total weight of the absence data (except forMARS

and RF, which could not consider different weights for different data

at the time of the analysis). Binary transformation was carried out

using the threshold that maximised the true skill statistics (TSS;

Allouche, Tsoar & Kadmon 2006). TSS corresponds to the sum of

sensitivity and specificity minus one (the sensitivity is the proportion

of presences correctly predicted, and the specificity is the proportion

of absences correctly predicted). This threshold was shown to

produce the most accurate predictions (Jimenez-Valverde & Lobo

2007). Models were evaluated using four different criteria: the area

under the receiver operating characteristic (ROC) curve (AUC)
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(Fielding&Bell 1997), sensitivity, specificity and TSS. These four pre-

dictive accuracymeasures were calculated in reference to the potential

distribution only.

(A ) WHICH RATIO OF PRESENCES ⁄ ABSENCES

ACHIEVED THE HIGHEST MODEL ACCURACY?

To investigate the effect of prevalence, we used four different numbers

of presences (30, 100, 300 or 1000) and five different numbers of

absences (100, 300, 1000, 3000 or 10 000). To make sure the results

were not influenced by false positives or false negatives, presences

were randomly selected from the ‘actual’ unbiased distribution and

true absences were randomly selected as absence data. To account for

the variability arising from the random selection of a set of presences,

the models were fitted with 20 different random presence sets for each

combination of sample size and each virtual species (Fig. 1). For each

random presence set, accuracy measures were then calculated by

considering the mean of the 20 distributions obtained using different

random replicates of true absences as the result distribution.

(B ) WHAT IS THE OPTIMAL NUMBER OF REPLICATE

SETS OF PSEUDO-ABSENCES?

To investigate this issue and the four that follow, we used three differ-

ent numbers of presences (30, 100 and 300), three different numbers

of pseudo-absences (100, 1000 and 10 000), four methods to generate

them and two different weighting schemes for all seven SDM and all

pools of presences (Fig. 2). For each combination of parameters, 20

replicates with different presence data selections were performed to

account for the variability in model accuracy because of the random

sampling of presence data (Fig. 2). For each presence data sample,

several replicates with different pseudo-absences selections were per-

formed to further account for the variability because of the random sampling of pseudo-absence data (Fig. 2).To investigate the optimal

trade-off between the number of replicates, the number of pseudo-

absences and the predictive accuracy, we calculated mean predicted

distributions (hereafter called mean predictions) resulting from sev-

eral (2–20) replicates of pseudo-absences selection. To estimate the

number of replicates of pseudo-absences above which model quality

does not increase significantly, we compared mean TSS across the

number of replicates for each combination of pools of presence

data · number of presences · number of pseudo-absences (Fig. 2).

(C ) WHAT IS THE OPTIMAL NUMBER AND WEIGHTING

SCHEME OF PSEUDO-ABSENCES PER REPLICATE?

We tested for an effect of the number ⁄weighting scheme of pseudo-

absences on model accuracy via a likelihood ratio test. This test

compared the likelihood of two linear models: one that included as

covariates both the method of generating pseudo-absences and the

number ⁄weighting scheme of pseudo-absences, and one that included

only the former. The number ⁄weighting scheme covariate was coded

as a 6-level factor (100, 1000 or 10 000 pseudo-absences, with either

equal or unequal weighting of presences vs. absences).

(D ) WHICH METHOD OF GENERATING PSEUDO-

ABSENCES RESULTS IN THE MOST ACCURATE

MODELS?

For each number of presences considered, we tested how the method

of generating pseudo-absences affected model accuracy. This was

done via a likelihood ratio test that compared the likelihood of a linear

model which included the method of generating pseudo-absences and
Fig. 1. General framework for data simulation and selection illustrat-
ing all factors tested to study the influence of prevalence.

Fig. 2. General framework for data simulation and selection illustrat-
ing all factors tested to study the influence of pseudo-absence selec-
tion and biased presence data.
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the number ⁄weighting scheme of pseudo-absences as covariates with

the likelihoodof amodel including only the latter.

(E ) HOW DO BIASES IN THE SAMPLING DESIGN

INFLUENCE THE OPTIMAL USE OF PSEUDO-

ABSENCES?

Accuracy results from models run with spatially biased presences

(countries or transportation biases) were aggregated because we did

not detect any difference between them. Thus, two types of sampling

bias were considered: climatically biased and spatially biased presence

samples. For both sampling biases, tests similar to those described in

(c) and (d) were computed.

(F ) WHICH PARAMETERS HAVE THE GREATEST

INFLUENCE ON THE MODELS ’ PREDICT IVE ACCURACY?

For each SDM, we used an anova to test the effects of the number of

pseudo-absences, the method used for the selection of pseudo-

absences, and the weighting scheme for presences vs. absences on

model quality, for each combination of virtual species, pool of pres-

ence data and number of presences. In each case, the relative contri-

bution of each effect was estimated as the ratio between the explained

and the null deviances. Using the same approach, we also considered

SDM as an additional effect to compare variability between SDM,

that is, variations in model accuracy owing to differences in the way

each SDMhandles pseudo-absences.

Results

(A ) WHICH RATIO OF PRESENCES ⁄ ABSENCES

ACHIEVED THE HIGHEST MODEL ACCURACY?

The models could be separated into three groups according to

the effect of prevalence on their predictive accuracy (Fig. 3).

GAM behaved differently from the others given this technique

was not influenced by prevalence. The accuracy ofMARS and

MDA increased with prevalence, whereas the accuracy

increased until an asymptote when the number of presences

reached one tenth of the number of absences for GLM, BRT

andRFor reached the same amount as the number of absences

for CTA. These trends were not influenced by the weighting

scheme of presences vs. absences.

(B ) WHAT IS THE OPTIMAL NUMBER OF REPLICATE

SETS OF PSEUDO-ABSENCES?

Model quality (i.e. TSS) increased with the number of repli-

cates of pseudo-absences used to calculate the mean predic-

tion until reaching an asymptote (Fig. 4). The number of

replicates to reach the asymptote decreased significantly with

the number of pseudo-absences selected per replicate. When

10 000 pseudo-absences (i.e. 20% of the study area) were

used in each replicate, there was no effect of the number of

replicates on model quality (i.e. no need for repetition).

When 1000 pseudo-absences (i.e. 2% of the study area) were

generated in each replicate, five replicates were enough to

reach the asymptote with respect to model quality (TSS) for

the GAM and CTA models, whereas the number of repli-

cates did not affect model quality for the other five SDM

(i.e. no need for repetition). When 100 pseudo-absences were

generated in each replicate, model quality reached an asymp-

tote at 12 replicates for the GAM model, seven replicates for

GLM, MARS, MDA, CTA and RF, and four replicates for

the BRT model. However, we noticed that with 100 pseudo-

absences, the variability in TSS was substantial across the

replicates, such that it was difficult to reliably identify an

asymptote below 20 replicates (Fig. 4): even though accuracy

was not significantly different between the mean prediction

obtained with 15 replicates and the mean prediction obtained

with 20 replicates, the former was lower than the latter. The

use of the mean distribution obtained from 20 replicates of

pseudo-absence selection for each selection of presences that

was a priori chosen to reduce the variability resulting from

pseudo-absence selection and answer all other questions was

therefore conservative.

Fig. 3. Evaluation results (TSS) of the mean distribution according to the prevalence. The black and red curves represent results with a weighted
and un-weighted scheme respectively.
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(C ) WHAT ARE THE OPTIMAL NUMBER AND WEIGHTING

SCHEME OF PSEUDO-ABSENCES PER REPLICATE?

Depending on the SDM used, the interaction between the

number of pseudo-absences and weighting of presences vs.

absences had different but significant effects on TSS. Themod-

els can be separated into three groups (Figs 5 and 6). Firstly,

GLM and GAM showed little variation in predictive accuracy

in response to the number of pseudo-absences, but the predic-

tive accuracy increasedwhen using pseudo-absences with equal

weight for presences and absences. Secondly, for CTA, BRT

and RF, predictive accuracy was highest when approximately

the same number of pseudo-absences was used as the number

of presences (Fig. 3). For CTA and BRT, when the number of

pseudo-absences differed from the number of presences, an

equal weight for presences and absences gave better model pre-

dictive quality. These results were mainly explained by the very

low sensitivity of these two SDM when a large number of

Fig. 4. Evaluation results (TSS) of the mean distribution according to the number of replicates with different pseudo-absences used to get that
distribution. The different curves represent the results with 100, 1000, or 10 000 pseudo-absences selected in each replicate, as well as the weight-
ing scheme. Red asterisks indicate that the TSS from the mean distribution with a larger number of replicates is not significantly better. These
results were obtained with 100 climaticallybiased presences from the first virtual species (similar results were obtained with spatially biased pres-
ences and unbiased presences).

Fig. 5. Evaluation results (TSS) according to the modelling technique, the number of presences, to the quality of presences and the number and
weighting scheme of pseudo-absences (mean over the method used to select pseudo-absences and the random selection of presences) (W stands
for an equal weight of presences vs. absences).
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pseudo-absences were generated (Fig. S3). Lastly, when using

MARS and MDA, model quality was highest when 100

pseudo-absences were generated in each run, with equal weight

given to presences and absences.

(D ) WHICH METHOD OF GENERATING PSEUDO-

ABSENCES RESULTED IN THE MOST ACCURATE

MODELS?

Model accuracy was affected by the method used to generate

pseudo-absences for each SDM (Figs 5 and 6): likelihood ratio

tests were significant in all cases excepted with spatially biased

presences with CTA. For GLM, GAM andMARS, randomly

selected pseudo-absences produced the most accurate models.

For theother fourSDM(MDA,BRT,CTAandRF), therewas

less variation in the results obtained for each different method

used to select pseudo-absences, but pseudo-absences selected

with geographical exclusion (‘2"far’) yielded significantly better
models with few presences, whereas pseudo-absences selected

with climatic exclusion (‘SRE’) yieldedbettermodelswithmore

presences. Consistently across SDM and the number of pres-

ences, we found that pseudo-absences selected with geographi-

cal exclusion (‘2"far’ and ‘1"far’) yieldedpredictionswithhigher
sensitivities, whereas randomly selected pseudo-absences

yieldedpredictionswithhigher specificities (Figs S3andS4).

(E ) HOW DID POTENTIAL BIASES IN THE PRESENCE

SAMPLING INFLUENCE THE OPTIMAL USE OF PSEUDO-

ABSENCES?

The predictive accuracy of the models in relation to the

number and weighting scheme of pseudo-absences was not

influenced by the sampling biases of presence data (Fig. 5).

Regarding the method used to generate pseudo-absences, the

results obtained with spatially biased presences were similar to

those obtained with unbiased presences (Fig. 6), except for

MDA for which ‘random’ yielded better models with spatially

biased presences. With the three regression techniques (GLM,

GAM and MARS), ‘random’ did not perform well with cli-

matically biased presences, but ‘SRE’ yielded better results

when few presences were available from the actual distribution

and ‘2"far’ yielded better results when more presences were

selected. For the other four SDM (MDA, CTA, BRT and

RF), ‘2"far’ performed better when presences were climatically

biased (Fig. 6).

(F ) WHICH PARAMETERS HAVE THE GREATEST

INFLUENCE ON THE MODELS ’ PREDICT IVE ACCURACY?

The relative contributionof eachmethodological choice tovari-

ations inmodel quality depended on the SDMused. GLMand

GAM methods responded similarly: when 30 presences were

selected, variation in TSS among distributions obtained from

all models was only partly explained by the number of pseudo-

absences, the method used for selecting pseudo-absences, and

the weighting of presences vs. absences (Fig. 7). This pattern

suggested that resultsweremost influencedby the randomsetof

presences from the actual species distribution. However, when

the number of sampled presences increased, the contribution of

theother factors tovariability inTSSalso increased:with100or

300 presences, the method used for selecting the pseudo-

absences explained most of the variation in TSS for GLM and

GAM. In contrast, for the five remaining SDM, the number

of pseudo-absences selected for each run made the biggest

Fig. 6. Evaluation results (TSS) according to the modelling technique, the number of presences, to the quality of presences and the method used
to select pseudo-absences (mean over the different numbers of pseudo-absences, the weighting scheme, and the random selection of presences).
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contribution to the variability in TSS regardless of the number

of presences sampled. The method used for selecting pseudo-

absences alsopartly explained the variation inTSSand its influ-

ence increasedwith thenumberofpresences sampled.

Overall, the variability arising from each methodological

choice regarding the use of pseudo-absences was lower than

the variability arising from the use of different SDMs, espe-

cially when at least 100 presence data were sampled (Fig. 8).

In addition, we found that AUC and TSS were highly corre-

lated (using Pearson’s product-moment correlation,

r = 0Æ82 ± 0Æ10 across all SDM). Therefore, the relative per-

formance of the different methods used to select the pseudo-

absences did not depend on the choice of the evaluation

criterion. Although we presented results on the models’ predic-

tive accuracy, the results and conclusions were the same for the

models’ ability to correctly predict climatic suitability (assessed

using a correlation test between the probability distribution

obtained from themodel and the probabilities of occurrence of

the potential distribution chosen for a given species, Fig. S5).

Discussion

INFLUENCE OF THE MODELLING TECHNIQUE

In general, our results showed that the behaviour of the differ-

ent SDM varied widely depending on how, where and how

many pseudo-absences were used. First of all, although the

model accuracy of regression techniques GLM and GAMwas

not influenced as much as other SDM by the number of

pseudo-absences used in each replicate, the best results were

obtained by using a large number of pseudo-absences (e.g.

10 000) with presences and absences weighted equally. These

results are consistent with those obtained with Maxent (Phil-

lips & Dudik 2008) for which more accurate results were also

obtained with 10 000 background points. Conversely, for clas-

sification and machine-learning techniques including MARS,

the models’ predictive accuracy was greater when a moderate

number of pseudo-absences per replicate were used (either few

pseudo-absences or not more than the number of presences).

For thesemodels, the choice of the number of pseudo-absences

Fig. 7. Percentage of deviance explained by the three factors regarding the use of pseudoabsences according to the number of presences used for
modelling [average across the two virtual species and the four pools of presence data (unbiased or biased presences)].

Fig. 8. Percentage of deviance explained by the three factors regard-
ing the use of pseudoabsences and the modelling techniques accord-
ing to the number of presences used for modelling [average across the
two virtual species and the four pools of presence data (unbiased or
biased presences)].
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used in each replicate was the main influence on model accu-

racy, making it a key decision when setting up a modelling

exercise. This difference in terms of the optimal number of

pseudo-absences to use in each replicate for different SDM

could not be solely attributed to the poor performance of clas-

sification and machine-learning techniques when the number

of false absences increases (which is automatically the case

when the number of pseudo-absences increases), because the

study regarding the influence of prevalence over model

accuracy, performed with true absences only, lead to the same

conclusions. This difference could therefore be attributed to

the intrinsic properties of the different SDM with regard

to prevalence.

The different SDM investigated in this study also appeared

to behave differently with regard to the method used to gener-

ate pseudo-absences. Indeed, regression techniques were more

greatly influenced by the choice of the method than classifica-

tion and machine-learning techniques, and different methods

were found to optimisemodel accuracy.When using regression

techniques (GLM,GAMandMARS), the best strategy was to

randomly generate the pseudo-absences data, which supported

results from Wisz & Guisan (2009). Indeed, their study using

simulated data showed that randomly selected pseudo-

absences yielded better results than pseudo-absences selected

from low suitability areas predicted usingENFAorBIOCLIM

(equivalent to SRE). For classification and machine-learning

techniques, although the method used to generate pseudo-

absences had little influence on the models’ predictive

accuracy, ‘2"far’ yielded significantly better models with few

presences, whereas ‘SRE’ yielded better models with more

presences.We can assume the difference in the best method for

generating pseudo-absences according to the number of avail-

able presences to be the consequence of different false negative

rates. Indeed, with few available presences, it is very unlikely

that these presences represent the full climatic niche of the spe-

cies. Therefore, pseudo-absences selected with environmental

exclusion (‘SRE’) may have a higher chance of being false

absences than pseudo-absences selected with large geographi-

cal exclusion (‘2"far’). However, as the amount of available

presences increases, the probability of pseudo-absences

selected with environmental exclusion being false absences

decreases. With large amounts of presence data, although

pseudo-absences selectedwith large geographical exclusion still

have a better chance of being true absences, they are probably

too different from the presence data to be as informative as the

pseudo-absences selected with environmental exclusion. This

may also depend in part on the level of spatial aggregation in

species presences. Such differences regarding the best method

of generating pseudo-absences indicate that regression tech-

niques were less sensitive to false absences than classification

andmachine-learning techniques.

Finally, the optimal number of pseudo-absence replicates

also differed between the different SDM. Some of these differ-

ences could be explained by the intrinsic properties of the

SDM. For example, BRT and RF were the SDM that needed

the lowest number of 100 pseudo-absences replicates, perhaps

because both have internal replication procedures.

ENSEMBLE FORECAST PERSPECTIVES

As modelling a species distribution under current and future

conditions can give different results according to the SDM

used (Thuiller 2004; Elith et al. 2006) and as none of the

widely used techniques performs universally better than the

others (Elith et al. 2006), the use of an ensemble forecast

framework has been recommended (Buisson et al. 2010). The

ensemble forecast framework aims to consider the central

trend of several SDM, using different methods (Marmion

et al. 2009), and is now widely used amongst species distribu-

tion modellers, often with the same use of pseudo-absences

across the different SDM used. However, we have shown here

that the optimal way of creating and using pseudo-absences

information differs widely across SDM. The best way of using

pseudo-absences through an ensemble forecast technique

could therefore be to use pseudo-absences differently for each

SDM. However, most ensemble forecast techniques compare

model accuracy either to select the best models or to weight

their predictions differently, which can only be done in an

unbiased way if the same data were used for all SDM. One

way of overcoming this potential problem could be to group

together SDM that share the same way of optimising the use

of pseudo-absences (e.g. GLM and GAM; BRT and RF),

compare their model accuracy, select the best one from each

group and then obtain the median or mean distribution from

all selected models.

SPATIAL EXTENT OF THE STUDY AREA

As well as being influenced by the number of pseudo-absences

and the method used to generate them, model performance

also relies on the spatial extent of the study. Indeed, model per-

formance is lower when pseudo-absences are taken from either

a restricted or particularly broad area (Van Der Wal et al.

2009). Pseudo-absences are meant to be compared with the

presence data and help differentiate the environmental condi-

tions under which a species can occur or not. Therefore,

pseudo-absences taken too far from the presence data in the

environmental space would not be very informative. As

pseudo-absences that are very distant from all presence points

(from a geographical point of view) are more likely to exhibit

environmental conditions that are very different from those for

the presence data, a larger spatial extent of the study will lead

to the selection of a higher proportion of less informative

pseudo-absences. The optimal number of pseudo-absences to

generate in each run is therefore likely to depend on the spatial

extent of the study, which influences environmental variability.

At a given spatial resolution, a higher number of pseudo-

absences may be needed to optimise model performance for a

larger spatial extent of the study, to ensure the selection of

enough informative pseudo-absences.

MAXIMIS ING SENSIT IV ITY OR SPECIF IC ITY

When the modelling goal is to identify potential presences

of rare species for new survey efforts (Engler, Guisan &
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Rechsteiner 2004), high sensitivity is preferred, even if it

generates overprediction. High sensitivity ensures that the

percentage of true presences predicted as absences will be

minimised. In such studies, the ‘SRE’, ‘1 and 2"far’ methods

can be used as well as other methods for selecting pseudo-

absences outside both spatially and climatically suitable areas

(Hengl et al. 2009; Lobo, Jimenez-Valverde & Hortal 2010).

The selection of fewer pseudo-absences in each replicate also

yielded better sensitivity (except for GLM and GAM, for

which large amounts of pseudo-absences with an equal

weighting of presences vs. absences still yielded better sensi-

tivity). In contrast, other studies may wish to maximise speci-

ficity, so that the predicted distribution of a species would

only be the area where the species is highly likely to be pres-

ent. This is particularly true for studies on reserve planning

(Marini et al. 2009). High specificity ensures that the percent-

age of true absences predicted as presences will be minimised.

In such cases, the random selection of pseudo-absences will

maximise specificity. As for the number of pseudo-absences

to generate in each replicate to maximise specificity, it

depends on the number of presence points available, but

overall a large number of pseudo-absences tends to yield bet-

ter specificity for all SDM except GLM and GAM for which

fewer pseudo-absences are better. All these results regarding

sensitivity and specificity are dependent on the threshold

used to produce binary distributions. The use of another

commonly used threshold (minimising the difference between

sensitivity and specificity) could yield slightly different results

as it tends to favour specificity, whereas the threshold we

used tends to favour sensitivity (Jimenez-Valverde & Lobo

2007).

Conclusion

Overall, we recommend the use of a large number (e.g. 10 000)

of pseudo-absences with equal weighting for presences and

absences when using GLM and GAM, averaging several runs

with relatively fewer pseudo-absences (e.g. 100) with equal

weighting for presences and absences with MARS and MDA,

and using the same amount of pseudo-absences as the amount

of available presences (averaging several runs if few pseudo-

absences) for CTA, BRT and RF (Table 1). In addition, we

recommend the random selection of pseudo-absences with

regression techniques and the random selection of pseudo-

absences with geographical and environmental exclusion with

classification and machine-learning techniques. These recom-

mendations further apply when using data likely to be biased

(e.g. GBIF data). For all SDM, we recommend the random

selection of pseudo-absences when high specificity is valued

over high sensitivity (e.g. reserve planning). Nevertheless, in

studies seeking to identify unsurveyed sites with a high proba-

bility of occurrence for rare species, pseudo-absences that are

more likely to be true absences (outside the suitable area of the

species and not too close to a presence point) are recom-

mended.
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Fig. S1. (a) Response curves considered for the two virtual species

along both composite environmental variables (species 1 in black and

species 2 in grey) (species 1: mean = )0.5 and SD = 0.3 for both

axes; species 2: mean = 0.8 on axis 1 and mean = )1 on axis 2,

SD = 0.5 for both axes), (b) potential (light blue and purple) and

actual (dark blue and purple) niches of both virtual species in the cli-

matic space, (c) pools of presence data for species 1, (d) pools of pres-

ence data for species 2.

Fig. S2. Response curves considered for the climatically biased pres-

ences (grey) for species 1 (a) and 2 (b), compared to the response

curves of its fundamental distribution (black).

Fig. S3. (a) Evaluation results (sensitivity) according to the modelling

technique, the number of presences, to the quality of presences and

the number and balancing of pseudo-absences (mean over themethod

used to select pseudo-absences and the random selection of presences)

(W stands for an equal weight of presences vs. absences). (b) Evalua-

tion results (sensitivity) according to the modelling technique, the

number of presences, to the quality of presences and the method used

to select pseudo-absences (mean over the different numbers of

pseudo-absences, the balancing of presences vs. absences, and the

random selection of presences).

Fig. S4. (a) Evaluation results (specificity) according to the mod-

elling technique, the number of presences, to the quality of pres-

ences and the number and balancing of pseudo-absences (mean

over the method used to select pseudo-absences and the random

selection of presences) (W stands for an equal weight of presences

vs. absences). (b) Evaluation results (specificity) according to the

modelling technique, the number of presences, to the quality of

presences and the method used to select pseudo-absences (mean

over the different numbers of pseudo-absences, the balancing of

presences vs. absences, and the random selection of presences).
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Table S5. Pearson’s product-moment correlation between the TSS

and the correlation coefficient between the probability distribution

obtained frommodeling and the climatic suitability calculated to cre-

ate the virtual species for all models.
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