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Abstract

Recent deep learning and unsupervised feature learning systems that learn from
unlabeled data have achieved high performance in benchmarks by using extremely
large architectures with many features (hidden units) at each layer. Unfortunately,
for such large architectures the number of parameters can grow quadratically in the
width of the network, thus necessitating hand-coded “local receptive fields” that
limit the number of connections from lower level features to higher ones (e.g.,
based on spatial locality). In this paper we propose a fast method to choose these
connections that may be incorporated into a wide variety of unsupervised training
methods. Specifically, we choose local receptive fields that group together those
low-level features that are most similar to each other according to a pairwise simi-
larity metric. This approach allows us to harness the advantages of local receptive
fields (such as improved scalability, and reduced data requirements) when we do
not know how to specify such receptive fields by hand or where our unsupervised
training algorithm has no obvious generalization to a topographic setting. We
produce results showing how this method allows us to use even simple unsuper-
vised training algorithms to train successful multi-layered networks that achieve
state-of-the-art results on CIFAR and STL datasets: 82.0% and 60.1% accuracy,
respectively.

1 Introduction

Much recent research has focused on training deep, multi-layered networks of feature extractors ap-
plied to challenging visual tasks like object recognition. An important practical concern in building
such networks is to specify how the features in each layer connect to the features in the layers be-
neath. Traditionally, the number of parameters in networks for visual tasks is reduced by restricting
higher level units to receive inputs only from a “receptive field” of lower-level inputs. For instance,
in the first layer of a network used for object recognition it is common to connect each feature extrac-
tor to a small rectangular area within a larger image instead of connecting every feature to the entire
image [14, 15]. This trick dramatically reduces the number of parameters that must be trained and
is a key element of several state-of-the-art systems [4, 19, 6]. In this paper, we propose a method to
automatically choose such receptive fields in situations where we do not know how to specify them
by hand—a situation that, as we will explain, is commonly encountered in deep networks.

There are now many results in the literature indicating that large networks with thousands of unique
feature extractors are top competitors in applications and benchmarks (e.g., [4, 6, 9, 19]). A ma-
jor obstacle to scaling up these representations further is the blowup in the number of network
parameters: for n input features, a complete representation with n features requires a matrix of
n2 weights—one weight for every feature and input. This blowup leads to a number of practical
problems: (i) it becomes difficult to represent, and even more difficult to update, the entire weight
matrix during learning, (ii) feature extraction becomes extremely slow, and (iii) many algorithms
and techniques (like whitening and local contrast normalization) are difficult to generalize to large,
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unstructured input domains. As mentioned above, we can solve this problem by limiting the “fan
in” to each feature by connecting each feature extractor to a small receptive field of inputs. In this
work, we will propose a method that chooses these receptive fields automatically during unsuper-
vised training of deep networks. The scheme can operate without prior knowledge of the underlying
data and is applicable to virtually any unsupervised feature learning or pre-training pipeline. In our
experiments, we will show that when this method is combined with a recently proposed learning
system, we can construct highly scalable architectures that achieve accuracy on CIFAR-10 and STL
datasets beyond the best previously published.

It may not be clear yet why it is necessary to have an automated way to choose receptive fields since,
after all, it is already common practice to pick receptive fields simply based on prior knowledge.
However, this type of solution is insufficient for large, deep representations. For instance, in local
receptive field architectures for image data, we typically train a bank of linear filters that apply only
to a small image patch. These filters are then convolved with the input image to yield the first
layer of features. As an example, if we train 100 5-by-5 pixel filters and convolve them with a
32-by-32 pixel input, then we will get a 28-by-28-by-100 array of features. Each 2D grid of 28-by-
28 feature responses for a single filter is frequently called a “map” [14, 4]. Though there are still
spatial relationships amongst the feature values within each map, it is not clear how two features in
different maps are related. Thus when we train a second layer of features we must typically resort to
connecting each feature to every input map or to a random subset of maps [12, 4] (though we may
still take advantage of the remaining spatial organization within each map). At even higher layers of
deep networks, this problem becomes extreme: our array of responses will have very small spatial
resolution (e.g., 1-by-1) yet will have a large number of maps and thus we can no longer make use of
spatial receptive fields. This problem is exacerbated further when we try to use very large numbers
of maps which are often necessary to achieve top performance [4, 5].

In this work we propose a way to address the problem of choosing receptive fields that is not only
a flexible addition to unsupervised learning and pre-training pipelines, but that can scale up to the
extremely large networks used in state-of-the-art systems. In our method we select local receptive
fields that group together (pre-trained) lower-level features according to a pairwise similarity metric
between features. Each receptive field is constructed using a greedy selection scheme so that it
contains features that are similar according to the similarity metric. Depending on the choice of
metric, we can cause our system to choose receptive fields that are similar to those that might be
learned implicitly by popular learning algorithms like ICA [11]. Given the learned receptive fields
(groups of features) we can subsequently apply an unsupervised learning method independently
over each receptive field. Thus, this method frees us to use any unsupervised learning algorithm
to train the weights of the next layer. Using our method in conjunction with the pipeline proposed
by [6], we demonstrate the ability to train multi-layered networks using only vector quantization as
our unsupervised learning module. All of our results are achieved without supervised fine-tuning
(i.e., backpropagation), and thus rely heavily on the success of the unsupervised learning procedure.
Nevertheless, we attain the best known performances on the CIFAR-10 and STL datasets.

We will now discuss some additional work related to our approach in Section 2. Details of our
method are given in Section 3 followed by our experimental results in Section 4.

2 Related Work

While much work has focused on different representations for deep networks, an orthogonal line of
work has investigated the effect of network structure on performance of these systems. Much of this
line of inquiry has sought to identify the best choices of network parameters such as size, activation
function, pooling method and so on [12, 5, 3, 16, 19]. Through these investigations a handful of
key factors have been identified that strongly influence performance (such as the type of pooling,
activation function, and number of features). These works, however, do not address the finer-grained
questions of how to choose the internal structure of deep networks directly.

Other authors have tackled the problem of architecture selection more generally. One approach is
to search for the best architecture. For instance, Saxe et al. [18] propose using randomly initialized
networks (forgoing the expense of training) to search for a high-performing structure. Pinto et
al. [17], on the other hand, use a screening procedure to choose from amongst large numbers of
randomly composed networks, collecting the best performing networks.
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More powerful modeling and optimization techniques have also been used for learning the struc-
ture of deep networks in-situ. For instance, Adams et al. [1] use a non-parametric Bayesian prior
to jointly infer the depth and number of hidden units at each layer of a deep belief network during
training. Zhang and Chan [21] use an L1 penalization scheme to zero out many of the connections in
an otherwise bipartite structure. Unfortunately, these methods require optimizations that are as com-
plex or expensive as the algorithms they augment, thus making it difficult to achieve computational
gains from any architectural knowledge discovered by these systems.

In this work, the receptive fields will be built by analyzing the relationships between feature re-
sponses rather than relying on prior knowledge of their organization. A popular alternative solution
is to impose topographic organization on the feature outputs during training. In general, these learn-
ing algorithms train a set of features (usually linear filters) such that features nearby in a pre-specified
topography share certain characteristics. The Topographic ICA algorithm [10], for instance, uses a
probabilistic model that implies that nearby features in the topography have correlated variances
(i.e., energies). This statistical measure of similarity is motivated by empirical observations of
neurons and has been used in other analytical models [20]. Similar methods can be obtained by
imposing group sparsity constraints so that features within a group tend to be on or off at the same
time [7, 8]. These methods have many advantages but require us to specify a topography first, then
solve a large-scale optimization problem in order to organize our features according to the given
topographic layout. This will typically involve many epochs of training and repeated feature eval-
uations in order to succeed. In this work, we perform this procedure in reverse: our features are
pre-trained using whatever method we like, then we will extract a useful grouping of the features
post-hoc. This approach has the advantage that it can be scaled to large distributed clusters and is
very generic, allowing us to potentially use different types of grouping criteria and learning strate-
gies in the future with few changes. In that respect, part of the novelty in our approach is to convert
existing notions of topography and statistical dependence in deep networks into a highly scalable
“wrapper method” that can be re-used with other algorithms.

3 Algorithm Details

In this section we will describe our approach to selecting the connections between high-level fea-
tures and their lower-level inputs (i.e., how to “learn” the receptive field structure of the high-level
features) from an arbitrary set of data based on a particular pairwise similarity metric: square-
correlation of feature responses.1 We will then explain how our method integrates with a typical
learning pipeline and, in particular, how to couple our algorithm with the feature learning system
proposed in [6], which we adopt since it has been shown previously to perform well on image recog-
nition tasks.

In what follows, we assume that we are given a dataset X of feature vectors x(i), i ∈ {1, . . . ,m},

with elements x
(i)
j . These vectors may be raw features (e.g., pixel values) but will usually be features

generated by lower layers of a deep network.

3.1 Similarity of Features

In order to group features together, we must first define a similarity metric between features. Ideally,
we should group together features that are closely related (e.g., because they respond to similar
patterns or tend to appear together). By putting such features in the same receptive field, we allow
their relationship to be modeled more finely by higher level learning algorithms. Meanwhile, it also
makes sense to model seemingly independent subsets of features separately, and thus we would like
such features to end up in different receptive fields.

A number of criteria might be used to quantify this type of relationship between features. One
popular choice is “square correlation” of feature responses, which partly underpins the Topographic
ICA [10] algorithm. The idea is that if our dataset X consists of linearly uncorrelated features (as
can be obtained by applying a whitening procedure), then a measure of the higher-order dependence
between two features can be obtained by looking at the correlation of their energies (squared re-
sponses). In particular, if we have E [x] = 0 and E

[

xx⊤
]

= I , then we will define the similarity

1Though we use this metric throughout, and propose some extensions, it can be replaced by many other
choices such as the mutual information between two features.
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between features xj and xk as the correlation between the squared responses:

S[xj , xk] = corr(x2
j , x

2
k) = E

[

x2
jx

2
k − 1

]

/
√

E
[

x4
j − 1

]

E [x4
k − 1].

This metric is easy to compute by first whitening our input dataset with ZCA2 whitening [2], then
computing the pairwise similarities between all of the features:

Sj,k ≡ SX [xj , xk] ≡

∑

i x
(i)
j

2
x

(i)
k

2
− 1

√

∑

i(x
(i)
j

4
− 1)

∑

i(x
(i)
k

4
− 1)

. (1)

This computation is completely practical for fewer than 5000 input features. For fewer than 10000
features it is feasible but somewhat arduous: we must not only hold a 10000x10000 matrix in mem-
ory but we must also whiten our 10000-feature dataset—requiring a singular value or eigenvalue
decomposition. We will explain how this expense can be avoided in Section 3.3, after we describe
our receptive field learning procedure.

3.2 Selecting Local Receptive Fields

We now assume that we have available to us the matrix of pairwise similarities between features Sj,k

computed as above. Our goal is to construct “receptive fields”: sets of features Rn, n = 1, . . . , N
whose responses will become the inputs to one or more higher-level features. We would like for
each Rn to contain pairs of features with large values of Sj,k. We might achieve this using various
agglomerative or spectral clustering methods, but we have found that a simple greedy procedure
works well: we choose one feature as a seed, and then group it with its nearest neighbors according
to the similarities Sj,k. In detail, we first select N rows, j1, . . . , jN , of the matrix S at random
(corresponding to a random choice of features xjn

to be the seed of each group). We then construct
a receptive field Rn that contains the features xk corresponding to the top T values of Sjn,k. We
typically use T = 200, though our results are not too sensitive to this parameter. Upon completion,
we have N (possibly overlapping) receptive fields Rn that can be used during training of the next
layer of features.

3.3 Approximate Similarity

Computing the similarity matrix Sj,k using square correlation is practical for fairly large numbers
of features using the obvious procedure given above. However, if we want to learn receptive fields
over huge numbers of features (as arise, for instance, when we use hundreds or thousands of maps),
we may often be unable to compute S directly. For instance, as explained above, if we use square
correlation as our similarity criterion then we must perform whitening over a large number of fea-
tures.

Note, however, that the greedy grouping scheme we use requires only N rows of the matrix. Thus,
provided we can compute Sj,k for a single pair of features, we can avoid storing the entire matrix
S. To avoid performing the whitening step for all of the input features, we can instead perform
pair-wise whitening between features. Specifically, to compute the squared correlation of xj and
xk, we whiten the jth and kth columns of X together (independently of all other columns), then
compute the square correlation between the whitened values x̂j and x̂k. Though this procedure is
not equivalent to performing full whitening, it appears to yield effective estimates for the squared
correlation between two features in practice. For instance, for a given “seed”, the receptive field
chosen using this approximation typically overlaps with the “true” receptive field (computed with
full whitening) by 70% or more. More importantly, our final results (Section 4) are unchanged
compared to the exact procedure.

Compared to the “brute force” computation of the similarity matrix, the approximation described
above is very fast and easy to distribute across a cluster of machines. Specifically, the 2x2 ZCA
whitening transform for a pair of features can be computed analytically, and thus we can express
the pair-wise square correlations analytically as a function of the original inputs without having to

2If E
ˆ

xx
⊤

˜

= Σ = V DV
⊤, ZCA whitening uses the transform P = V D

−1/2
V

⊤ to compute the
whitened vector x̂ as x̂ = Px.
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numerically perform the whitening on all pairs of features. If we assume that all of the input features

of x(i) are zero-mean and unit variance, then we have:

x̂
(i)
j =

1

2
((γjk + βjk)x

(i)
j + (γjk − βjk)x

(i)
k )

x̂
(i)
k =

1

2
((γjk − βjk)x

(i)
j + (γjk + βjk)x

(i)
k )

where βjk = (1 − αjk)−1/2, γjk = (1 + αjk)−1/2 and αjk is the correlation between xj and xk.

Substituting x̂(i) for x(i) in Equation 1 and expanding yields an expression for the similarity Sj,k

in terms of the pair-wise moments of each feature (up to fourth order). We can typically implement
these computations in a single pass over the dataset that accumulates the needed statistics and then
selects the receptive fields based on the results. Many alternative methods (e.g., Topographic ICA)
would require some form of distributed optimization algorithm to achieve a similar result, which
requires many feed-forward and feed-back passes over the dataset. In contrast, the above method is

typically less expensive than a single feed-forward pass (to compute the feature values x(i)) and is
thus very fast compared to other conceivable solutions.

3.4 Learning Architecture

We have adopted the architecture of [6], which has previously been applied with success to image
recognition problems. In this section we will briefly review this system as it is used in conjunction
with our receptive field learning approach, but it should be noted that our basic method is equally
applicable to many other choices of processing pipeline and unsupervised learning method.

The architecture proposed by [6] works by constructing a feature representation of a small image
patch (say, a 6-by-6 pixel region) and then extracting these features from many overlapping patches
within a larger image (much like a convolutional neural net).

Let X ∈ R
m×108 be a dataset composed of a large number of 3-channel (RGB), 6-by-6 pixel image

patches extracted from random locations in unlabeled training images and let x(i) ∈ R
108 be the

vector of RGB pixel values representing the ith patch. Then the system in [6] applies the following
procedure to learn a new representation of an image patch:

1. Normalize each example x(i) by subtracting out the mean and dividing by the norm. Apply

a ZCA whitening transform to x(i) to yield x̂(i).

2. Apply an unsupervised learning algorithm (e.g., K-means or sparse coding) to obtain a
(normalized) set of linear filters (a “dictionary”), D.

3. Define a mapping from the whitened input vectors x̂(i) to output features given the dic-

tionary D. We use a soft threshold function that computes each feature f
(i)
j as f

(i)
j =

max{0,D(j)⊤x̂(i) − t} for a fixed threshold t.

The computed feature values for each example, f (i), become the new representation for the patch

x(i). We can now apply the learned feature extractor produced by this method to a larger image, say,
a 32-by-32 pixel RGB color image. This large image can be represented generally as a long vector
with 32×32×3 = 3072 elements. To compute its feature representation we simply extract features
from every overlapping patch within the image (using a stride of 1 pixel between patches) and then
concatenate all of the features into a single vector, yielding a (usually large) new representation of
the entire image.

Clearly we can modify this procedure to use choices of receptive fields other than 6-by-6 patches
of images. Concretely, given the 32-by-32 pixel image, we could break it up into arbitrary choices
of overlapping sets Rn where each Rn includes a subset of the RGB values of the whole image.
Then we apply the procedure outlined above to each set of features Rn independently, followed by
concatenating all of the extracted features. In general, if X is now any training set (not necessarily
image patches), we can define XRn

as the training set X reduced to include only the features in one
receptive field, Rn (that is, we simply discard all of the columns of X that do not correspond to
features in Rn). We may then apply the feature learning and extraction methods above to each XRn

separately, just as we would for the hand-chosen patch receptive fields used in previous work.
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3.5 Network Details

The above components, conceptually, allow us to lump together arbitrary types and quantities of data
into our unlabeled training set and then automatically partition them into receptive fields in order to
learn higher-level features. The automated receptive field selection can choose receptive fields that
span multiple feature maps, but the receptive fields will often span only small spatial areas (since
features extracted from locations far apart tend to appear nearly independent). Thus, we will also
exploit spatial knowledge to enable us to use large numbers of maps rather than trying to treat the
entire input as unstructured data. Note that this is mainly to reduce the expense of feature extraction
and to allow us to use spatial pooling (which introduces some invariance between layers of features);
the receptive field selection method itself can be applied to hundreds of thousands of inputs. We now
detail the network structure used for our experiments that incorporates this structure.

First, there is little point in applying the receptive field learning method to the raw pixel layer. Thus,
we use 6-by-6 pixel receptive fields with a stride (step) of 1 pixel between them for the first layer
of features. If the first layer contains K1 maps (i.e., K1 filters), then a 32-by-32 pixel color image
takes on a 27-by-27-by-K1 representation after the first layer of (convolutional) feature extraction.
Second, depending on the unsupervised learning module, it can be difficult to learn features that are
invariant to image transformations like translation. This is handled traditionally by incorporating
“pooling” layers [3, 14]. Here we use average pooling over adjacent, disjoint 3-by-3 spatial blocks.
Thus, applied to the 27-by-27-by-K1 representation from layer 1, this yields a 9-by-9-by-K1 pooled
representation.

After extracting the 9-by-9-by-K1 pooled representation from the first two layers, we apply our re-
ceptive field selection method. We could certainly apply the algorithm to the entire high-dimensional
representation. As explained above, it is useful to retain spatial structure so that we can perform
spatial pooling and convolutional feature extraction. Thus, rather than applying our algorithm to the
entire input, we apply the receptive field learning to 2-by-2 spatial regions within the 9-by-9-by-K1

pooled representation. Thus the receptive field learning algorithm must find receptive fields to cover
2 × 2 × K1 inputs. The next layer of feature learning then operates on each receptive field within
the 2-by-2 spatial regions separately. This is similar to the structure commonly employed by prior
work [4, 12], but here we are able to choose receptive fields that span several feature maps in a
deliberate way while also exploiting knowledge of the spatial structure.

In our experiments we will benchmark our system on image recognition datasets using K1 = 1600
first layer maps and K2 = 3200 second layer maps learned from N = 32 receptive fields. When we
use three layers, we apply an additional 2-by-2 average pooling stage to the layer 2 outputs (with
stride of 1) and then train K3 = 3200 third layer maps (again with N = 32 receptive fields). To
construct a final feature representation for classification, the outputs of the first and second layers of
trained features are average-pooled over quadrants as is done by [6]. Thus, our first layer of features
result in 1600 × 4 = 6400 values in the final feature vector, and our second layer of features results
in 3200×4 = 12800 values. When using a third layer, we use average pooling over the entire image
to yield 3200 additional feature values. The features for all layers are then concatenated into a single
long vector and used to train a linear classifier (L2-SVM).

4 Experimental Results

We have applied our method to several benchmark visual recognition problems: the CIFAR-10 and
STL datasets. In addition to training on the full CIFAR training set, we also provide results of our
method when we use only 400 training examples per class to compare with other single-layer results
in [6].

The CIFAR-10 examples are all 32-by-32 pixel color images. For the STL dataset, we downsample
the (96 pixel) images to 32 pixels. We use the pipeline detailed in Section 3.4, with vector quantiza-
tion (VQ) as the unsupervised learning module to train up to 3 layers. For each set of experiments
we provide test results for 1 to 3 layers of features, where the receptive fields for the 2nd and 3rd lay-
ers of features are learned using the method of Section 3.2 and square-correlation for the similarity
metric.

For comparison, we also provide test results in each case using several alternative receptive field
choices. In particular, we have also tested architectures where we use a single receptive field (N = 1)
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where R1 contains all of the inputs, and random receptive fields (N = 32) where Rn is filled accord-
ing to the same algorithm as in Section 3.2, but where the matrix S is set to random values. The first
method corresponds to the “completely connected”, brute-force case described in the introduction,
while the second is the “randomly connected” case. Note that in these cases we use the same spatial
organization outlined in Section 3.5. For instance, the completely-connected layers are connected to
all the maps within a 2-by-2 spatial window. Finally, we will also provide test results using a larger
1st layer representation (K1 = 4800 maps) to verify that the performance gains we achieve are not
merely the result of passing more projections of the data to the supervised classification stage.

4.1 CIFAR-10

4.1.1 Learned 2nd-layer Receptive Fields and Features

Before we look at classification results, we first inspect the learned features and their receptive fields
from the second layer (i.e., the features that take the pooled first-layer responses as their input).
Figure 1 shows two typical examples of receptive fields chosen by our method when using square-
correlation as the similarity metric. In both of the examples, the receptive field incorporates filters
with similar orientation tuning but varying phase, frequency and, sometimes, varying color. The
position of the filters within each window indicates its location in the 2-by-2 region considered by
the learning algorithm. As we might expect, the filters in each group are visibly similar to those
placed together by topographic methods like TICA that use related criteria.

Figure 1: Two examples of receptive fields chosen from 2-by-2-by-1600 image representations.
Each box shows the low-level filter and its position (ignoring pooling) in the 2-by-2 area considered
by the algorithm. Only the most strongly dependent features from the T = 200 total features are
shown. (Best viewed in color.)

Figure 2: Most inhibitory (left) and excitatory (right) filters for two 2nd-layer features. (Best viewed
in color.)

We also visualize some of the higher-level features constructed by the vector quantization algorithm
when applied to these two receptive fields. The filters obtained from VQ assign weights to each of
the lower level features in the receptive field. Those with a high positive weight are “excitatory”
inputs (tending to lead to a high response when these input features are active) and those with a
large negative weight are “inhibitory” inputs (tending to result in low filter responses). The 5 most
inhibitory and excitatory inputs for two learned features are shown in Figure 2 (one from each
receptive field in Figure 1). For instance, the two most excitatory filters of feature (a) tend to select
for long, narrow vertical bars, inhibiting responses of wide bars.

4.1.2 Classification Results

We have tested our method on the task of image recognition using the CIFAR training and testing
labels. Table 1 details our results using the full CIFAR dataset with various settings. We first note
the comparison of our 2nd layer results with the alternative of a single large 1st layer using an
equivalent number of maps (4800) and see that, indeed, our 2nd layer created with learned receptive
fields performs better (81.2% vs. 80.6%). We also see that the random and single receptive field
choices work poorly, barely matching the smaller single-layer network. This appears to confirm our
belief that grouping together similar features is necessary to allow our unsupervised learning module
(VQ) to identify useful higher-level structure in the data. Finally, with a third layer of features, we
achieve the best result to date on the full CIFAR dataset with 82.0% accuracy.
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Table 1: Results on CIFAR-10 (full)

Architecture Accuracy (%)

1 Layer 78.3%
1 Layer (4800 maps) 80.6%
2 Layers (Single RF) 77.4%
2 Layers (Random RF) 77.6%
2 Layers (Learned RF) 81.2%
3 Layers (Learned RF) 82.0%

VQ (6000 maps) [6] 81.5%
Conv. DBN [13] 78.9%
Deep NN [4] 80.49%

Table 2: Results on CIFAR-10 (400 ex. per class)

Architecture Accuracy (%)

1 Layer 64.6% (±0.8%)
1 Layer (4800 maps) 63.7% (±0.7%)
2 Layers (Single RF) 65.8% (±0.3%)
2 Layers (Random RF) 65.8% (±0.9%)
2 Layers (Learned RF) 69.2% (±0.7%)
3 Layers (Learned RF) 70.7% (±0.7%)
Sparse coding (1 layer) [6] 66.4% (±0.8%)
VQ (1 layer) [6] 64.4% (±1.0%)

It is difficult to assess the strength of feature learning methods on the full CIFAR dataset because
the performance may be attributed to the success of the supervised SVM training and not the unsu-
pervised feature training. For this reason we have also performed classification using 400 labeled
examples per class.3 Our results for this scenario are in Table 2. There we see that our 2-layer
architecture significantly outperforms our 1-layer system as well as the two 1-layer architectures de-
veloped in [6]. As with the full CIFAR dataset, we note that it was not possible to achieve equivalent
performance by merely expanding the first layer or by using either of the alternative receptive field
structures (which, again, make minimal gains over a single layer).

4.2 STL-10 Table 3: Classification Results on STL-10

Architecture Accuracy (%)

1 Layer 54.5% (±0.8%)
1 Layer (4800 maps) 53.8% (±1.6%)
2 Layers (Single RF) 55.0% (±0.8%)
2 Layers (Random RF) 54.4% (±1.2%)
2 Layers (Learned RF) 58.9% (±1.1%)
3 Layers (Learned RF) 60.1% (±1.0%)
Sparse coding (1 layer) [6] 59.0% (±0.8%)
VQ (1 layer) [6] 54.9% (±0.4%)

Finally, we also tested our algorithm on the
STL-10 dataset [5]. Compared to CIFAR, STL
provides many fewer labeled training examples
(allowing 100 labeled instances per class for
each training fold). Instead of relying on la-
beled data, one tries to learn from the provided
unlabeled dataset, which contains images from
a distribution that is similar to the labeled set
but broader. We used the same architecture for
this dataset as for CIFAR, but rather than train our features each time on the labeled training fold
(which is too small), we use 20000 examples taken from the unlabeled dataset. Our results are
reported in Table 3.

Here we see increasing performance with higher levels of features once more, achieving state-of-the-
art performance with our 3-layered model. This is especially notable since the higher level features
have been trained purely from unlabeled data. We note, one more time, that none of the alternative
architectures (which roughly represent common practice for training deep networks) makes signifi-
cant gains over the single layer system.

5 Conclusions

We have proposed a method for selecting local receptive fields in deep networks. Inspired by
the grouping behavior of topographic learning methods, our algorithm selects qualitatively similar
groups of features directly using arbitrary choices of similarity metric, while also being compatible
with any unsupervised learning algorithm we wish to use. For one metric in particular (square cor-
relation) we have employed our algorithm to choose receptive fields within multi-layered networks
that lead to successful image representations for classification while still using only vector quanti-
zation for unsupervised learning—a relatively simple by highly scalable learning module. Among
our results, we have achieved the best published accuracy on CIFAR-10 and STL datasets. These
performances are strengthened by the fact that they did not require the use of any supervised back-
propagation algorithms. We expect that the method proposed here is a useful new tool for managing
extremely large, higher-level feature representations where more traditional spatio-temporal local
receptive fields are unhelpful or impossible to employ successfully.

3Our networks are still trained unsupervised from the entire training set.
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