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Abstract—Due to computational restrictions, energy-system
optimization models (ESOMs) and generation expansion planning
models (GEPMs) frequently represent intra-annual variations in
demand and supply by using the data of a limited number of
representative historical days. The vast majority of the current
approaches to select a representative set of days relies on
either simple heuristics or clustering algorithms and compari-
son of different approaches is restricted to different clustering
algorithms. This paper contributes by: (i) proposing criteria
and metrics for evaluating representativeness, (ii) providing a
novel optimization-based approach to select a representative
set of days and (iii) evaluating and comparing the developed
approach to multiple approaches available from the literature.
The developed optimization-based approach is shown to achieve
more accurate results than the approaches available from the
literature. As a consequence, by applying this approach to select
a representative set of days, the accuracy of ESOMs/GEPMs can
be improved without increasing the computational cost. The main
disadvantage is that the approach is computationally costly and
requires an implementation effort.

Index Terms—Energy-system planning, Generation expansion
planning, Power system modeling, Wind energy integration,
Power system economics

NOMENCLATURE

A. Abbreviations

CE Correlation error

DC Duration curve

ESOM Energy-system optimization model

GEPM Generation expansion planning model

IRES Intermittent renewable energy sources

LP Linear programming

MILP Mixed integer linear programming

NRMSE Normalized root-mean-square error

RDC Ramp duration curve

REE Relative energy error

RLDC Residual load duration curve

B. Sets

B (index b) Set of bins
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C (index c) Set of duration curves

D (index d) Set of potential representative days

M (index m) Set of medium-term periods

P (index p) Set of original time series

T (index t) Set of time steps

C. Parameters

Ac,b,d Share of the time of day d during which the

lowest value of the range corresponding to

bin b of duration curve c is exceeded

Lc,b Share of the time during which the values

of a time series with corresponding duration

curve c exceed the lowest value of the range

corresponding to bin b

Nrepr Number of representative periods to select

Ntotal Total number of repitions required to scale up

the duration of a single representative period

to one year

D. Variables

errorc,b Error in approximating duration curve c at

the bottom of bin b

ud Binary selection variable of day d

wd Weight assigned to day d, i.e., the number of

times the representative period is assumed to

be repeated within a single year

I. INTRODUCTION

BOTTOM-UP energy-system optimization models

(ESOMs), such as TIMES [1] and MESSAGE [2],

and generation expansion planning models (GEPMs), such

as LIMES-EU [3] and ReEDS [4] are used frequently to

underpin energy policy by performing scenario analyses

for the transition of the energy/electricity system. In such

models, investment and operational decisions are optimized

simultaneously given certain exogenous parameters, e.g., the

projected evolution of fossil fuel prices.

Due to the fact that ESOMs and GEPMs typically cover

a time horizon of multiple decades, are technology rich

and span a large geographical area, solving these models

is computationally demanding. To maintain tractability, these

models typically use a low level of temporal and geographical

detail. However, due to the highly variable, unpredictable



IEEE TRANSACTIONS ON POWER SYSTEMS 2

and location-specific characteristics of intermittent renewable

energy sources (IRES), such as solar PV panels and wind

turbines, using a high level of temporal and geographical detail

becomes increasingly important. In this regard, Pfenninger et.

al. [5] identify resolving details in time and space as the main

challenge for this group of models.

Traditionally, large-scale ESOMs represent seasonal and

diurnal variations in demand and supply by disaggregating

a year into a limited number of so-called time slices (e.g.,

[4], [6], [7]). For each variable time series (e.g., the load or

wind speed), the value assigned to a specific time slice thus

corresponds to the average value of that part of the time series

corresponding to the specific time slice. While such a stylized

representation of the temporal dimension achieves a reasonable

accuracy for systems with a low penetration of IRES, several

authors have recently shown that for systems with a high

penetration of IRES, this approach leads to an underestimation

of the variability of IRES, and hence to an overestimation of

the potential uptake of IRES, an overestimation of the use of

baseload technologies and an underestimation of the value of

flexible technologies [8]–[10].

Multiple ways to improve the modeling of the temporal

dimension have recently been developed. The current literature

mainly focuses on increasing the temporal resolution, i.e.,

increasing the number of diurnal time slices (e.g., [8], [9]).

Nevertheless, it has been shown that increasing the temporal

resolution is not sufficient to grasp the inherent variability of

IRES [8], [10]. Different approaches to model the temporal

dimension to account for the variability of IRES have been

analyzed in [10], where it is shown that using the data of a

well-chosen set of historical days to represent an entire year

can be a suitable approach. However, a justified selection of a

representative set of historical periods is not straightforward.

Nevertheless, several planning models make use of some sort

of representative periods to reduce the computational cost.

Well-known examples are a.o. the US-REGEN model devel-

oped by the Electric Power Research Institute (EPRI) [11],

the POTEnCIA model recently developed by The Institute

for Prospective Technological Studies (IPTS) of the European

Commission’s Joint Research Centre [12] and the LIMES-EU

model developed by the Potsdam Institute of Climate Impact

Research [3]. Other examples can be found in [13], [14].

The literature contains various approaches to select a rep-

resentative set of historical periods. Nevertheless, frequently a

set of representative days (also referred to as typical days or

type-days) is used in planning models without documenting

how these days are selected, e.g., [15], [16]. In other work,

the set of representative days is obtained by using simple

heuristics, e.g., [17]–[20], sometimes supplemented by ran-

domly selecting some additional days, e.g., [14], [21]. As

pointed out by de Sisternes [22], a consistent criterion to select

these representative periods or to assess the validity of the

approximation is lacking. In general, the idea behind most

of these simple heuristic approaches is to select a number of

periods with different load and/or meteorological conditions in

order to capture a variety of different events. As an example,

to select three representative days, Belderbos et al. [18] select

the day that contains the minimum demand level of the year,

the day that contains the maximum demand level and the day

that contains the largest demand spread in 24 hours.

More advanced approaches to select a representative set of

historical periods can be divided into two groups. The first

and by far the largest group employs clustering algorithms

to cluster periods with similar load, wind speed and/or solar

irradiance patterns into clusters. For every resulting cluster,

either the cluster’s centroid or a single historical period from

that cluster is taken as the representative period for that cluster.

The weight assigned to each representative period, i.e., the

number of periods that are represented by this selected period,

corresponds to the number of periods that are grouped into its

parent cluster. Clustering approaches thus implicitly determine

the weight assigned to every selected representative period,

which allows to appropriately account for both common and

rare events. This is a major advantage compared to the heuris-

tic approaches discussed earlier. To perform the clustering,

different algorithms are employed which can be classified

into hierarchical and partitional clustering algorithms. A more

detailed overview of clustering algorithms is presented in [23].

The goal of all these algorithms is to minimize the sum of the

distances between every object (i.e., a period) and the cluster’s

centroid or median. For the GEPM LIMES-EU, Nahmmacher

et al. [24] use Ward’s hierarchical clustering algorithm. A

similar clustering technique is used in the US-REGEN model

to select additional representative periods, after having first

used heuristics to select a number of periods containing

extreme events [11]. Partitional clustering algorithms, such

as k-medoids [23] and k-means [25]–[27] are also frequently

used. The performance of the k-means, fuzzy C-means and

hierarchical Wards clustering algorithm are evaluated in [23],

but the differences between these algorithms were found to be

minor for the presented case. Besides clustering algorithms,

scenario reduction techniques following a similar philoso-

phy as the clustering approaches, such as the fast-backward

method, are also employed to select representative periods,

e.g., [28].

A second group of approaches aims to optimize the selection

of representative periods with respect to a predetermined, user-

defined criterion (external validity indices). In this approach,

the selection procedure is directly based on evaluating the full

set of representative periods using external validity indices,

whereas in the heuristic and clustering approaches, the se-

lection is based on the characteristics of individual histori-

cal periods or the ”similarity” between individual historical

periods; this is a clear fundamental distinction. To the best

of our knowledge, the only optimization-based approach in

the field of energy research is presented by de Sisternes

and Webster [22]. In their approach, the set of weeks which

best approximates the residual load duration curve (RLDC)

is selected by enumerating all possible combinations of a

predetermined number of representative weeks. While this

approach is shown to achieve good results, it has a number of

limitations. First, the number of combinations for selecting

k representative periods out of n candidate periods equals
n!

(k!(n−k)! , and thus strongly increases with both the number

of candidate periods and the number of periods to select. As

a consequence, enumeration is only computationally feasible
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for selecting up to 5 weeks out of 52. Therefore, using this

approach to optimally select a number of representative days

instead of weeks is computationally infeasible. Second, the

approach does not determine the optimal weights for each

selected period. Finally, the approximation of the RLDC is

used as a decision criterion, but the RLDC is dependent on

the investments in IRES. Therefore, the approach cannot be

used for models with endogenous investments in IRES.

Although multiple approaches to selecting representative

periods are available from the literature, there is no consistent

comparison of the quality of these different approaches. In

this regard, the current literature is restricted to comparing

different clustering algorithms. More complete information

on the quality of different approaches is vital for ESOMs

and GEPMs as a better selection of a representative set of

historical periods allows to improve the accuracy of these

models without increasing computational complexity.

Moreover, despite the multitude of different approaches to

select representative periods, there is not a single optimization-

based approach in the field of energy research that can be used

to select a sufficiently high number of representative periods.

The aim of this paper is to identify a sound approach

for selecting representative historical periods. To this end, (i)

criteria and metrics for representativeness are proposed, (ii) a

novel optimization-based approach is presented and (iii) this

approach is compared to different approaches available in the

literature in terms of both accuracy and ease of use.1

The remainder of this paper is structured as follows. Sec-

tion II discusses the different temporal aspects which are

important to capture in ESOMs and GEPMs, and derives

corresponding metrics to evaluate the representativeness of

the selected periods. Section III provides an overview of the

different approaches considered in this work and presents

our novel optimization-based approach. Next, the data and

assumptions are presented in Section IV, while the results of

the different approaches are discussed in Section V. In Section

VI, these different approaches are applied to a test case to

illustrate the value of a good selection of representative days.

Finally, the main conclusions are presented in Section VII.

II. TEMPORAL ASPECTS

Fig. 1 illustrates the concept of using a representative set of

historical periods (e.g., days or weeks) in ESOMs/GEPMs. As

is illustrated in this figure, the tool to select a representative

set of periods takes different time series as input, for instance

quarter-hourly load and wind generation data of multiple

years. The output is a representative set of periods and the

weights given to each of these representative periods, i.e.,

the number of times the representative period is assumed

to be repeated within a single year. In the ESOM/GEPM,

balance of generation (gen) and demand (DEM ) is imposed

in every time step t (e.g., quarter-hour) of every selected

period d. Power generation geng by every technology/plant

g is restricted by the installed capacity (capg). The fixed

1Ease of use comprises the required effort for implementing the approach,
the computational cost of executing the approach as well as the flexibility to
incorporate user-specific constraints.

Input time series

Wind PVLoad

Selection of representative periods

Energy system optimization model (ESOM) /

Generation expansion planning model (GEPM)

min
cap,gen

fixed cost+ variable cost,

s.t.:

fixed cost = FCg · capg

variable cost =
∑

d∈D′

(

wd ·
∑

g,t

(V Cg · geng,d,t ·∆t)
)

geng,d,t ≤ capg ∀g, d, t
∑

g

geng,d,t = DEMd,t ∀d, t

. . .

Set of representative periods

d ∈ D′ with weights wd

Fig. 1. Schematic of the use of a set of representative historical periods in
ESOMs/GEPMs.

costs relate to the construction and fixed operations and

maintenance of this capacity. Variable costs, comprising fuel

costs, variable operations and maintenance costs and taxes

are related to the generation levels of every technology/plant

in the selected periods. The weights of each representative

period are used to scale the variable costs incurred in the

selected periods to an equivalent annual cost. Similarly, fuel

consumption and emissions during the selected periods can be

scaled to equivalent annual amounts. Thus, the representative

set of periods is used to endogenously determine a good

approximation of the amount of electricity that is generated by

different technologies/units and the associated costs, emissions

and fuel use without requiring to optimize the operations over

an entire year.

To effectively quantify the accuracy of approximating dif-

ferent time series (e.g., load, wind generation) by a set of

representative periods, appropriate metrics must be defined.

To this end, the different temporal aspects that impact the

results of ESOMs/GEPMs are identified. From the literature

[11], [24], [29], we synthesize the following list of temporal

aspects:

1) the annual load and average IRES capacity factors;

2) the distribution of values for each time series

3) the correlation between the different time series;

4) the variability of each time series.

First, the selected set of periods should preserve the annual

electricity demand and the average IRES capacity factors for

each model region. To evaluate the quality of the approxi-

mation in this respect, the average value (over all considered

time series p ∈ P) of the relative errors in approximating
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the average value of each time series is used as a metric, see

Eq. (1). Since for the case presented here, the relative error in

the average value of a time series is identical to the relative

error of the energy content of a time series, we refer to this

metric as the relative energy error (REEav) in the remainder

of this text. Note that we use |.| to refer to the absolute value,

while ‖.‖ is used to refer to the cardinality of a set.

Second, a more stringent requirement is that the distribution

of load and IRES generation levels, and their respective

frequency of occurrence correspond to the one observed in the

entire time series. Regarding the time series for IRES genera-

tion, it is crucial to account for both periods of very high IRES

generation, during which partial curtailment might be required,

and periods of near-zero IRES generation, which determine the

need for back-up capacity. Moreover, capturing the distribution

of IRES generation is required to account for the reduction in

operating hours of different types of dispatchable power plants.

Thus, by capturing the distribution of each time series, major

challenges related to the integration of IRES are accounted

for. Therefore, this criterion, which has also been used in

[24], [26], is considered to be the most important criterion

for evaluating a set of representative periods. The information

regarding the distribution of values and their respective fre-

quency of occurrence can be represented by the duration curve

(DC) of the time series.2 Therefore, the average normalized

root-mean-square error (NRMSE) of the approximation of the

DC of each time series is used as a second metric, to which

we refer as NRMSEDC
av (Eq. (2)). The approximation of the

duration curve, D̃Cp, can be constructed by sorting the data of

the selected periods from high to low while correcting for the

fraction of a year that each selected period represents. Below,

the index t ∈ T is used to refer to a specific time step of the

original time series (e.g., quarter-hourly or hourly interval).

REEav =

∑
p∈P

(∣∣∣∣∣

∑
t∈T

DCp,t−
∑
t∈T

D̃Cp,t

∑
t∈T

DCp,t

∣∣∣∣∣

)

‖P‖
(1)

NRMSEav =

∑
p∈P

(√
1

‖T ‖
·
∑
t∈T

(DCp,t−D̃Cp,t)2

max(DCp)−min(DCp)

)

‖P‖
(2)

Third, the correlation between different time series can

impact results. Within a single region, this correlation (e.g.,

between the load and solar PV generation) influences the

RLDC, and therefore the expected number of operating hours

of different thermal generation technologies. In addition, it

impacts the need for curtailment of IRES, as well as their

market value [30]. Moreover, the correlation between different

regions is important to account for geographical smoothing

effects of the load, solar PV generation, and particularly wind

generation, and the corresponding value of transmission grids

[29]. As a metric to quantify whether the actual correlation

is captured by the selected representative periods, the average

absolute difference between the correlation based on the data

2The DC is found by sorting the entire time series from high to low values.

of the entire time series, and the correlation based on the data

in the selected representative periods is used. This is referred

to as the average correlation error (CEav) in the remainder

of this text (Eq. (3)). The Pearson correlation coefficient is

used to quantify the correlation corrp1,p2
between two time

series p1, p2 ∈ P (Eq. (4)). Here, Vp1,t represents the value of

time series p1 in time step t. Moreover, V p1
and V p2

indicate

the mean value of time series p1 and p2 respectively. As the

Pearson correlation coefficient has a value of 1 in case of total

positive correlation, a value of 0 in case of no correlation and

a value of -1 in case of total negative correlation, the values

for CEav lie in the range [0,2].

CEav =
2

‖P‖ · (‖P‖ − 1)
·
(

∑

pi∈P

∑

pj∈P,j>i

∣∣corrpi,pj
− c̃orrpi,pj

∣∣
)

(3)

corrp1,p2
=

∑
t∈T

(
(Vp1,t − V p1

) · (Vp2,t − V p2
)
)

√∑
t∈T

(Vp1,t − V p1
)2 ·

∑
t∈T

(Vp2,t − V p2
)2
. (4)

Fourth, the dynamics of fluctuating load and IRES genera-

tion time series can impact results. Short-term fluctuations, on

time scales of minutes up to hours, are important to account

for the limited flexibility of dispatchable power plants (e.g.,

maximum ramp rates, minimum up and down times), as well

as the potential of storage technologies. To quantify to what

extent the distribution of short-term fluctuations is captured,

we introduce the concept of a ramp duration curve (RDC).

The RDC for each time series is found by differentiating and

subsequently sorting the original time series. Accordingly, the

metric used is the average NRMSE of the approximation of

the RDC (NRMSERDC
av ):

NRMSERDC
av =

∑
p∈P

(√
1

‖T ‖
·
∑
t∈T

(RDCp,t−R̃DCp,t)2

max(RDCp)−min(RDCp)

)

‖P‖
(5)

Medium-term fluctuations, comprising weekly and seasonal

fluctuations, are important to account for the limited energy

storage capacities of different storage technologies. For exam-

ple, longer periods of low wind speeds and solar irradiance,

during which stored energy might be exhausted, can determine

the need for firm back-up capacity. To what extent medium-

term fluctuations are captured depends mainly on the input

parameters used for selecting representative periods, rather

than the used approach in itself. These input parameters are

closely related to the temporal structure of the ESOM/GEPM.

Examples of such input parameters include the time interval

to which the approach for selecting representative periods

is applied (e.g., representative periods can be selected for

each month, season or year) and the choice of the duration

of each individual selected period (e.g., representative hours,

days or weeks). As this paper focuses on approaches to

select representative periods rather than the temporal structure
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of ESOMs/GEPMs, no metric is introduced for capturing

medium-term dynamics.

III. METHODOLOGY

A. General overview

Different approaches to select representative days are evalu-

ated by comparing all four metrics presented in Section II. The

results of this evaluation will be shown for an increasing num-

ber of representative days (Nrepr). The following approaches

to select representative days are evaluated:

1) Heuristics (H);

2) Ward’s hierarchical clustering algorithm (CA);

3) Random selection (RS);

4) MILP optimization model (OPT);

5) Hybrid approach: random selection followed by optimal

weighting (HYB).

The simple heuristics (H) employed in this work are presented

in Tab. I. The total number of days selected is presented in

the utmost left column. These days are obtained by selecting

for every period (indicated in the second column), the days

corresponding to the criteria presented in the third to fifth

column.

The clustering algorithm (CA) used is Ward’s hierarchical

clustering algorithm. Some information was provided in Sec-

tion I, for a full description of the algorithm, we refer to [24].

The third approach is to repeatedly select a random subset

of days (RS), and retain from all these subsets the subset

which obtained the lowest errors. This approach is closely

related to the enumerative approach used to select a set of

representative weeks proposed in [22]. However, calculating

the error metrics for all possible subsets of days from a single

year is computationally infeasible if the cardinality of the

subset exceeds 3. Therefore, the number of randomly selected

subsets of days is restricted to 50 000.

The fourth approach (OPT) is a newly developed approach

that employs a MILP optimization model to identify which

days are selected (binary variables) as well as the weight

assigned to each day (linear variables). The model formulation

is presented in Section III-B.

Finally, another new and novel, hybrid, approach (HYB)

that combines features of the RS and the OPT approach is

developed. In this approach, a number of random subsets of

days are taken and for each subset, the weight given to each

day is optimized. The set of weighted days that achieves the

lowest errors is retained. Again, 50 000 randomly selected

subsets are taken.

B. Optimization model formulation

1) Basic model: As discussed in Section II, primarily, the

set of representative days should accurately represent the DC

of each time series. An optimization model should therefore be

capable of selecting a set of representative days (and associated

weights), construct the approximation of the DC based on

the selected days and corresponding weights, and calculate

a metric for the approximation error that can be minimized.

Note that the number of steps of the approximated DC depend

TABLE I
OVERVIEW OF THE SIMPLE HEURISTIC USED TO SELECT A NUMBER OF

REPRESENTATIVE DAYS.

Nrepr Period Load Wind PV

2 Year Highest peak,
lowest valley

- -

4 Year Highest peak,
lowest valley

Highest and
lowest avg.
generation

-

8 Summer,
Winter

Highest peak,
lowest valley

Highest and
lowest avg.
generation

-

12 Summer,
Winter,

Intermediate

Highest peak,
lowest valley

Highest and
lowest avg.
generation

-

24 Spring,
Summer,

Fall, Winter

Highest peak,
lowest valley

Highest and
lowest avg.
generation

Highest and
lowest avg.
generation
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Fig. 2. Visualization of the error term errorc,b. The duration curve is divided
into 10 bins. The error at the bottom of the bin is displayed for bin b = 8.

on the number of days selected and the resolution of the data

of each day. For example, the approximated DC displayed in

Fig. 2 is constructed by selecting 2 representative days with a

2-hourly resolution, resulting in a total of 24 steps. However,

obtaining the approximation of the DC requires sorting the

values of the selected days which is difficult to integrate in a

single optimization framework.

Nevertheless, it is possible to get a clear view on what the

approximated DC looks like which does not require sorting the

data of the selected days. To this end, each DC c ∈ C is divided

into a number of bins b ∈ B, as visualized by the dashed lines

in Fig. 2. Each bin thus corresponds to values within a specific

range (the highest values belong to the first bin, the lowest

values correspond to the last bin). As the original time series

is known, the share of time during which this time series has

a value greater than or equal to the lowest value in the range

corresponding to bin b is known (marked by a in Fig. 2). For

a DC c ∈ C, this value is represented by the parameter Lc,b.

Similarly, for every potential representative day d ∈ D, the

share of time in day d during which the time series exceeds the

lowest value of the range corresponding to a bin b is known.

This information is represented by the parameter Ac,b,d. A

graphical representation of this parameter for Belgian load data

of 2014 and a number of bins equal to 10 is shown in Fig. 3.

This figure shows that, as can be expected, in every day, the
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load levels exceed the lowest value of the range corresponding

to the last bin in 100% of the time. In contrast, only during a

small fraction of the time of some winter days, electricity load

values exceed the lower value corresponding to the first bin.

This figure also clearly illustrates seasonal and weekly trends.

1 100 200 300 365
Days

10
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5

4

3

2

1

B
in
s

0

20

40

60

80

100

Fig. 3. Graphical representation of the parameter A for the Belgian load
during all days of 2014 and a number of bins equal to 10. The color scales
indicate the share of time of each day during which the lowest value of the
range corresponding to the different bins is exceeded.

Assuming that a subset of representative days D′ ⊂ D
is selected and a weight wd is assigned to each selected

representative day d ∈ D′, the share of the time during which

the approximated DC has a value greater than or equal to the

lowest value in the range corresponding to bin b is also known,

i.e.,
∑

d∈D′
wd

Ntotal
· Ac,b,d (indicated by a in Fig. 2). Here,

Ntotal reflects the total number of times a single representative

period has to be repeated to scale up to an entire year, e.g.,

Ntotal equals 365 in case representative days are selected and

52 in case representative weeks are selected). Now, if the

weight wd assigned to a day d ∈ D can only be non-zero

if the day is selected (i.e.,d ∈ D′), the expression can be

replaced by
∑

d∈D

wd

Ntotal
·Ac,b,d.

The difference between the original and the approximated

DC in the share of the time that the lowest value in the

range corresponding to bin b is exceeded is taken as an error

metric (errorc,b). This error term is defined in Eq. (7) and

visualized in Fig. 2. Hence, by classifying the data points (e.g.,

quarter-hourly or hourly values) of all potential representative

days into a number of bins, the need to sort the data of the

selected days within the optimization in order to obtain a

measure for the quality of the approximation is eliminated.

The optimization model minimizes the sum of the errors terms,

for all considered DCs c ∈ C and bins b ∈ B by selecting a

single set of representative days and corresponding weights,

as shown in Eq. (6):

min
ud,wd

(
∑

c∈C

∑

b∈B

errorc,b), (6)

subject to:

errorc,b = |Lc,b −
∑

d∈D

wd

Ntotal

·Ac,b,d|, ∀c ∈ C, b ∈ B, (7)

∑

d∈D

ud = Nrepr, (8)

wd ≤ ud ·Ntotal, ∀d ∈ D, (9)∑

d∈D

wd = Ntotal, (10)

ud ∈ {0, 1}, ∀d ∈ D; wd ∈ R
+
0 , ∀d ∈ D. (11)

Equation (8) imposes that the number of selected periods

corresponds to the predefined number of representative periods

Nrepr. Equation (9) restricts non-zero weights to selected

periods, by using a binary variable ud which indicates whether

day d is selected or not. Moreover, the maximum weight that

can be assigned to a single selected period is restricted to

the number of repetitions required to scale the duration of a

single representative period to one year (Ntotal). The weight

from all selected periods can therefore be chosen freely, which

is important to efficiently account for both common and rare

events. Finally, Eq. (10) guarantees that the total duration of

the weighted set of representative periods corresponds to one

year.

Note that in the HYB approach, the variables ud are fixed

in correspondence to the randomly selected subset, such that

only the weights wd are optimized.

2) Extended model: To explicitly account for short-term

dynamic aspects in the optimization, the RDC of each time

series can be constructed and appended to the set of duration

curves c ∈ C that need to be approximated. Thus, the

model formulation (Eq. (6)-(11)) remains unchanged. The only

difference with the basic model is that the set C not only

comprises the DC of each time series, but also the RDC of

each time series.

To account for medium-term fluctuations (e.g., seasonal

fluctuations), the original time series can be split up into

a number of medium-term periods m ∈ M, where each

medium-term period has its own DC. A first option is to select

a number Nrepr,m of representative periods d ∈ Dm for each

medium-term period individually. Correspondingly, the total

weights of the days representative for this medium-term period

equals Ntotal,m. Thus, the optimization (Eq. (6)-(11)) would

have to be repeated |M| times. An alternative approach would

be to add additional constraints to the optimization problem to

restrict the approximation error in each medium-term period

m ∈ M.

Up to now, the model does not account for the correlation

between different time series. It is important to note from

the definition of the sample correlation corrp1,p2
(Eq. (4))

that both factors in the denominator of the definition of the

sample correlation are already approximated implicitly by

approximating the DC of time series p1 and p2 (as done by

the basic model). That is, a set of representative periods which

result in a good approximation of the duration curve of a

time series p1, will also provide a good approximation of∑
t∈T

(Vp1,t − V p1,t). However, this does not hold for the

numerator of Eq. (4). Therefore, an additional time series
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(Vp1,t−V p1,t)·(Vp2,t−V p2,t) is created. Positive values of this

time series correspond to times with a positive correlation, i.e.,

both Vp1,t and Vp2,t are either above or below their average

value, whereas negative values correspond to times with a

negative correlation. Again, a duration curve of this time series

can be constructed, and added to the set of duration curves that

need to be approximated. The model will then select a set of

representative days to not only account for the distribution of

each DC, but also to approximate the duration curve of this

“correlation duration curve”.

Fig. 4 presents a schematic of the different steps involved

in the presented approach.

Unless specifically stated, the results of the OPT and HYB

approach, to be presented in Section V, correspond to the basic

model, i.e., without extending the model with additional RDCs

or time series to improve approximating the correlation.

IV. DATA AND ASSUMPTIONS

A. Data

The original time series used include a time series for the

electricity demand, a time series for onshore wind generation

and a time series for solar PV generation. All data corresponds

to the Belgian electricity system in the year 2014, and is

provided by the Belgian transmission system operator on a

15-minute resolution [31]. As one cannot simply assume that

the year 2014 is a representative year for the different time

series, it is advised to use multiple years of data to construct

the different DCs. However, as the goal in this work is to

analyze to what extent the different approaches are capable of

selecting representative periods to approximate a given original

time series, it is reasoned that the size of the original time

series will not significantly influence the presented results.

B. Assumptions

The discussion in this work is restricted to selecting days

as representative periods as days are more frequently applied

than e.g., hours or weeks. For the OPT and HYB approach, a

number of bins ‖B‖ equal to 40 is used for every DC. Every

bin is constructed such that the range of values for each bin

is identical. All OPT runs are performed with an optimality

gap of 1%, and a maximum solver time of 6 hours. All

runs are performed on a Intel R©CoreTMQuad CPU Q9550 @

2.83GHz×4, with a memory of 13.5GiB, and a 64-bit system.

V. RESULTS

A. Approximation accuracy

The results for all five approaches discussed in Section

III-A are presented in Fig. 5-8 and Fig. 10 for the different

error metrics. For the approaches based on randomly selecting

subsets of representative days (RS and HYB), the distribution

of the results of the 50 000 subsets is presented. The box

visualizes the median value as well as the 25th and 75th

percentiles, whereas the whiskers correspond to the highest

and lowest values obtained.

As discussed in Section II, the set of representative days

should primarily provide a good approximation of the DC

of each time series. The NRMSEDC
av obtained using the

different approaches is presented in Fig. 5. As can be seen,

the OPT approach obtains the lowest error for all number

of days considered. The approximation of the different DCs

using the OPT approach to select a varying number of

representative days is shown in Fig. 6. The errors obtained

using the hybrid approach are only slightly higher (except for

selecting 2 representative days, where an identical solution is

found). More surprisingly, the errors obtained by approach

RS are systematically lower than those obtained using the

clustering algorithm even though all days in the RS approach

are assigned equal weights. Finally, the errors obtained using

the heuristics are high. For all but for two days, more than 75%

of the randomly selected sets of days obtains lower errors than

those obtained using the heuristics. This is due to the fact that

the heuristics aim to account for different types of events, but

do not account for their frequency of occurrence.

These results imply that by using a better approach to select

a set of representative days, the accuracy of planning models

can be improved significantly without increasing the number

of time segments (and therefore the computational cost). Seen

from a different perspective, this also means that the number of

days can be reduced while maintaining a similar accuracy. This

can be seen very clearly in Fig. 5, where the OPT and HYB

approach using 2 days obtain a similar accuracy as the CA

when selecting 8 days. Similarly, the approximation obtained

by selecting 4 days using the OPT approach has a similar

accuracy than the approximation obtained using the CA to

select 24 days.

Fig. 7 displays the REEav for all approaches. For all but

the heuristic approach, the average relative energy error is well

below 5%. The fact that the heuristics do not properly account

for the frequency of occurrence of different events is reflected

in the high values for the REEav . As discussed in Section II,

approximating the DC of a time series is a more stringent

requirement than approximating its average value or energy

content. Therefore, sets of days with a low NRMSEDC
av also

have a low REEav . This can be seen in the inner box plots

for the RS and HYB approach, which show the distribution

of the REEav for the 1% subsets of days that obtained the

lowest NRMSEDC
av . Fig. 7 displays furthermore that for the

RS, OPT and HYB approach, the REEav is very small.

Therefore, the differences between these approaches are of less

importance, e.g., for 12 days, the REEav equals 0.21%, 0.12%

and 0.01% in the RS, OPT and HYB approach respectively.

The error in approximating the correlation between the

different time series is shown in Fig. 8. The CEav tends to

decline with an increasing number of days. Again, the range

of the CEav is high for randomly selected days. However,

differently from the REEav , a low NRMSEDC
av does not

guarantee a low CEav . This can be seen in the inner box plots

which show the distribution of the CEav for the 1% subsets of

days that obtained the lowest NRMSEDC
av . As a consequence,

if the correlation is not explicitly accounted for in the OPT

and HYB approaches, the CEav for these approaches can be

relatively high. As discussed in Section III-B2, the correlation

can be accounted for in the OPT approach by approximating

an additional DC for every pair of time series for which the
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Fig. 4. Schematic of the different steps of the OPT approach.

5

10

15

20

25

30

•OPT ×H �CARS HYB

×

×

×
×

×

�

� �

� �

•

•
• • •

N
R
M

S
E

D
C

a
v

[%
]

2 4 8 12 24
Number of days

Fig. 5. Error in approximating the DCs.

correlation is important to capture. However, this will lead to

a trade-off between the NRMSEDC
av and the CEav , as is

shown in Fig. 9. This figure illustrates that the CEav obtained

with the OPT approach can be greatly reduced with only

a minor increase in the NRMSEDC
av . In contrast, the CA

groups together days with similar conditions for all time series

and therefore already implicitly accounts to some extent for

the correlation between the considered time series. This is

reflected in the results shown in Fig. 8 where the CEav for

the clustering approach is consistently relatively low.

The errors for approximating the RDCs for all approaches

are presented in Fig. 10. A first thing that can be noted is that

these errors are significantly lower than for the approximation

of the DCs. Moreover, only a moderate decrease of this error

with the number of representative days can be observed.

Similarly to the CEav , a good approximation of the DCs (low

NRMSEDC
av ) does not imply a good approximation of the

RDCs (low NRMSERDC
av ). Nevertheless, there is some corre-

spondence between the NRMSEDC
av and the NRMSERDC

av .

This is because the probability distribution of the ramp of

a time series is dependent on the actual value of this time

series (e.g., at periods of very high load, it is unlikely that

the load will further increase). As a result, sets of days which

approximate the DC of each time series with a high accuracy,

have a higher probability of capturing the distribution of

ramps. To improve capturing the distribution of ramps in the

OPT approach, the RDCs can be added to the optimization,

as discussed in Section III-B2. This would again lead to

a trade-off between approximating the DCs and the RDCs.
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Fig. 6. Approximation of the DCs using the OPT approach to select a varying
number of representative days

Following the same reasoning as for the CEav , the clustering

approach already implicitly accounts for some dynamics of

the considered time series.

Reducing the errors in capturing different temporal aspects

for a given number representative periods is particularly im-

portant for applications with a high computational cost. For

these applications, the OPT and HYB approaches are shown to

achieve the best results, closely followed by the RS approach.

However, for applications where the computational cost is

less stringent, other aspects, such as the effort required for

implementing, the computational cost of executing and the

flexibility of the approach can be decisive for the approach to

use.
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B. Ease of use

In terms of the implementation effort, the H and RS

approaches require the lowest effort, while the CA, OPT and

HYB approaches all require a more significant implementation

effort. In addition, the OPT approach requires the availability

of solvers for MILP problems. In an ongoing project funded by

the Energy Technology Systems Analysis Program3 (ETSAP),

the OPT approach is fine-tuned for direct application in com-

bination with the TIMES model generator. In this regard, the

implementation effort of the OPT approach will be eliminated.

The computational resources required to solve the MILP

3ETSAP is an implementing agreement of the International Energy Agency.
More information can be found on following website: http://www.iea-etsap.
org/web/index.asp.
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problem used in OPT are high. As mentioned in Section IV-B,

a relative optimality gap of 1% is applied but the solver

is stopped if no solution satisfying this criterion is found

within 6 hours. For all instances except for the case where

only 2 representative days were selected, the solver timed

out after 6 hours. In contrast, the clustering approach using

Ward’s hierarchical clustering algorithm can be solved within

a few minutes. Finally, both the RS and HYB approach face

a high computational cost. Despite the fact that the HYB

approach requires solving an additional LP model for every

randomly selected subset of days, the computational cost of

the RS and HYB approach is similar (as long as the same

amount of randomly selected subsets of days are used in both

approaches). More specifically, the computation time is on

average 1.27 seconds and 1.75 seconds for a single randomly

selected set of days in the RS and HYB approach respectively4.

The difference in time corresponds to the time needed to

optimize the weights. Hence, the time required to calculate the

error metrics for every subset of days dominates the calculation

time. Calculating the error metrics for the 50 000 subsets of

days is computationally demanding.

A trade-off between the accuracy of the solution and the

number of evaluated subsets of days can be made. This

trade-off is visualized in Fig. 11, which again shows the

approximation error of the DCs for the different approaches.

Suppose only 100 randomly selected subsets of days are used

in the RS and HYB approach, the resulting NRMSEDC
av

(i.e., the lowest NRMSEDC
av of these 100 subsets) depends

on which 100 subsets are taken. By repeatedly taking 100

random subsets, the distribution of the error obtained for the

best subset can be constructed. This cumulative distribution is

shown in Fig. 11 for both the RS and HYB approach and both

for the case where 100 and 10 000 subsets would be used. A

first thing to observe is that, even if the number of subsets

is reduced to 10 000 in the RS approach, the accuracy of this

approach is higher than for the CA approach with a very high

probability. For the HYB approach, this remains valid even

4For the results of the paper, the implementation of the RS and HYB
approach has been done in python 2.7.11. More advanced programming
languages, specified to do bulk computations on large datasets including
sorting algorithms, can lower the computation time.

http://www.iea-etsap.org/web/index.asp
http://www.iea-etsap.org/web/index.asp
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Fig. 11. Error in approximating the DCs. The five panels refer from top to
bottom to the results for 2,4,8,12 and 24 representative days.

if the number of subsets would be reduced to 100. Another

interesting observation is that, for a low number of days, it is

mainly the number of subsets that determines the accuracy of

the result. However, as the number of days increases, the value

of using a high number of subsets decreases (i.e., the difference

between the full and dotted lines decreases). In contrast, the

value of optimizing the weights of the randomly selected

days (i.e., the difference between the blue and red curves)

is relatively low if a low number of days is selected, but

increases with the number of representative days. To conclude,

the number of subsets of days, and thus the execution cost,

can be significantly reduced without a big loss in accuracy if

a high number of representative days needs to be selected, and

more so in the HYB approach than in the RS approach.

The value of having an approach to more accurately select

a set of representative periods depends on the computational

restrictions of the ESOM/GEPM. In case there is a hard limit

on the computational cost, and hence, the number of represen-

tative periods that can be used, the OPT approach allows to

improve the accuracy of the ESOM/GEPM. In other cases, the

presented approach allows to reduce the computational cost of

the ESOM/GEPM by using a smaller number of better selected

representative days while achieving the same quality of model

outcome in terms of accuracy and representation of power

system characteristics. In these cases, it is up to the user to

make the trade-off between spending additional computational

resources on the approach to select representative periods, or

on the ESOM/GEPM. However, it is important to realize that

ESOMs/GEPMs are typically used for scenario analysis (and

additional sensitivity analyses). As a result, the ESOM/GEPM

needs to be solved numerous times. In contrast, the approach

to select a representative set of historical periods has to be

executed only once.

Finally, the flexibility to use the approach for different

applications is important. A frequently encountered case where

the flexibility of the approach is valuable is if the user

wants to force certain days into the solution (e.g., the day

containing the yearly peak in electricity demand). An efficient

implementation of this additional constraint of the problem is

straightforward in the RS, OPT and HYB approach, but less

so in the CA approach.

To summarize, a qualitative overview of the discussed

strengths and weaknesses of the different approaches is pre-

sented in Tab. II.

TABLE II
STRENGTHS AND WEAKNESSES OF THE CONSIDERED APPROACHES

Criterion H CA RS OPT HYB

Accuracy - - +- + ++ ++
Implementation cost ++ - ++ - - - -

Execution cost ++ + - - - -
Flexibility - - + ++ ++

VI. TEST CASE

This section presents a test case where the sets of represen-

tative days obtained by the different approaches are used in

a GEPM. The resulting capacity mix, costs and computation

time will be compared to a reference run using the entire time

series.

The GEPM used here is the LUSYM (Leuven University

SYstem Modeling) investment model. This model aims to min-

imize the total discounted system cost. This total system cost

comprises investment costs, fixed operations and maintenance

costs and the costs related to the operation of the power system

(consisting of fuel costs, costs related to carbon emissions

and start-up costs). For a comprehensive description of the

model, we refer to [13]. The GEPM is applied to determine

the cost-optimal capacity and generation mix to achieve a 35%

share of renewable electricity generation in a power system

loosely inspired by the Belgian one. In the presented case, it

is assumed that no existing generation capacity is present, i.e.,

the model is run in a ”greenfield” mode. It must be stressed

that the case presented here is highly simplified and serves

only as an illustration of the use and possible implications

of using different approaches to select a set of representative

days.

The capacity mix resulting from the run using the entire

time series and the runs using 2 representative days selected by

the different approaches are presented in Fig. 12. Deviations

with respect to the reference case can be observed. For the

OPT, RS and CA approach, these differences are relatively

minor. In contrast, if the days are selected using the simple

heuristics, these differences are very large. Relatively small

differences can be observed in the conventional generation

mix. It must be noted that, in order to ensure an adequate

system, the GEPM has a constraint for the minimum level

of dispatchable capacity. The differences in the amount and

type of IRES required to meet the renewable energy target
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approaches.

are more pronounced. This is related to how well the sets of

days approximate the wind and solar generation time series.

As can be seen in Fig. 13, the days selected by the OPT

approach provide a relatively good approximation of the wind

and solar generation DCs. In contrast, the days selected by the

CA and the H approach have significantly higher deviations,

particularly for solar PV generation. Both the CA and H

approach underestimate solar generation, leading to fewer

investments in solar PV generation and a higher dependence

on wind turbines to meet the renewable energy target.
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Fig. 13. Approximation of the duration curves for 2 representative days
selected by the different approaches.

By using only a limited set of historical days, the GEPM

has imperfect information regarding the annual cost related to

operating any given system. Therefore, the GEPM aiming to

minimize the total system cost comprising of both investment

and operational costs will not be able to find the global opti-

mum. This is reflected in Fig. 12 by the investment decisions

deviating from the investment decisions in the reference case.

To evaluate this sub-optimality, the cost of operating a system

with the capacity mix resulting from each model run is re-

evaluated using the entire time series. The projected and re-

evaluated total system costs are presented in Table III. The

sub-optimality is the difference between the re-evaluated cost

and the cost in the reference case, and is presented between

brackets as a percentage of the total system cost in the

reference case. The results show that by using 2 representative

days selected by the OPT approach, this sub-optimality equals

a mere 0.29% for the presented case. For the best randomly

selected combination of days, this sub-optimality increases to

0.72%, while for the days selected by the clustering algorithm,

the deviation increases to 2.57%. Using the simple heuristics,

this sub-optimality is significantly higher.

In general, by having a better selected set of days, the model

has more accurate information regarding the annual cost of

operating any given power system, and is therefore more likely

to find a solution close to the global optimum. However, it

is important to note that having better information does not

necessarily lead to better decision making in every single case.

For this reason, the results presented in this test case should not

be seen as an attempt to quantify the value that can be added

by a better selection of representative days, but rather as an

illustration of how the selection of a set of representative days

can impact the accuracy of the results and the computation

time of ESOMs/GEPMs.

In terms of the computational cost, this increases non-

linearly with the number of time steps considered in the

GEPM. For the presented test case, the runs using 2, 4 and 8

representative days took on average 2.7, 9.3 and 22.0 seconds

respectively. In contrast, the reference case took over 50,000

seconds (almost 14 hours).

TABLE III
OVERVIEW OF THE TOTAL SYSTEM COSTS IN THE DIFFERENT RUNS

Approach Nrepr Projected cost
[Me/a]

Re-evaluated cost
[Me/a]

Orig. 365 7071 7071
OPT 2 7221 7092 (+0.29%)
RS 2 7043 7122 (+0.72%)
CA 2 7389 7253 (+2.57%)
H 2 10041 9441 (+33.51%)

VII. CONCLUSIONS

To limit the computational complexity of energy-system op-

timization models (ESOMs), intra-annual variations in demand

and supply are typically modeled by using a low number

of time segments. Capturing the challenges related to the

integration of intermittent renewable energy sources in this

low number of time segments is challenging. The recent

literature shows that using the data of a limited number of

well-chosen representative historical periods is an approach
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that allows doing so without having to drastically increase the

number of time segments. In generation expansion planning

models (GEPMs), the level of temporal detail is typically

somewhat higher than in ESOMs. Nevertheless, these models

also face computational restrictions which could be alleviated

by using a small, but representative set of historical periods.

For these reasons, numerous well-known and state-of-the-art

ESOMs/GEPMs do already make use of a set of representative

historical periods to represent variations in demand and supply.

To select a representative set of historical periods, multi-

ple approaches are described in the literature. However, the

literature regarding the comparison of different approaches

is restricted to comparing different clustering algorithms.

Moreover, there is not a single optimization-based approach

available in the literature that can be employed to select a large

set of representative periods.

In this paper, a new and novel optimization-based approach

relying on mixed integer linear programming (MILP) and a

derived hybrid approach are presented. The results of these

approaches are compared to different approaches available in

the literature. Different temporal aspects which can impact

the results of ESOMs/GEPMs were identified and appropriate

metrics were proposed to assess how well these aspects are

represented by a set of representative periods.

The novel optimization-based approach and the derived

hybrid approach are shown to obtain more accurate results

than the approaches available in the current literature. The

significance is that by applying the novel approaches to select a

set of representative periods, the accuracy of ESOMs/GEPMs

can be increased without increasing the computational cost.

This is illustrated in a simplified test case aiming to determine

the cost-optimal capacity mix to obtain a target share of

renewable electricity generation in a system inspired by the

Belgian power system.

While the focus in this work is on selecting a set of represen-

tative days for application in ESOMS/GEPMs, the developed

approach can be applied to various applications. In addition, as

the developed approaches rely on MILP or LP, they are highly

flexible to incorporate user-specific constraints. However, the

developed approaches also have the disadvantage that solving

these approaches themselves can be computationally costly

and require some implementation effort.
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