
Selecting Skyline Services for
QoS-based Web Service Composition

Mohammad Alrifai
L3S Research Center
Hannover, Germany
alrifai@L3S.de

Dimitrios Skoutas
L3S Research Center
Hannover, Germany
skoutas@L3S.de

Thomas Risse
L3S Research Center
Hannover, Germany

risse@L3S.de

ABSTRACT

Web service composition enables seamless and dynamic in-
tegration of business applications on the web. The perfor-
mance of the composed application is determined by the
performance of the involved web services. Therefore, non-
functional, quality of service aspects are crucial for selecting
the web services to take part in the composition. Identifying
the best candidate web services from a set of functionally-
equivalent services is a multi-criteria decision making prob-
lem. The selected services should optimize the overall QoS
of the composed application, while satisfying all the con-
straints specified by the client on individual QoS parame-
ters. In this paper, we propose an approach based on the
notion of skyline to effectively and efficiently select services
for composition, reducing the number of candidate services
to be considered. We also discuss how a provider can im-
prove its service to become more competitive and increase its
potential of being included in composite applications. We
evaluate our approach experimentally using both real and
synthetically generated datasets.

Categories and Subject Descriptors

H.3.5 [On-line Information Services]: Web-based ser-
vices; H.3.4 [Systems and Software]: Distributed systems

General Terms

Management, Performance, Measurement

Keywords

Web Services, QoS, Optimization, Service Composition

1. INTRODUCTION
Recently, there has been a growing trend for businesses

to outsource parts of their processes, so as to focus more on
their core activities. In addition, Web users often need to
compose different services to achieve a more complex task
that cannot be fulfilled by an individual service. Web ser-
vices provide the means for such seamless integration of busi-
ness processes across organizational boundaries. Industry
standards, namely WSDL, UDDI, WS-BPEL, exist for de-
scribing, locating and composing web services.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Following the Service-oriented Architecture paradigm, com-
posite applications are specified as abstract processes com-
posed of a set of abstract services. Then, at run time, for
each abstract service, a concrete web service is selected and
used. This ensures loose coupling and flexibility of the de-
sign. Quality of Service (QoS) parameters (e.g. responsive-
ness, availability, throughput) play a major role in deter-
mining the success or failure of the composed application.
Therefore, a Service Level Agreement (SLA) is often used
as a contractual basis between service consumers and ser-
vice providers on the expected QoS level. QoS-based service
composition aims at finding the best combination of web
services that satisfy a set of end-to-end QoS constraints in
order to fulfill a given SLA.

Example. Figure 1 shows an example of a web applica-
tion for finding the best used car offers. The users submit
their requests to the system, specifying some criteria for se-
lecting the cars (e.g. brand, type, model). The system then
returns a list of the best offers along with a credit and an
insurance offer for each car on the list. The composed ap-
plication can be exposed to users as a web service, API or
widget, programmatically accessible or directly integrated
into their web applications using a Mashup tool.

Figure 1: Example of Service Composition

In this example, some tasks, illustrated as gray boxes in
Figure 1, are outsourced and integrated via web service calls.
For these outsourced tasks, multiple services may be avail-
able providing the required functionality but with different
QoS values. Users are typically unaware of the involved ser-
vices, and they specify their QoS requirements in the SLA
in terms of end-to-end QoS constraints (e.g. average end-to-
end response time, minimum overall throughput, maximum
total cost). The goal of QoS-based service composition is
to select one service or service configuration for each out-
sourced task such that the aggregated QoS values satisfy all
the application level QoS constraints.

This problem becomes especially important and challeng-
ing as the number of functionally-equivalent services offered
on the web at different QoS levels increases. According
to [1], there has been a more than 130% growth in the num-
ber of published web services in the period from October
2006 to October 2007. The statistics published by the web

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

11

services search engine Seekda!1 also indicate an exponential
increase in the number of web services over the last three
years. Moreover, it is expected that the pay-per-use busi-
ness model promoted by the Cloud Computing paradigm
will enable service providers to offer their (software) services
to their customers in different configurations with respect to
QoS properties [5]. Therefore, it is expected that service re-
questers will be soon faced with a huge number of variation
of the same services offered at different QoS levels and prices,
and the need for an automatic service selection method will
increase.

Performing an exhaustive search to find the best com-
bination that satisfy a certain composition level SLA (i.e.
end-to-end QoS constraints) is not practical in this scenario,
as the number of possible combinations can be very large,
based on the number of subtasks comprising the composite
process and the number of alternative services for each sub-
task. Already with few hundreds of candidate services (or
service configurations) the required time for finding the best
combination will exceed the constraints for real-time exe-
cution (e.g. with 100 alternative options for each subtask
in our example, we have 1003 possible combinations). This
problem can be modeled as a combinatorial problem, which
is known to be NP-hard in the strong sense [13]. Therefore,
reducing the search space by focusing only on “interesting”
service offers is crucial for reducing the computation cost.

Contributions. In this paper, we address this issue by
considering dominance relationships between web services
based on their QoS attributes. We observe that only those
services that belong to the skyline [4], i.e. are not domi-
nated by any other functionally-equivalent service, are valid
candidates for the composition. However, although this pro-
vides an initial pruning of the number of candidate services,
the size of the skyline may still be large, depending on the
distribution of the QoS values. It is realistic to assume that
specific QoS parameters are typically anti-correlated, e.g.
execution time and price, which results in a large number
of skyline services. To overcome this problem, we describe
how to consider only a subset of the skyline services for the
composition. In addition, from the service provider perspec-
tive, this provides also a clear distinction whether its service
is a promising candidate or not for taking part in composite
applications. In the latter case, we provide a strategy that
proposes which QoS parameters of the service should be im-
proved and how, so that it becomes more competitive, i.e.
it is no longer dominated by other services. In particular,
our main contributions can be summarized as follows.

1. We address the problem of QoS-driven service com-
position, defining QoS-based dominance relations be-
tween services to select the candidates for composition.

2. Since the number of candidate services for a compo-
sition may still be too large, we present a method for
further reducing the search space by examining only
subsets of the candidate services.

3. We present a method for determining which QoS lev-
els of a service should be improved so that it is not
dominated by other services.

4. We evaluate our approach experimentally on a publicly
available collection of services with QoS information,
as well as on synthetically generated scenarios.

1http://webservices.seekda.com/

The rest of the paper is organized as follows. Section 2 dis-
cusses related work, while Section 3 introduces formally the
problem. Our skyline based approach is presented in Sec-
tion 4. Section 5 deals with service competitiveness. The
evaluation in section 6 demonstrates the benefits of our ap-
proach. Finally, Section 7 concludes the paper.

2. RELATED WORK
The problem of QoS-based web service selection and com-

position has received a lot of attention during the last years.
In [8], the authors propose an extensible QoS computation
model that supports an open and fair management of QoS
data by incorporating user feedback. However, the problem
of QoS-based composition is not addressed. The work of
Zeng at al. [18, 19] focuses on dynamic and quality-driven
selection of services. Global planning is used to find the best
service components for the composition. They use (mixed)
linear programming techniques to find the optimal selection
of component services. Similar to this approach, Ardagna
et al. [3] extend the linear programming model to include
local constraints. Linear programming methods are very
effective when the size of the problem is small, but suffer
from poor scalability due to the exponential time complex-
ity of the applied search algorithms [10]. In [17], heuristic
algorithms are used to efficiently find a near-to-optimal so-
lution. The authors propose two models for the QoS-based
service composition problem: (a) a combinatorial model and
(b) a graph model. A heuristic algorithm is introduced
for each model. The time complexity of the heuristic al-
gorithm for the combinatorial model (WS HEU) is polyno-
mial, whereas the complexity of the heuristic algorithm for
the graph model (MCSP-K) is exponential. In [7], a method
for semantic Web service composition is presented, based on
Genetic Algorithms and using both semantic links between
I/O parameters and QoS attributes. Despite the signifi-
cant improvement of these algorithms compared to exact
solutions, both algorithms do not scale with respect to the
number of candidate web services, and hence are not suit-
able for real-time service composition. The proposed skyline
based algorithm in this paper is complementary to these so-
lutions as it can be used as a pre-processing step to prune
non-interesting candidate services and hence to reduce the
computation time of the applied selection algorithm.

In our previous work [2], we proposed a hybrid approach
that combines global optimization with local selection in or-
der to find a close-to-optimal selection efficiently. The main
idea is to decompose end-to-end QoS constraints to local
constraints on the component service level, which can then
be used to perform efficient local selection for each compo-
nent independently. The decomposition of end-to-end con-
straints is achieved by mapping each of them to a set of
precomputed local QoS levels. In [2], we presented a greedy
method for extracting QoS levels from the QoS information
of service candidates. However, the proposed method deals
with each QoS dimension independently and does not take
potential dependencies and correlations among these dimen-
sions into account. In some scenarios with very constrained
QoS requirements, this leads to very restrictive decomposi-
tions of the global constraints to local constraints that can-
not be satisfied by any of the service candidates, although a
solution may actually exist. In this paper we propose a new
method for extracting QoS levels, which always leads to a
feasible decomposition of end-to-end constraints.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

12

In [15], we considered dominance relations between web
services in order to rank available service descriptions with
respect to a given service request. However, that work deals
only with the selection of single services, without considering
the problem of service composition.

Service competitiveness has been considered in [14]. How-
ever, that solution is simpler, addressing the case where only
one service parameter is subject to change. Here we propose
a more generic and flexible solution, allowing the service to
improve simultaneously in more than one attributes.

3. QOS-BASED COMPOSITION MODEL
Assume a set S of service classes, which classify the uni-

verse of available web services according to their function-
ality. Each service class Sj = {sj1 , ..., sjn}, Sj ∈ S, con-
sists of all services that deliver the same functionality (e.g.
search for used cars), but potentially differ in terms of non-
functional properties. Service providers might provide the
same service in different quality levels, e.g. at different re-
sponse times and different prices. For the sake of simplicity,
we model each variation of the service as a different service.
According to the SOA principles, descriptions of functional
and non-functional attributes of web services are stored and
managed by service registries (e.g. UDDI registries), which
are maintained by service brokers. In this paper, we assume
that service brokers maintain and update information about
existing service classes and the services of each class in their
registries, making them accessible to service requesters.

3.1 QoS Parameters
We consider a set of quantitative non-functional proper-

ties of web services Q, which describe the quality criteria of
a web service. These can include generic QoS attributes, like
response time, availability, price, reputation etc, as well as
domain-specific QoS attributes, such as bandwidth for mul-
timedia web services, as long as these attributes can be quan-
tified and represented by real numbers. Some QoS attributes
are positive and need to be maximized, such as throughput
or availability, whereas others are negative and need to be
minimized, such as price or response time. For simplicity,
we consider here only negative attributes (positive attributes
can be easily transformed into negative by multiplying their
values by -1). We use the vector Qs = {q1(s), . . . , qr(s)} to
represent the QoS values of service s, which are published
by the service provider. The function qi(s) determines the
published value of the i-th attribute of the service s.

3.2 QoS Computation of Composite Services
The QoS values of a composite service are determined by

the corresponding QoS values of its component services and
by the composition structure used (e.g. sequential, paral-
lel, conditional and/or loops). Here, we focus on the se-
quential composition model. Other models may be reduced
or transformed to the sequential model [6]. The QoS vec-
tor of a composite service CS = {s1, . . . , sn} is defined as
QCS={q′1(CS), . . ., q′r(CS)}, where q′i(CS) is the estimated
end-to-end value of the i-th QoS attribute and can be com-
puted by aggregating the corresponding values of the compo-
nent services. Typical QoS aggregation functions are sum-
mation, multiplication, and minimum relation. Examples
are given in Table 1.

Type Examples Function

summation response time,
price

q′(CS) =
∑n

j=1
q(sj)

reputation q′(CS) = 1/n
∑n

j=1
q(sj)

multiplication availability,
reliability

q′(CS) =
∏n

j=1
q(sj)

minimum throughput q′(CS) = minn
j=1 q(sj)

Table 1: Examples of QoS aggregation functions

3.3 QoS Constraints
We assume that the user has one or more requirements re-

garding the aggregated QoS values of the requested compos-
ite service. These are referred to as global QoS constraints,
and are denoted by a vector C = {c1, . . ., cm}, 1 ≤ m ≤ r,
of upper (or lower) bounds for the different QoS criteria.

Definition 1. (Feasible Selection) Given an abstract pro-
cess P = {S1, . . . , Sn} and a vector of global QoS constraints
C′ = {c′1, . . . , c

′
m}, 1 ≤ m ≤ r, a feasible selection is any se-

lection of concrete services CS that contains exactly one
service from each class in P and its aggregated QoS values
satisfy the global QoS constraints, i.e. q′k(CS) ≤ c′k,∀k ∈
[1, m].

3.4 Utility Function
A utility function is used to evaluate the overall, multi-

dimensional quality of a given service, e.g. for ranking pur-
poses, by mapping the quality vector Qs of the service into a
single real value. For this purpose, we use in this paper the
Simple Additive Weighting (SAW) technique from [16]. The
utility computation involves scaling the QoS attributes’ val-
ues to allow a uniform measurement of the multi-dimensional
service qualities independent of their units and ranges. The
scaling process is then followed by a weighting process for
representing user priorities and preferences. In the scaling
process, each QoS attribute value is transformed into a value
between 0 and 1, by comparing it with the minimum and
maximum possible value according to the available QoS in-
formation about alternative services. For a composite ser-
vice CS, the aggregated QoS values are compared with min-
imum and maximum possible aggregated values, which can
be easily estimated by aggregating, respectively, the mini-
mum or maximum possible value of each service class in CS.
For example, the maximum execution price of a given com-
posite service can be computed by summing up the execution
price of the most expensive service in each service class in
CS. Formally, the minimum and maximum aggregated val-
ues of the k-th QoS attribute for a given composite service
CS = {s1, . . . , sn} of an abstract process P = {S1, . . . , Sn}
are computed as follows:

Qmin′(k) = F n
j=1(Qmin(j, k)) (1)

Qmax′(k) = F n
j=1(Qmax(j, k))

with

Qmin(j, k) = min
∀s∈Sj

qk(s) (2)

Qmax(j, k) = max
∀s∈Sj

qk(s)

where Qmin(j, k) and Qmax(j, k) are, respectively, the min-
imum and the maximum values that can be expected for the
k-th QoS attribute of the service class Sj , according to the
available information about the service candidates in this

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

13

class. The function F denotes an aggregation function as
discussed above. Now the utility of a component web ser-
vice s ∈ Sj is computed as

U(s) =
r

∑

k=1

Qmax(j, k) − qk(s)

Qmax(j, k) − Qmin(j, k)
· wk (3)

and the overall utility of a composite service is computed as

U ′(CS) =
r

∑

k=1

Qmax′(k) − q′k(CS)

Qmax′(k) − Qmin′(k)
· wk (4)

with wk ∈ R+

0 and
∑r

k=1
wk = 1 being the weight of q′k to

represent user’s priorities.

3.5 Problem Statement
QoS-based service composition is a constraint optimiza-

tion problem which aims at finding the composition that
maximizes the overall utility value, while satisfying all the
global QoS constraints. Formally:

Definition 2. (Optimal Selection) Given an abstract pro-
cess P and a vector of global QoS constraints C′ = {c′1, . . .,
c′m}, 1≤m≤r, the optimal selection is the feasible selection
that maximizes the overall utility value U ′.

A straightforward method for finding the optimal compo-
sition is enumerating and comparing all possible combina-
tions of candidate services. For a composition request with n
service classes and l candidate services per class, there exist
ln possible combinations. Hence, exhaustive search can be
very expensive in terms of computation time and, therefore,
inappropriate for run-time service selection in applications
with many services and dynamic needs. In the following
section, we address this problem by considering dominance
relations between available services and selecting skyline ser-
vices as candidates for the composite process.

4. SKYLINE SERVICES FOR QOS-BASED

COMPOSITION
As presented in the previous section, our goal is to se-

lect a set of services, one from each service class, that maxi-
mize the overall utility, while satisfying all the specified con-
straints. Notice that, selecting from each class the service
with the highest utility value does not provide a correct so-
lution, since it does not guarantee that all the end-to-end
constraints are satisfied. Hence, different combinations of
services from each class need to be considered. Still, not all
services are potential candidates for the solution. The basic
idea in our approach is to perform a skyline query on the
services of each class to distinguish between those services
that are potential candidates for the composition, and those
that can not possibly be part of the final solution. The latter
can effectively be pruned to reduce the search space. First,
we briefly introduce skyline queries, and then we describe
how we apply them in our approach. Then, we deal with
the problem that arises when the number of services in the
skyline is still too large.

Given a set of points in a d-dimensional space, a skyline
query [4] selects those points that are not dominated by any
other point. A point Pi is said to dominate another point
Pj , if Pi is better than or equal to Pj in all dimensions
and strictly better in at least one dimension. Intuitively, a
skyline query selects the “best” or most “interesting” points

Figure 2: Example of Skyline Services

with respect to all dimensions. In this work, we define and
exploit dominance relations between services based on their
QoS attributes. This is used to identify and prune services
in a service class that are dominated by other services in the
same class.

Definition 3. (Dominance) Consider a service class S, and
two services x, y ∈ S, characterized by a set of Q of QoS
attributes. x dominates y, denoted as x ≺ y, iff x is as good
or better than y in all parameters in Q and better in at least
one parameter in Q, i.e. ∀k ∈ [1, |Q|] : qk(x) ≤ qk(y) and
∃k ∈ [1, |Q|] : qk(x) < qk(y).

Definition 4. (Skyline Services) The skyline services of a
service class S, denoted by SLS , comprise those services in
S that are not dominated by any other service, i.e., SLS =
{x ∈ S|¬∃y ∈ S : y ≺ x}.

Figure 2 shows an example of skyline services for a given
service class. Each service is described by two QoS param-
eters, namely execution time and price. Thus, the services
are represented as points in the 2-dimensional space, with
the coordinates of each point corresponding to the values of
the service in these two parameters. We can observe that
service a belongs to the skyline, because it is not dominated
by any other service, i.e. there is no other service that offers
both shorter execution time and lower price than a. The
same holds for services b, c, d and e, which are also on the
skyline. On the other hand, service f is not contained in the
skyline, because it is dominated by the services b, c and d.

Notice that the skyline services provide different trade-offs
between the QoS parameters, and hence are incomparable
to each other, as long as there is no pre-specified preference
scheme regarding the relative importance of these parame-
ters. For instance, for a specific user, service a may be the
most suitable choice, due to its very low execution time and
despite its high price, while for a different user, where ex-
ecution time is not the primary concern, service e may be
the most preferred one due to its low price.

4.1 Determining the Skyline Services
Determining the skyline services of a service class requires

pair-wise comparisons of the QoS vectors of the candidate
services. This process can be expensive in terms of computa-
tion time if the number of candidate services is large. Several
efficient algorithms have been proposed for skyline compu-
tation [12]. Given that for the problem considered here the
process of determining the skyline services is independent of
any individual service request or usage context, it does not
need to be conducted online at request time. Therefore, we
make use of any of the existing methods for determining the
skyline services offline in order to speed up the service se-
lection process later at request time. For this purpose, each

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

14

Figure 3: Skyline of Different Dataset Types

service broker maintains the list of skyline services of each
service class it hosts in its registry. This list is updated each
time a service joins, leaves or updates its QoS information in
the registry. When a service request is received by a service
broker, the skyline services of the matched service class are
returned to the requester.

If matching services are distributed over a set of service
brokers, the service requester receives a skyline set from each
broker. Then, the retrieved local skylines need to be merged
to build one global skyline. This can be done by merging
the local skylines in a pairwise fashion, i.e. comparing the
services in the two local skylines, and eliminating those that
are dominated by another service.

4.2 Composing the Skyline Services
Once the problem of QoS-based service composition has

been formulated as a constraint optimization problem, MIP
techniques [11] can be employed [19, 3]. Then, any MIP
solver can be applied to solve this problem. However, as the
number of variables in this model depends on the number
of service candidates, it may only be solved efficiently for
small instances. To cope with this limitation, we first prune
all non-skyline services from the MIP model in order to keep
its size as small as possible. By focusing only on the skyline
services of each service class, we speed up the selection pro-
cess, while still being able to find the optimal selection, as
formally shown below.

Lemma 1. Let CS = {s1, . . . , sn} be the optimal solution
for a given request, i.e. the composite service that satisfies
all the specified constraints and maximizes the overall utility.
Then, each constituent service of CS belongs to the skyline
of the corresponding class, i.e. ∀si ∈ CS : si ∈ SLSi

, where
Si denotes the class of si.

Proof. Let si be a service that is part of CS and does
not belong to the skyline of its class Si. Then, according
to the definitions for service skyline and service dominance,
there exists another service s′i that belongs to the skyline
of Si and dominates si, i.e. s′i is better (or equal) to si in
all considered QoS parameters. Let CS′ be the composite
service that is derived by CS by substituting si with s′i. CS′

also satisfies the request, in terms of the delivered function-
ality, since the two services si and s′i belong to the same
class Si. Moreover, given that the QoS aggregation func-
tions (see Table 1) are monotone, i.e. higher (lower) values
produce a higher (lower) overall result, CS′ also satisfies the
constraints of the request. In addition, given that the util-
ity function is also monotone, CS′ will have a higher overall
utility than CS. Hence, CS′ is a better solution than CS
for this request.

According to Lemma 1, we can improve the efficiency of
the QoS-based service selection algorithms by focusing only
on the skyline services of each class. However, the size of the
skyline can significantly vary for each dataset, as it strongly

Figure 4: Determining Representatives via Hierar-

chical Clustering

depends on the distribution of the QoS data and correlations
between the different QoS parameters. Figure 3 shows an
example of 3 types of datasets in the 2-dimensional space:
(a) in the independent dataset, the values of the two QoS
dimensions are independent to each other; (b) in the cor-
related dataset, a service that is good in one dimension is
also good in the other dimension; (c) in the anti-correlated
dataset there is a clear trade-off between the two dimen-
sions. The number of skyline services is relatively small in
correlated datasets, large in anti-correlated and medium in
independent ones.

If the skyline is too large to be practically useful, ap-
proaches have been proposed for focusing on smaller number
of representative items. For example, in [15] we have inves-
tigated such an approach for web service discovery in order
to cluster the matched services returned to the user. Here,
our goal is to select a set of representative skyline services,
with different trade-offs for the various QoS parameters, and
to use this reduced set as input for the MIP model.

4.3 Representative Skyline Services
In the following, we present a method for selecting repre-

sentative skyline services in order to address the situation
where the number of skyline services K of a certain service
class S is too large and thus cannot be handled efficiently.
The main challenge that arises is how to identify a set of rep-
resentative skyline services that best represent all trade-offs
of the various QoS parameters, so that it is possible to find
a solution that satisfies the constraints and has also a high
utility score. This involves essentially a trade-off regarding
the number of representatives to be selected: the number
of representative services should be large enough to allow
finding a solution to the composition request, but also small
enough to allow for efficient computation.

To address this challenge, we propose a method based on
hierarchical clustering. The main idea is to cluster the sky-
line services into k clusters with k = 2, 4, 8, 16, ..., K and
select one representative service from each cluster. In our
case, we select as representative the service with the best

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

15

Algorithm 1 BuildRepresentativesTree(SL)

Input: : a set of skyline services SL
Output: : a tree of representatives with service s as a root
1: s← maxUtilityService(SL)
2: CLS ← KMeansCluster(SL,2)
3: for i = 1 to 2 do

4: if (CLS[i].size > 2) then

5: C ← BuildRepresentativesTree(CLS[i])
6: else

7: C ← CLS[i]
8: end if
9: s.addChild(C)

10: end for

11: return s

utility value. In particular, we build a tree structure of rep-
resentatives, as shown in the example of Figure 4. Each leaf
node of this tree corresponds to one of the skyline services
in SL, whereas the root and intermediate nodes correspond
to the selected representatives of the created clusters.

At run-time, when a service composition request is pro-
cessed, we start the search from the root node of the tree,
i.e. we first consider only the top representative service of
each class (e.g. service s3 for class S in the example). These
selected representatives are inserted into the MIP and the
optimization problem is solved. If no solution is found using
the given representatives, we proceed to the next level, tak-
ing two representatives from each class (s3 and s6 for class
S in the example). This process is repeated until a solution
is found or until the lowest level of the tree, which comprises
all skyline services, is reached. In the latter case, it is guar-
anteed that a solution will be found (if one exists), and that
it is the optimal solution according to Lemma 1. If a solu-
tion is found earlier, we proceed by examining those services
that are descendants of the selected representatives for fur-
ther optimization. The search space is thus expanded until
no further optimization in terms of utility value is achieved,
or until the skyline level is reached.

We use the well-known k-means clustering algorithm [9]
for building the representatives tree, as described in Algo-
rithm 1. The algorithm takes as input the skyline set SL of
class S and returns a binary tree structure of representative
services. It starts by determining the root s, which is the
service with maximum utility value in SL. Then, it clusters
SL into two sub-clusters CLS[0] and CLS[1] and it adds the
representatives of these two sub-clusters to the children list
of s. The process is repeated for each sub-cluster until no
further clustering is possible (i.e. until the size of the newly
created clusters is lower than 2).

4.4 Local QoS Levels
So far, we have described how the efficiency of the stan-

dard MIP-based global optimization approach for QoS-based
web service composition can be improved by focusing on the
representative skyline services of each service class. In [2],
we proposed a hybrid approach for the composition problem,
using MIP to decompose the end-to-end QoS constraints into
local constraints, which are then used to efficiently select the
best service from each class. The variables in the MIP model
of the hybrid approach represent the local QoS levels of each
service class rather than the actual service candidates, mak-
ing it more scalable to the number of service candidates than
the global optimization approach. However, the proposed

Figure 5: Determining Local Quality Levels

Algorithm 2 SelectQoSLevels(SL)

Input: : a set of skyline services SL
Output: : a tree of QoS levels with y as a root
1: y← newQoSLevel
2: for all qi ∈ Q do

3: qi(y)← max qi(s), ∀s ∈ SL
4: end for

5: y.utility ← maxUtilityV alue(SL)
6: CLS ← KMeansCluster(SL,2)
7: for i = 1 to 2 do
8: if (CLS[i].size > 2) then

9: C ← SelectQoSLevels(CLS[i])
10: else
11: C ← CLS[i]
12: end if

13: y.addChild(C)
14: end for

15: return y

solution in [2] relies on a greedy method for extracting the
local QoS levels from the QoS information of service candi-
dates, which deals with QoS parameters independently and
does not take into account potential correlations and de-
pendencies among them. In scenarios with relatively strict
constraints, this often leads to a very restrictive decomposi-
tion of the constraints that cannot be satisfied by any of the
service candidates even though a solution to the problem
does exist.

To overcome the limitation of that method, we present in
the following a new method for extracting QoS levels, which
always leads to a feasible decomposition of end-to-end con-
straints based on skyline services (see Algorithm 2). The
main idea is similar to the representatives selection method
described earlier. First, we determine the skyline services of
each service class, and we recursively cluster them using the
k-means clustering algorithm. However, instead of selecting
one representative service from each sub-cluster, we create
a virtual point in the QoS multidimensional space, whose
coordinates are calculated as the maximum (i.e. worst) QoS
values in the sub-cluster, as illustrated in the example of Fig-
ure 5. The virtual point y1 in Figure 5-a has the maximum

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

16

execution time and maximum price of all skyline services,
i.e the execution time of service s8 and the price of s1.

Hence, we use the created points (y1 to y7 in the example)
to represent the various QoS levels of the service class. We
also assign each of the QoS levels a utility value, which is
the best utility value that can be obtained by any of the
services of the corresponding sub-cluster. We then use MIP
to map each of the end-to-end constraints into one of the
local QoS levels of each class in the composition problem. A
binary decision variable xij is used for each local QoS level
yij such that xij = 1 if yij is selected as a local constraint
for the service class Sj , and xij = 0 otherwise. Thus, we
reformulate the MIP model presented in [2] as follows:

maximize

n
∑

j=1

l
∑

i=1

U(yij) · xij (5)

subject to the global QoS constraints

n
∑

j=1

l
∑

i=1

qk(yij) · xij ≤ c′k, 1 ≤ k ≤ m (6)

while satisfying the allocation constraints on the decision
variables as

l
∑

i=1

xij = 1, 1 ≤ j ≤ n. (7)

where the number of variables l equals the number of QoS
level in each service class. We solve this MIP model for
l = 1, 2, 4....K, where K is the total number of skyline ser-
vices. In the given example, this corresponds to the levels
from 0 to 3 of the QoS levels tree in Figure 5-d. The pro-
cess stops when a solution is found, i.e. a mapping of all
end-to-end constraints to local QoS levels is found. In the
worst case, the process will continue until the lowest level is
reached. In this case, each skyline service represents a local
QoS level, and the problem becomes similar to the original
global optimization problem we discussed earlier. According
to Lemma 1, if a solution to the original problem exists, a
decomposition of the end-to-end constraints will be found.

5. SERVICE COMPETITIVENESS
As described previously, when a composition request is

processed, only the skyline services from each participating
class are examined as possible candidates. Non-skyline ser-
vices are filtered out early and cannot be in the result set
of any request, regardless of the given QoS requirements or
preferences. Therefore, it is important for service providers
to know whether their services are in the skyline, given their
current QoS levels. Even more importantly, if this is not the
case, providers should be guided in determining which QoS
levels of their services should be improved and how, in order
to become skyline services. Such information is valuable for
service providers to analyze the position of their services in
the market compared to other competing services.

To address this issue, we present an algorithm that pro-
poses how to improve the competitiveness of non-skyline ser-
vices. Clearly, there are various modifications that can lead
a non-skyline service to the skyline. Our goal is to identify
the minimum improvement in each QoS dimension that is
required in order to bring a non-skyline service into a po-
sition where it is not dominated by any other service, thus
becoming part of the skyline.

Figure 6: Measuring the Distance to the Skyline

Consider the example in Figure 6, where service f is dom-
inated by the skyline services b, c and d. According to Def-
inition (3), this means that each of these services are better
or equal to f in all QoS dimensions and strictly better than
f in at least one QoS dimension. In order to improve the
competitiveness of f , the provider must ensure that it is not
dominated by any other service. To achieve this, it is suffi-
cient to make f better than each of its dominating services
in (at least) one QoS dimension. By analyzing the skyline
structure in Figure 6, we can identify four partitions of the
2-dimensional space, in which f can fulfill this requirement.
The first two partitions are shown in Figure 6-a, and can be
reached by improving only one of the QoS-dimensions, while
the other two are shown in Figure 6-b, and can be reached
by improving both QoS dimensions at the same time. We
call each of these partitions a no-dominance partition for
this service. A service in any of these partitions is incompa-
rable with all the skyline services, as it is not dominated by
any of them nor is dominating any of them.

Improving the QoS of provided services to a certain level,
typically incurs some cost. For example, reducing the exe-
cution time of the service might require using faster servers
or more CPU computation power, if the service is running
on the cloud. Thus, service providers would be interested in
determining the best (set of) QoS dimension(s) to optimize,
while minimizing the required cost. We assume that the cost
of improving any QoS dimension increases monotonically in
the sense that more improvement always implies more cost.
We use the weighted euclidean distance for estimating the
cost of moving a service s in the QoS multi-dimension space
from its current position to a new position s′:

d(s, s′) =

√

√

√

√

|Q|
∑

i=1

wi(qi(s) − qi(s′))2 (8)

The weight w is specified by the service provider to express
his preferences over the QoS dimensions. Higher weight im-
plies higher cost for improving the corresponding dimension.

In order to minimize the cost of improving the service
position in the QoS multi-dimensional space, we first need
to identify the no-dominance partitions. Then, we measure
the distance from the service to be improved to each of these
partitions using Equation 8, and we select the one with the
minimum distance.

Algorithm 3 locates the no-dominance partitions that can
be reached by improving only one QoS dimension. It takes as
input a non-skyline service s and the list of skyline services
SL of the corresponding class, and it returns a list I =
{p1, . . . , p|Q|}, where each entry pi denotes the improvement
required in the i-th QoS dimension for the service to become

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

17

Algorithm 3 OneDimImprovements(s,SL)

Input: : a service s, the skyline services of that class SL
Output: : a list I containing the required improvement for each

single dimension
1: DS ← {r ∈ SL : r ≻ s}
2: for all qi ∈ Q do

3: I[i]← max
r∈DS

|rqi − sqi |

4: end for

5: return I

Algorithm 4 MultiDimImprovements(s, SL)

Input: : a service s, the skyline services of that class SL
Output: : a new position s′ in a no-dominance partition, which

has the minimum improvement cost
1: DS ← {r ∈ SL : r ≻ s}
2: M ← {}
3: for all qi ∈ Q do

4: DSi ← DS.sortBy(qi)
5: for j = 1 to DS.size− 1 do
6: sj ← DSi[j]
7: sj+1 ← DSi[j + 1]
8: m← newQoSV ector
9: for all qk ∈ Q do

10: qk(m)← max(qk(sj), qk(sj+1))
11: end for

12: M ←M ∪m
13: end for

14: end for

15: return agr min
m∈M

d(s, m)

part of the skyline (keeping all the other dimensions fixed).
Algorithm 4 locates the coordinates of the maximum cor-

ner (i.e. top-right) of each no-dominance partition (e.g. the
points x and y in Figure 6-b). Modifying the QoS values of
the service to values that are slightly better than the values
of one of these points, ensures that it is not dominated by
the skyline services. The algorithm takes as input a non-
skyline service s and the list of skyline services SL of the
corresponding class, and suggests a new position s′ that can
be reached with minimum cost, in order to make s not dom-
inated by any other services. First, the algorithm computes
the list DS of services dominating s. Then, DS is sorted
for each QoS dimension separately. The coordinates of the
maximum corners are determined by taking the maximum
QoS values of each two subsequent services in each sorted
list. For example, the coordinates of the maximum corners
x and y in Figure 6-b, are determined by sorting the domi-
nating services b, c and d by execution time and then taking
the maximum price and execution time of the services b and
c. This process is repeated for each other dimension and
only new discovered points are added to the list M . Finally,
Equation 8 is used to estimate the cost of moving s to any
of the positions listed in M and the position with minimum
cost is returned.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of

our approach, measuring (a) efficiency, in terms of the exe-
cution time required to find a solution, and (b) success rate,
in terms of whether a solution is found (if one exists) and
how close its utility score is to that of the optimal solution.

6.1 Experimental Setup
We have conducted our experiments using two types of

datasets. The first is the publicly available dataset QWS2,
which comprises measurements of 9 QoS attributes for 2500
real-world web services. These services were collected from
public sources on the Web, including UDDI registries, search
engines and service portals, and their QoS values were mea-
sured using commercial benchmark tools. More details about
this dataset can be found in [1]. We also experimented with
three synthetically generated datasets in order to test our
approach with larger number of services and different dis-
tributions. For this purpose, we used a publicly available
synthetic generator3 to obtain three different datasets: (a)
a correlated dataset, in which the values of the QoS parame-
ters are positively correlated, (b) an anti-correlated dataset,
in which the values of the QoS parameters are negatively cor-
related, and (c) an independent dataset, in which the QoS
values are randomly set. Each dataset comprises 10K QoS
vectors, and each vector represents the 9 QoS attributes of
one web service.

For the purpose of our evaluation, we considered a sce-
nario, where a composite application comprises services from
10 different service classes. Thus, we randomly partitioned
each of the aforementioned datasets into 10 service classes.
We then created several QoS vectors of up to 9 random val-
ues to represent the users’ end-to-end QoS constraints. Each
QoS vector corresponds to one QoS-based composition re-
quest, for which one concrete service needs to be selected
from each class, such that the overall utility value is maxi-
mized, while all end-to-end constraints are satisfied.

We implemented the algorithms described in Section 4 in
Java. For solving the generated Mixed Integer Programming
models we used the open source system lpsolve version 5.5 4.
The experiments were conducted on an HP ProLiant DL380
G3 machine with 2 Intel Xeon 2.80GHz processors and 6 GB
RAM, running Linux (CentOS release 5).

We compare the efficiency of the following QoS-based com-
position methods:

• Exact : this is the standard global optimization method
with all service candidates represented in the MIP model.

• ExactSykline: this method is similar to the Exact method,
except that only skyline services are considered.

• SkylineRep: this method uses representative skyline
services as described in Section 4.3.

• Hybrid : this is the method we proposed in our previous
work [2], which maps end-to-end constraints into local
QoS levels.

• HybridSkyline: this is the modified version of the Hy-
brid method, which uses a skyline-based method for
determining local QoS levels as described in Section 4.4.

6.2 Performance vs Number of Services
We measured the average execution time required by each

of the aforementioned methods for solving each composition
problem, varying the number of service candidates from 100
to 1000 services per class. The results of this experiment are
presented in Figure 7.

2http://www.uoguelph.ca/~qmahmoud/qws/index.html/
3http://randdataset.projects.postgresql.org/
4http://lpsolve.sourceforge.net/

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

18

Figure 7: Performance vs. Number of Service Candidates

Comparing the performance of Exact and ExactSkyline
methods, we can observe that a significant gain is achieved
when non-skyline services are pruned. However, as expected,
this gain in performance differs for the different datasets,
based on the size of the skyline, with the lowest gain be-
ing recorded for the anti-correlated dataset. On the other
hand, the SkylineRep method clearly outperforms all other
methods, which shows that we can cope effectively with this
limitation by using skyline representatives as described in
Section 4.3. In general, the performance of the HybridSky-
line method is comparable with the performance of the Hy-
brid method as long as the size of the skyline is not very large
(see the performance of both methods with the QWS and
correlated datasets). Although less efficient than the origi-
nal Hybrid method with the independent and anti-correlated
datasets, the HybridSkyline method still outperforms the
Exact method with more than an order of magnitude gain
in performance. Moreover, the HybridSkyline method out-
performs the Hybrid method in terms of success rate as we
will see in the next subsection.

We also computed the optimality of the returned selec-
tion by comparing the overall utility value u of the selected
services with the overall utility value (uexact) of the optimal
selection obtained by the Exact approach, i,e.:

optimality = u/uexact

The measured optimality of the SkylineRep, Hybrid and Hy-
bridSkyline methods was in all cases above 90%, which indi-
cates the ability of these methods to achieve close-to-optimal
results. However, due to space limitations, we only show in
Figure 8 the results obtained for the QWS dataset.

6.3 Performance vs Number of Constraints
Clearly, the number of feasible selections for a given com-

position request decreases as the number of end-to-end QoS
constraints increases. This can affect the performance of
all methods as more computation time is required to find a

Figure 8: Optimality Comparison

solution. More specifically, with very constrained problems
the probability that the iterative algorithm of SkylineRep
and HybridSkyline will need to go through more iterations
until a solution is found increases. In this experiment, we
measured the performance of the different methods with re-
spect to the number of end-to-end QoS constraints. For
this purpose, we fixed the number of service candidates per
class to 500 services, and we varied the number of QoS con-
straints from 1 to 9 (notice that the total number of QoS
parameters in the QWS dataset is 9). Due to space limita-
tions, in Figure 9 we only show the results of this experiment
with the anti-correlated dataset, as this dataset represents
the most challenging scenario, due to the large size of the
skyline. Again, we observe that SkylineRep clearly outper-
forms all other approaches. The Hybrid and HybridSkyline
methods have similar performance, also outperforming the
Exact solution. In addition, we measured the success rate,
i.e., the percentage of scenarios where a solution is found,
if one exists. As shown in the lower part of Figure 9, Sky-
lineRep and HybridSklyine always find a solution. This is be-
cause SkylineRep and HybridSklyine iteratively expand the
search space by examining more representative services or
local QoS levels,respectively, until a solution is found or un-

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

19

Figure 9: Performance and Success Rate vs. QoS

Constraints

til the whole set of skyline services has been examined. In
the latter case, a solution is guaranteed to be found (if one
exists) according to Lemma 1. On the other hand, the suc-
cess rate of the Hybrid method degrades significantly as the
difficulty of the composition problem increases. The reason
for this behavior is that the Hybrid method decomposes each
of the end-to-end constraints independently, which in such
difficult composition problems may results in a set of local
constraints that cannot be satisfied by any candidate.

7. CONCLUSIONS
We have addressed the problem of QoS-based web ser-

vice composition with end-to-end constraints. We identify
the skyline services in terms of their QoS values, and we
use them to improve the efficiency of the state-of-the-art
solution. To deal with cases where the size of the skyline
is still large compared to the initial dataset, we select and
use representative skyline services for the composition. We
have also presented an effective method for determining lo-
cal quality levels, which improves the success rate of the
hybrid solution for QoS-based service composition from our
previous work [2]. Finally, we have presented a method for
assisting service providers in improving the competitiveness
of their services to attract potential clients. The results
of the experimental evaluation indicate a significant perfor-
mance gain in comparison to existing approaches, which rely
on global optimization.

Our experiments have shown that the performance of our
skyline-based methods is affected by the difficulty of the
composition problem, in terms of the number of the speci-
fied end-to-end QoS constraints. In the future work, we plan
to develop a method for estimating the difficulty of each
composition problem. This will help to further optimize our
method by deciding from which level of the skyline repre-
sentatives tree (or the QoS levels tree) to start the search in
order to avoid unnecessary iterations.

8. REFERENCES
[1] E. Al-Masri and Q. H. Mahmoud. Investigating web

services on the world wide web. In WWW, pages
795–804, 2008.

[2] M. Alrifai and T. Risse. Combining global
optimization with local selection for efficient qos-aware
service composition. In WWW, pages 881–890, 2009.

[3] D. Ardagna and B. Pernici. Adaptive service
composition in flexible processes. IEEE Trans.
Software Eng., 33(6):369–384, 2007.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[5] K. S. Candan, W.-S. Li, T. Phan, and M. Zhou.
Frontiers in information and software as services. In
ICDE, pages 1761–1768, 2009.

[6] J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and
K. Kochut. Quality of service for workflows and web
service processes. J. Web Sem., 1(3):281–308, 2004.

[7] F. Lécué. Optimizing qos-aware semantic web service
composition. In ISWC, pages 375–391, 2009.

[8] Y. Liu, A. H. H. Ngu, and L. Zeng. Qos computation
and policing in dynamic web service selection. In
WWW (Alt. Track Papers & Posters), pages 66–73,
2004.

[9] S. P. Lloyd. Least squares quantization in pcm. IEEE
Trans. on Information Theory, 28:129–137, 1982.

[10] I. Maros. Computational Techniques of the Simplex
Method. Springer, 2003.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and
Combinatorial Optimization. Wiley-Interscience, New
York, NY, USA, 1988.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
ACM Trans. on Database Systems, 30(1):41–82, 2005.

[13] R. Parra-Hernandez and N. J. Dimopoulos. A new
heuristic for solving the multichoice multidimensional
knapsack problem. IEEE Trans. on Systems, Man,
and Cybernetics, Part A, 35(5):708–717, 2005.

[14] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis.
Serving the sky: Discovering and selecting semantic
web services through dynamic skyline queries. In
International Conference on Semantic Computing,
pages 222–229, 2008.

[15] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis.
Ranking and clustering web services using
multi-criteria dominance relationships. In IEEE
Trans. on Services Computing (to appear), 2009.

[16] K. . P. Yoon and C.-L. Hwang. Multiple Attribute
Decision Making: An Introduction (Quantitative
Applications in the Social Sciences). Sage
Publications, 1995.

[17] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms
for web services selection with end-to-end qos
constraints. ACM Trans. on the Web, 1(1), 2007.

[18] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Z. Sheng. Quality driven web services
composition. In WWW, pages 411–421, 2003.

[19] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware
for web services composition. IEEE Trans. on
Software Engineering, 30(5):311–327, 2004.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

20

