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RESEARCH ARTICLE Open Access

Selecting SNPs informative for African,
American Indian and European Ancestry:
application to the Family Investigation of
Nephropathy and Diabetes (FIND)
Robert C. Williams1*, Robert C. Elston2, Pankaj Kumar1, William C. Knowler1, Hanna E. Abboud3ˆ, Sharon Adler4,

Donald W. Bowden5, Jasmin Divers5, Barry I. Freedman5, Robert P. Igo Jr.2, Eli Ipp4, Sudha K. Iyengar2, Paul L. Kimmel6,

Michael J. Klag7, Orly Kohn8, Carl D. Langefeld5, David J. Leehey9, Robert G. Nelson1, Susanne B. Nicholas10,

Madeleine V. Pahl11, Rulan S. Parekh12, Jerome I. Rotter13, Jeffrey R. Schelling14, John R. Sedor14, Vallabh O. Shah15,

Michael W. Smith16, Kent D. Taylor13, Farook Thameem3,17, Denyse Thornley-Brown18, Cheryl A. Winkler19,

Xiuqing Guo13, Phillip Zager15, Robert L. Hanson1 and the FIND Research Group

Abstract

Background: The presence of population structure in a sample may confound the search for important genetic
loci associated with disease. Our four samples in the Family Investigation of Nephropathy and Diabetes (FIND),
European Americans, Mexican Americans, African Americans, and American Indians are part of a genome- wide
association study in which population structure might be particularly important. We therefore decided to study in
detail one component of this, individual genetic ancestry (IGA). From SNPs present on the Affymetrix 6.0 Human
SNP array, we identified 3 sets of ancestry informative markers (AIMs), each maximized for the information in one
the three contrasts among ancestral populations: Europeans (HAPMAP, CEU), Africans (HAPMAP, YRI and LWK), and
Native Americans (full heritage Pima Indians). We estimate IGA and present an algorithm for their standard errors,
compare IGA to principal components, emphasize the importance of balancing information in the ancestry
informative markers (AIMs), and test the association of IGA with diabetic nephropathy in the combined sample.

Results: A fixed parental allele maximum likelihood algorithm was applied to the FIND to estimate IGA in four
samples: 869 American Indians; 1385 African Americans; 1451 Mexican Americans; and 826 European Americans.
When the information in the AIMs is unbalanced, the estimates are incorrect with large error. Individual genetic
admixture is highly correlated with principle components for capturing population structure. It takes ~700 SNPs to
reduce the average standard error of individual admixture below 0.01. When the samples are combined, the
resulting population structure creates associations between IGA and diabetic nephropathy.
(Continued on next page)
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(Continued from previous page)

Conclusions: The identified set of AIMs, which include American Indian parental allele frequencies, may be
particularly useful for estimating genetic admixture in populations from the Americas. Failure to balance
information in maximum likelihood, poly-ancestry models creates biased estimates of individual admixture with
large error. This also occurs when estimating IGA using the Bayesian clustering method as implemented in the
program STRUCTURE. Odds ratios for the associations of IGA with disease are consistent with what is known about
the incidence and prevalence of diabetic nephropathy in these populations.

Keywords: Individual genetic ancestry, Population structure, SNP, Diabetic nephropathy

Background
The Family Investigation of Nephropathy and Diabetes

(FIND) is a multicenter study that is designed to find

genes that contribute to the onset of diabetic nephropathy

in four target, self-reported, heritage groups: European

Americans, Mexican Americans, American Indians, and

African Americans [1–4]. Two strategies were employed

to ascertain the role of specific genes, a family-based link-

age study and a case–control genome-wide association

study (GWAS). In the GWAS each person in the four

groups was typed for 1 M single nucleotide polymor-

phisms (SNPs) on a common platform after which the

genotype distributions in the cases and controls for each

SNP were compared to identify risk alleles with genome-

wide significance. A common practice in GWAS such as

the FIND is to control for population stratification by

adding principal components (PCs) or individual genetic

ancestry (IGA) estimates as covariates to the statistical

models [5].

While the assessment of IGA is potentially important

for GWAS and for other genetic analyses, the evaluation

of an American Indian heritage has been difficult

because there has been little information on ancestry in-

formative markers (AIMs) from a large sample of

American Indians typed on a commercially available

platform. The Pima Indians of the Gila River Indian Com-

munity in Arizona, who have a very high prevalence of

type 2 diabetes, are one of the most intensively studied

American Indian groups in the United States; genetic and

heritage analyses have been performed in this native group

for many years, involving research that includes GWAS

with 100 K and 1 M SNP arrays [6–10]. Pima Indians also

constituted a large proportion of the American Indian

sample in the FIND. Therefore data from the Pima Indian

GWAS, conducted with the Affymetrix Genome-Wide

Human 6.0 SNP array [11], were used to isolate inform-

ative markers for IGA in American Indians, which were

then combined with 3 populations from HapMap to cre-

ate a panel of AIMs.

We use the AIMs and FIND samples to address an im-

portant methodological issue, that in poly-ancestry (>2)

maximum likelihood models the accuracy of the esti-

mates depends on balancing the information contrasts

among the ancestral populations. [We define an infor-

mation contrast (In) as the information in the difference

(δ) in SNP allele frequency between a pair of ancestral

populations (Fig. 1).] The problem was revealed in the

course of this research when preliminary analyses involv-

ing 1390 SNPs returned apparently incorrect IGA esti-

mates, and we suspected that this was due to insufficient

information regarding one of the contrasts between an-

cestral populations. In order to explore the reason for

this discrepancy we first defined three allele frequency

contrasts in a 3 ancestry model with European (EU),

American Indians (AI), and African (AF) as ancestral

populations: |EU-AI|, |EU-AF|, and |AI-AF|. Then we

chose subsets of 1300 AIMs that maximized the infor-

mation for each contrast–450, 450, and 400 SNPs, re-

spectively–and used these individually and together to

estimate individual ancestry in the respective ancestral

populations from HapMap and the Pima, in which one

expects the mean ancestral component to approximate

1.0; e.g., the expectation for the Pima is that mean AI

ancestry will approximate 1.0. The origin of the unstable

estimates was traced to a set of SNPs in which the infor-

mation is not balanced across the 3 contrasts. We define

a balanced model as one that includes markers that pro-

vide suitable information for contrasting all pairs of par-

ental populations and show that, when the model is not

balanced, the IGA estimates are incorrect with large

error. The method and results are presented below.

Methods

Study participants and phenotypes

The criteria for diabetes, nephropathy, and the overall

study design for the FIND have been previously de-

scribed [1–4]. The FIND is a multi-ethnic family study of

severe kidney disease, where the index case had diabetic

nephropathy and at least one sibling reported a diagnosis

of either diabetic nephropathy or long-standing diabetes

without nephropathy. Samples from four different ethnic

FIND groups were collected: African American, American

Indian, European American, and Mexican American. For

the discovery GWAS unrelated cases and controls were

genotyped, yielding one individual per pedigree, except

that in American Indians and Mexican Americans,
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because the total available sample was small, some family

members were also genotyped. Patients with severe DN

based upon diabetes duration > 5 years and urine albu-

min/creatinine ratio (UACR) ≥ 0.3 mg/g or with severe

kidney disease (ESRD) were defined as cases. Controls had

DM durations ≥ 9 years, UACR < 30 mg/g, and serum cre-

atinine < 1.6 mg/dl (males) or < 1.4 mg/dl (females) with-

out first-degree relatives having kidney disease. Additional

cases and controls that were not part of the original FIND

study were included to increase the statistical power.

Genotyping

A total of 5156 discovery DNA samples, plus 244 blind

duplicates, was submitted to Affymetrix, Inc. (Santa

Clara, CA) for genotyping. Genotypes were generated

with the Affymetrix Genome-Wide Human 6.0 SNP

array [11] using the Affymetrix Commercial Service

(Santa Clara, California), via a contract to Translational

Genomics Research Institute (TGEN, Phoenix, AZ).

Samples were submitted at a concentration of 100 ng/μl

in Tris-EDTA buffer, then plated according to ethnic

membership that included HapMap controls and blind

duplicates on each plate. Samples were tested for DNA

quality and quantity using PicoGreen prior to genotyp-

ing. All ethnic groups were genotyped with the

Affymetrix 6.0 chip during the GWAS phase. Genotypes

were called using the Birdseed version 2 algorithm [12]

implemented in the Genotyping Console software

(Affymetrix). Alleles 1 and 2 for each SNP are assigned in

the order that they are found in the HapMap data set.

Statistical methods

Estimates of IGA and their variances were calculated for

each subject in a three parent population model by a

fixed parental allele maximum likelihood method [13]. A

likelihood function L (μ1, μ2, μ3) is maximized with

respect to the population parameters for European

(EU, μ1), American Indian (AI, μ2), and African heri-

tage (AF, μ3), giving respective statistics m1, m2, and

m3, in the interval [0, 1]. The likelihood algorithm max-

imizes m1 and m2 based on G SNPs. Let pijg be the fre-

quency of the jth allele for the gth SNP with codominant

alleles A1 and A2 in the ith ancestral population for which

Europeans are ancestral population i = 1, American In-

dians i = 2, and Africans i = 3. Then let Δg be defined as

the allele frequency difference for the gth SNP where:

Δ1g ¼ p11g−p31g

Δ2g ¼ p21g− p31g

Fig. 1 Information contrasts. For a 3-ancestral population model there are three information contrasts that are represented by the absolute value
of the difference of the respective allele frequencies for allele 1 of the SNP: |P1-P2|, |P1-P3|, and |P2-P3|, a value that is usually given the symbol δ.

The variable In is the information-for-assignment statistic. Accurate individual ancestry estimates depend upon balancing the information between
these 3 contrasts
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Δ3g ¼ p12g− p32g

Δ4g ¼ p22g− p32g :

For the gth SNP and ancestral proportions m1and m2

the allele frequencies PhA1 and PhA2 in the hybrid popu-

lation can be estimated by

PhA1g ¼ p31g þ m1Δ1g þ m2Δ2g

PhA2g ¼ p32g þ m1Δ3g þ m2Δ4g :

Under Hardy-Weinberg equilibrium the likelihoods for

the three genotypes at SNP g are:

L A1A1ð Þg ¼ ln PhA1g

� �2
� �

L A1A2ð Þg ¼ ln 2PhA1gPhA2g

� �

L A2A2ð Þg ¼ ln PhA2g

� �2
� �

:

When calculating one likelihood Lg for G genotypes,

for each possible combination of m1 and m2 ancestral

proportions (in increments of 0.001), the estimates

(mlm1, mlm2) are those which maximize the likelihood,

that is:

max
m1 ¼ 0→1
m2 ¼ 0→1

XG

g¼1
Lg ;

and

mlm3 ¼ 1:0− mlm1 þ mlm2ð Þ:

The variances and covariance are calculated as (See

Appendix for derivation of the information matrix) [14]:

X

G

g¼1
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g
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7

7

7
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−1

¼
V mlm1ð Þ Cov mlm1;mlm2ð Þ

Cov mlm1;mlm2ð Þ V mlm2ð Þ

� �

V mlm3ð Þ ¼ V mlm1ð Þ þ V mlm2ð Þ
þ 2Cov mlm1;mlm2ð Þ

with standard error

SE mlmið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V mlmið Þ
p

:

Populations from the HapMap were chosen to repre-

sent European and African origins [15]; genotypes for

SNPs represented on the Affymetrix array were obtained

from the HapMap website for inclusion as parental

AIMs. To represent Europe, CEPH “Centre d’Etude du

Polymorphisme Humain”, Utah residents (N = 174) with

ancestry from northern and western Europe (HapMap

abbreviation: CEU) were used; allele frequencies were

represented by PEU and ancestry by EU. To represent

Africa, the allele frequencies for the Yoruba (N = 209) in

Ibadan, Nigeria (HapMap abbreviation: YRI) and the

Luhya (N = 110) in Webuye, Kenya (HapMap abbrevi-

ation: LWK) were averaged when the SNP was present

in both populations, or used singly from either group

when present in just one; allele frequency is represented

as PAF and ancestry as AF. To represent American In-

dians (AI), Pima Indians in Arizona were chosen with

genotypic data from individuals who had participated

in a GWAS conducted with the Affymetrix 6.0 array

(N = 964) [7, 8]. Each person in this sample was a

self-reported, full heritage Piman (Pima or Tohono

O’odham or combination of the two tribes), allele fre-

quency is represented as PAI and ancestry as AI. Inform-

ative loci were identified across the 22 autosomes. Each of

the three allele frequency differences, δ, contrasts for allele

1, |PEU-PAI|, |PEU-PAF|, |PAI-PAF|, is represented by a set

of markers such that one contrast was maximized for in-

formation, δ ≥ 0.5, while δ < 0.3 for the other two (Fig. 1,

Additional Files 1, 2, and 3). SNPs were selected such that

within each set there is at least 500 kb distance between

syntenic SNPs; thus, linkage disequilibrium among SNPs

is expected to be minimal. SNPs with alleles A/T and C/G

were not included because of the ambiguity in their inter-

pretation. After the first selection of AIMS the 128 Ameri-

can Indians who were common to the FIND study and

the Phoenix GWAS parental group were compared for

each informative SNP. A replicate typing error threshold ≤

0.032 was established for inclusion of a SNP. To help bal-

ance the information between the 3 sets of AIMs the

information-for-assignment statistic [16]

In ¼
X

G

j¼1

−plj log p
l
j þ

X

K

i¼1

pij

K
logpij

 !

was used, where pij is the frequency of allele 1 at the

jth SNP in the ith ancestral population, and pj
l is the

overall average frequency of allele 1 at SNP j. In

addition, F-statistics were calculated by the method of

Weir and Cockerham [17] to determine the utility of Fst
for balancing information in the contrasts.

Estimates of individual admixture were also calculated

for the 4 parental samples with the STRUCTURE [18]

program to compare this Bayesian clustering method

with the fixed parental allele algorithm and to determine

whether either or both were vulnerable to the unbal-

anced information in the choice of human ancestry

SNPs.

Principal components (PCs) were computed using

SNPs that passed quality control and were not in gen-

omic regions with extended linkage disequilibrium (LD).

Specifically, markers in the following regions were ex-

cluded: chromosomes 5 (44–51.5 Mb), 6 (25–33.5 Mb),

8 (8–12 Mb), 11 (45–57 Mb), and 17 (40–43 Mb). The

PC analysis was computed on the combined ethnic
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samples for the GWAS. The first two principal compo-

nents were determined to account for a large proportion

of the genetic variation in the multi-ethnic PC analysis

and appropriately reduce the inflation factor in the

ethnic-specific logistic regression models. Outlying indi-

viduals based on the first two PCs were excluded from

the GWAS and, thus, are not included in the present

analysis. A total of 33 individuals were omitted based on

outlying PCA values.

Logistic regression was performed by standard

methods with the disease, diabetic nephropathy, as the

dependent variable and enrolment age, sex (women), en-

rolment center, and the respective heritage estimates as

explanatory variables.

Results
Across the 22 autosomes 1300 SNPs were selected as in-

formative for individual ancestry with δ ≥ 0.5 (Table 1).

The number of informative SNPs generally scaled with

the size of the chromosome. Three distinct sets of SNPs

were chosen such that each set was maximized for its in-

formation in one of the three contrasts, while the three

sets together were balanced for information across the

three contrasts. There were 450 SNPs in each of the

contrasts |PEU-PAI| and |PEU-PAF|, and 400 SNPs maxi-

mized for information in the contrast |PAI-PAF|.

The power of each SNP to estimate IGA is propor-

tional to the magnitude of the allele frequency difference

between the two parental populations, or δ, in the three

difference-contrasts for each marker, |PEU-PAI|, |PEU-

PAF|, and |PAI-PAF|, and the information-for-assignment

statistic In, which was also calculated for each contrast

(Table 2). Within each information contrast, and its set

of SNPs, the two statistics are closely matched with δ ≅

0.53 for each contrast and In ≅ 37. While the informa-

tion was balanced across the 3 sets of SNPs, when one

considers these two measures across all 1300 SNPs for

each contrast, they also represent a balanced design

(Table 2).

The statistic Fst was also calculated for each set of

SNPs, two ancestral populations at a time, as well as for

all SNPs, two ancestral populations at a time, for each

information contrast (Table 3). While the information

was balanced for mean δ and In, the mean Fst were vari-

able across contrasts.

Individual ancestry estimates were first computed for

the 4 ancestral populations to test the validity of the

method and the stability of the estimates of individual

Table 1 Descriptive statistics for 1300 ancestry informative SNP Loci

Maximized contrasts, δ≥ 0.5

Chromosome #SNPs Mean distance (Bp) |PEU-PAI| N = 450 |PEU-PAF| N = 450 |PAI-PAF| N = 400

1 113 4,747,709 44 34 35

2 101 4,296,466 35 36 30

3 89 4,427,268 29 30 30

4 89 4,480,508 26 32 31

5 87 4,286,121 29 33 25

6 76 4,328,735 33 27 16

7 84 3,812,870 25 34 25

8 85 3,480,996 27 33 25

9 66 4,917,071 23 25 18

10 59 4,358,358 17 24 18

11 66 4,356,288 32 14 20

12 51 4,784,074 17 20 14

13 54 3,707,021 15 19 20

14 36 5,120,754 11 12 13

15 50 3,516,390 14 19 17

16 49 3,846,889 22 12 15

17 29 4,218,684 8 11 10

18 34 3,410,019 13 11 10

19 19 6,022,778 6 8 5

20 31 4,143,198 10 8 13

21 15 3,683,800 6 5 4

22 17 4,038,881 8 3 6
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ancestry in the maximum likelihood model (Table 4,

Fig. 2). The expectation was that the vector of inform-

ative SNPs would return a mean value of 1.0 for the

heritage of the respective ancestry group. For the CEPH

sample the mean value for European ancestry is 0.998

for the |PEU-PAI| set of SNPs, 0.986 for the contrast

|PEU-PAF|, and 0.990 when estimated with all 1300 SNPs,

with the AI and AF ancestry estimates being close to 0.0.

However, when EU ancestry is estimated in the HapMap

CEU sample using only the 400 SNPs maximized for the

|PAI-PAF| contrast, then Ex(EU) = 1.0 is not met and the

mean estimates become unstable: EU = 0.656, AI = 0.185,

and AF = 0.159. The same pattern holds for AF estimates

in HapMap LWK and YRI and for AI estimates in the

Pima; when the ancestral component is not part of the

maximized contrast, then the maximum likelihood

model becomes unstable and returns unreliable, incor-

rect estimates for individual ancestry. When the 3 sets of

maximized markers are pooled, however, the model

returns stable, correct estimates (Table 4, Fig. 2).

The above analysis was repeated for the 4 ancestral

samples using the STRUCTURE Bayesian cluster

method with 3 ancestral components, EU, AI, and AF

(K = 3) and gave very similar results to those presented

in Table 4 and Fig. 2 (Additional file 4: Table S1,

Additional file 5: Figures S1–S4). In two instances for

the Pima Indians, for maximized contrasts |PAI-PAF|

and |PEU-PAI|, the Bayesian method did not return

the expected value of AI even when the information

in the contrast was maximized for this ancestral com-

ponent. When the 1300 SNPs with balanced informa-

tion were incorporated into the STRUCTURE

program, it returned the expected mean values and

proportions of ancestry in the four ancestral samples

(Additional file 5: Figures S1 and S5).

The maximum likelihood individual ancestry algo-

rithm was then applied to the four FIND samples using

the pooled set of 1300 SNPs (Table 5, Fig. 3). For the

FIND European Americans the EU component had a

mean of 0.961 (mean standard error for individual an-

cestry, 0.008), with small mean proportions for AI and

AF. American Indians in the FIND had a large AI mean

estimate, 0.945 (0.007), with small components for EU

and AF. The primary heritage in the FIND African

Americans is AF, 0.830 (0.008), with the balance being

primarily from European heritage, 0.149 (0.009). The

FIND Mexican Americans represent their complex ori-

gin from the three heritage groups: EU 0.476 (0.012), AI

0.447 (0.011), and AF 0.077 (0.011).

The standard error for each individual ancestry esti-

mate was calculated from the 2x2 information matrix for

each person over the vector of non-missing SNPs for the

estimate. Figure 4 illustrates the effect on the standard

error of adding SNPs to the estimate. The cumulative

standard error was calculated for SNPs 1 to 1300, in

chromosome and position order, and then averaged at

each point over the four FIND populations for the EU,

AI, and AF ancestral components. To insure a mean

standard error <0.01, approximately 700 SNPs are neces-

sary for the maximum likelihood model.

The performance of these markers in an admixed

population using the Bayesian method was assessed by

the STRUCTURE program for the FIND Mexican Amer-

icans with 3 ancestry components (K = 3). When geno-

typic data representative of the three ancestral reference

populations were included (CEU, YRI + LWK, Pima In-

dians), the overall admixture proportions were very simi-

lar to those obtained with the maximum likelihood

method (Fig. 5, Panel a). Since individual level data may

not be readily available for a suitable American Indian

Table 2 Measures for balancing information (standard deviation) in the three information contrasts

Information contrast

Information |PEU-PAI| |PEU-PAF| |PAI-PAF|

Number of SNPs N = 450 N = 450 N = 400

Information-for-Assignment, In 37.3 37.3 36.7

Mean δ 0.529 (0.022) N = 450 0.528 (0.022) N = 450 0.542 (0.027) N = 400

All SNPs N = 1300

Information-for-Assignment, In 56.5 56.9 58.3

Mean δ 0.351 (0.132) 0.364 (0.121) 0.350 (0.130)

Table 3 Mean Fst (standard deviation) in individual and combined contrasts

Information contrast

|PEU-PAI| |PEU-PAF| |PAI-PAF|

Fst by contrast 0.516 (0.023) N = 450 0.381 (0.015) N = 450 0.437 (0.035) N = 400

Fst over all contrasts N = 1300 0.502 (0.036) 0.367 (0.018) 0.421 (0.028)
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Table 4 Mean (standard deviation) of source samples for AIMs typed with the 3 sets of informative markers

SNPs in estimates Source samples for AIMs

HapMap CEU, N = 165 HapMap LWK, N = 110 HapMap YRI, N = 193 Pima, N = 964

EU AI AF EU AI AF EU AI AF EU AI AF

|PEU-PAI| N = 450 .988 (.022) .004 (.010) .008 (.021) .163 (.182) .144 (.180) .693 (.359) .133 (.175) .152 (.178) .715 (.349) .004 (.029) .985 (.065) .011 (.053)

|PEU-PAF| N = 450 .986 (.023) .010 (.022) .004 (.010) .010 (.015) .017 (.030) .972 (.028) .001 (.003) .004 (.012) .995 (.012) .143 (.169) .715 (.325) .142 (.164)

|PAI-PAF| N = 400 .656 (.403) .185 (.221) .159 (.186) .012 (.022) .008 (.015) .980 (.023) .004 (.016) .002 (.006) .994 (.017) .009 (.049) .988 (.055) .003 (.017)

All SNPs N = 1300 .990 (.014) .005 (.010) .005 (.010) .015 (.015) .007 (.011 .978 (.016) .001 (.004) .002 (.007) .996 (.008) .007 (.039) .989 (.048) .003 (.021)

Each set is maximized for information in one contrast, and with all combined SNPs

EU European ancestry, AI American Indian ancestry, AF African ancestry
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reference population, the analyses were repeated without

including the Pima data as a reference. In this situation,

the Amerindian component in the FIND Mexican

American participants was modestly overestimated in

comparison to the case when the Pimas were included,

while the European component was underestimated

(Fig. 5, Panel b).

An alternate method for controlling for population

structure in GWAS is to calculate the PCs from the

samples. To compare the PC and heritage estimates, a

Pearson correlation coefficient was calculated for the 3

admixture components and the first 2 PCs for the com-

bined sample (N = 4391). The EU heritage component

was highly correlated with PC2 [0.9954 (95 % C.I.

0.9951, 0.9957)], while the AF heritage had a more

modest correlation [0.9111 (0.9060, 0.9160)] with PC1.

American Indian heritage was negatively correlated

with both PC1 and PC2 [−0.8600 (−0.8675, −0.8521)

and −0.5067 (−0.5283, −0.4843)]. When the three ad-

mixture components were each used as a dependent

variable in a linear regression with PC1 and PC2 as ex-

planatory variables, the R-square values were close to

1.0: EU (0.995), AI (0.996), and AF (0.996).

To assess the potential role of ancestry in confounding

associations with diabetic nephropathy, each of the three

heritage estimates was first tested singly for association,

with the covariates, for each of the 4 FIND populations

(Additional file 4: Tables S2, S3 and S4). While the vari-

ables enrolled age, sex, and enrolment center were con-

sistently associated with the disease, there was no

significant association with any individual heritage

variable when tested within each sample. However, when

the samples were combined (N = 4126) it introduced

population structure and each heritage variable had a

significant odds ratio when tested singly in the model:

EU odds ratio 0.338, p < 0.0001; AI 1.960, 0.028; and AF

2.519, p < 0.0001;

Logistic regressions were repeated in the combined

sample with the same covariates and two individual heri-

tage variables at a time (Table 6, Additional file 4: Tables

S3 and S4). Given that the heritage values for each per-

son sum to 1.0, the variable that is left out of the logistic

model is the reference for the other two in the computa-

tion of the odds ratio. When EU and AI are included,

with AF as a reference, EU is significantly less than 1.0

while the 95 % confidence contrast of AI includes 1.0.

When EU and AF are in the same model, with AI as a

reference, a similar pattern results. Finally, when EU is

the reference for AI and AF, both covariates have odds

ratios greater than 1.0: AI 3.762, p < 0.0001 and AF

2.956, p < 0.0001.

Discussion

A panel of SNPs informative for African, American Indian

and European ancestry

A panel of 1300 SNPs was developed which can serve as

informative markers for African, American Indian and

European ancestry; these ancestry components are often

of interest in genetic epidemiologic studies of pop-

ulations from the Americas. Although other similar

marker panels have been developed, the samples used as

the American Indian ancestral group were few and

Fig. 2 Mean ancestry when estimated with three sets of SNPs, each set maximized for information in one contrast. Each of the ancestral

populations was modeled by samples from HapMap or from the Pima Indian GWAS. Three sets of SNPs were each maximized for information in
one of the three contrasts and then used to estimate the respective mean ancestry (CEU, European (EU); LWK and YRI, African (AF); Pima,

American Indian (AI)) in each sample, with the expectation of a mean of 1.0. When the ancestry of the sample was not represented in the
maximized contrast set, then the estimates of individual ancestry become unstable with large error
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Table 5 Mean (standard deviation) and range for individual heritage and standard error estimates for FIND populations

EU AI AF

Heritage Standard error Heritage Standard error Heritage Standard error

FIND population N Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range

European American 826 .961 (.090) .059–1.0 .008 (.002) .002–.014 0.014 (.023) 0–.237 .011 (.002) .003–.015 0.025 (.084) 0–.923 .008 (.002) .001–.014

American Indian 869 .045 (.090) 0–.712 .009 (.003) .002–.017 0.945 (.111) 0–1.0 .007 (.003) .001–.016 0.010 (.049) 0–.866 .007 (.002) .001–.015

Mexican American 1451 .476 (.134) 0–.974 .012 (.001) .006–.015 0.447 (.140) 0–1.0 .011 (.001) .004–.015 0.077 (.053) 0–.845 .011 (.001) .005–.014

African American 1385 .149 (.104) 0–.638 .009 (.002) .002–.016 0.021 (.030) 0–.539 .010 (.002) .002–.016 0.830 (.111) .058–1.0 .008 (.002) .001–.014

IGA estimates were computed with 1300 Ancestry Informative Markers and a 3 Ancestral components Model

EU European heritage, AI American Indian heritage, AF African heritage

W
illia

m
s
e
t
a
l.
B
M
C
G
e
n
o
m
ic
s

 (2
0

1
6

) 1
7

:3
2

5
 

P
a
g
e
9
o
f
1
7



potentially admixed. The present panel was developed

using a large sample of American Indians; although the

samples derived from a single tribe, the Pima Indians of

Arizona, there is minimal European admixture in this

population [10]. The SNPs are useful for estimation of

global ancestry across the genome. Estimation of local

ancestry at specific genomic regions requires more dense

genotypic data, which may not be available to all

investigators. Although local ancestry estimates can be

useful for mapping studies, when they are used as covar-

iates it can result in over-adjustment, whereas adjust-

ment for global ancestry is more useful to reduce

confounding in GWAS [19–21]. Further, the association

of global ancestry with disease risk may be of interest in

itself in some genetic epidemiologic applications. Thus,

the present set of SNPs, or a subset of them, may be

Fig. 3 Mean heritage for persons who self-identify in the FIND study. Legend: Mean estimates are presented for the three components of individual
ancestry in the FIND samples. For European Americans, American Indians, and African Americans the expected largest component is >0.8, while for

Mexican Americans the European and American Indian components are similar. EU: European Ancestry; AI: American Indian Ancestry; AF:
African Ancestry

Fig. 4 Mean standard error of individual heritage estimates in four FIND samples by number of SNP Loci. The mean standard error of the
individual ancestry estimates was calculated across the 4 FIND samples at 1300 points, adding each successive SNP to the calculation in

chromosome and position order (EU, dotted line; AI, dashed line; AF, solid line). After the addition of about 200 informative SNPs, the standard
error falls below 0.02 and decreases further at a slower rate with each additional locus. It takes approximately 700 SNPs in the estimates to have a

mean standard error <0.01
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useful for genetic epidemiologic studies. If a subset of

the markers is chosen, it is important to balance the in-

formation regarding the contrasts among ancestral

populations.

An information contrast will only return reliable estimates

for two ancestral populations

When a model for individual ancestry estimates has only

two ancestral populations in the AIMs set, then the bal-

ance of the model is not in question because there is

only one allele frequency contrast for each AIM, |P1-P2|.

However, when a poly-ancestry model (>2) is created,

then all allele frequency difference contrasts must be

considered. For a model with 3 ancestral populations

(Fig. 1) the contrasts |P1-P2|, |P1-P3|, and |P2-P3| must

be integrated into the estimates. But, as we have shown,

each contrast is still only reliably informative for the two

ancestral populations in it.

We chose to demonstrate this with the extreme case

by choosing 3 sets of AIMs that were each maximized

for information in only one contrast (δ ≥ 0.5 in the

chosen contrast and δ < 0.3 in the other two) and then

Fig. 5 Estimates of individual heritage for the FIND Mexican American sample with and without the Pima genotypes. Panel a has the estimates
from STRUCTURE while using the 1300 genotypes from the Pima, CEU, LWK, and YRI samples. These are very similar to the estimates obtained

from the maximum likelihood method that is presented in Panel c. When the Pima genotypes were removed from the STRUCTURE analysis, the
amount of American Indian ancestry was overestimated in the Mexican sample in Panel b. It is recommend that, in the latter situation, maximum

likelihood returns the better estimates of individual heritage

Table 6 Tests for the association of heritage with diabetic nephropathy in the combined FIND populations, N = 4126

EU heritage p AI heritage p AF heritage p

Model 1 0.311 (.232, .418) <.0001 1.031 (.547, 1.944) 0.924 Reference

Model 2 0.269 (.143, .507) <.0001 Reference 0.748 (.381, 1.468) 0.398

Model 3 Reference 3.762 (1.958, 7.228) <.0001 2.956 (2.212, 3.947) <.0001

Logistic models have two heritage variables in addition to explanatory variables Enrolled-Age, Sex, and Enrolment Center. Results are presented as Odds Ratios

(95 % C.I.). (For covariate results see Additional file 4: Tables S3 and S4.)
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using each set to estimate all of the ancestral compo-

nents (Table 4). When the ancestry is for one of the two

ancestral populations in the contrast, then the maximum

likelihood model is balanced and provides accurate esti-

mates. When one tries to estimate an ancestral compo-

nent for which the markers contained in the maximized

contrast set are not informative, then the model is un-

balanced and the estimates are not correct. Also, the

error in the unbalanced design appears to be random

and distributed equally in the two ancestral components

that are not part of the ancestral sample. In addition, if

no standard error of the estimate is computed, there are

no internal signals that would indicate that the estimates

are incorrect. When the information is unbalanced, the

internal signal for incorrect estimates is a large standard

error. Even with the unbalanced design, the computer al-

gorithm maximizes the likelihood and provides 3 esti-

mates of ancestry for each person. This fact highlights

the need to validate each set of SNPs that is incorpo-

rated into a maximum likelihood model for ancestry by

testing them with the individuals in the ancestral popu-

lations from which the AIMs were chosen: the expected

mean value should be 1.0 for the respective ancestral

component.

Accurate ancestry estimates require careful balancing of

information between contrasts

To insure the accuracy of the ancestry estimates the in-

formation in the 3 contrasts of the 3-ancestry model

must be balanced (Table 2). There are many approaches

possible to address this problem The key is to balance

the information over all SNPs for the three contrasts,

whether or not a single AIM is informative for either

one or two contrasts. This becomes more difficult with

two-contrast informative SNPs because, when trying to

balance the model, each addition or subtraction affects

two information statistics. One strategy, shown in the

present work, is to choose three sets of single contrast

informative SNPs. A second approach is to choose a set

of double informative SNPs, such as ones with |P1-P2|

and |P1-P3| informative, and balance these with single

informative |P2-P3| loci.

Using a Bayesian clustering method with K = 3 does not

obviate the need for balanced information in the ancestry

markers

Repeating the individual admixture estimates using the

STRUCTURE program (K = 3) gave similar results to the

fixed parental allele frequency algorithm but showed, in

addition, that it was even more sensitive to imbalances

in information. It did not return the expected mean

value of AI for Pima Indians even when the contrast,

|PAI-PAF| or |PEU-PAI|, was maximized for this compo-

nent (Additional file 4: Table S1); whereas the fixed

parental allele algorithm always returned the correct

mean expected values for the components maximized in

the contrast when all 3 components were being simul-

taneously estimated (Table 4, Fig. 2). When the Bayesian

cluster algorithm was used with all 1300 SNPs with bal-

anced information, it returned the appropriate mean ex-

pected values for all ancestry samples. This further

illustrates the need for careful balancing of the ancestral

information when selecting markers, irrespective of

whether the algorithm uses a classical method such as

maximum likelihood or a more recent method such as

STRUCTURE.

Previous studies have shown that, given sufficient in-

formation, maximum likelihood methods, Bayesian

methods such as STRUCTURE and hybrid methods pro-

duce similar admixture estimates [22, 23]. For optimal

ancestry estimates, all methods require information on

allele frequencies in the ancestral populations, either by

taking them as known quantities, as in the classic max-

imum likelihood method used here, or by inclusion of

genotypes from representative ancestral reference groups

as in STRUCTURE [22, 23]. Raw genotypic data from a

suitable American Indian reference ancestry population

may not be readily available, however, and in the absence

of these data there was a modest overestimation of the

Amerindian component in the FIND Mexican Ameri-

cans when STRUCTURE was used (Fig. 5, Panel b). In

the absence of genotypic data from an American Indian

reference ancestry group, the maximum likelihood

method with specified ancestral allele frequencies is

preferable (Fig. 5, Panel c). Given genotypes on some of

the AIMS, this method can be readily implemented with

the allele frequencies provided in supplementary tables

of American Indian (Pima) SNP allele frequencies used

in the present study.

Balancing information in contrasts minimizes the error in

replicate tests

A second set of 975 AIMs (Additional file 6) was chosen

to investigate the error when individual heritage is esti-

mated in the same person with two balanced sets of

SNPs. It was also applied to the four ancestral popula-

tions in the present study and the distribution of the

heritage differences was examined. For the HapMap

CEU sample the mean difference for EU heritage was

−0.003 with a median and mode value of 0.000 with the

distribution of the differences being relatively symmet-

rical on either side of the mean (Additional file 4: Table

S5). Very similar results were obtained for the distribu-

tions of AF heritage in the HapMap LWK and YRI sam-

ples and for AI heritage in the Pima. Therefore

balancing information in the contrasts of the AIMs cre-

ates “correct” estimates of individual heritage by minim-

izing error inherent in the algorithm and the vector of
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AIMs, and emphasizes the importance of including the

standard error or 95 % confidence contrasts with any

point estimate of individual genetic heritage.

The FIND samples

The distribution of mean IGA in the FIND samples rep-

resents the creation of new American populations from

immigrants from historically separated parental groups.

African Americans in the FIND have 83.3 % of their gen-

ome derived from Africa and about 15.1 % from Europe,

while there is only a small component from American

Indians (Table 5). The genetic composition of African

American populations can vary greatly by geograph-

ical location, whether urban or rural, north or south.

Parra et al. [24] estimated EU by weighted least squares

(WLS) in 10 urban African American samples and re-

ported proportions from 0.116 (Charleston, S.C.) to 0.225

(New Orleans). An isolated population, the Gullah Sea Is-

landers off the coast of South Carolina, had an EU contri-

bution of only 0.035 [25]. A more recent estimate of IGA

in 228 African Americans recruited by the University of

Connecticut Health Center reported: EU, 0.17; AF, 0.75;

and AI, 0.08 [26]. Therefore the proportion of EU-derived

genes in the FIND AA sample accords well with reports

for urban African Americans in the United States.

Persons who self-identify as Mexican Americans in the

southwest United States have reported admixture that is

consistent from California to Texas. Long et al., in 730

unrelated persons from paternity tests in Arizona, re-

ported WLS proportions EU 0.68, AI 0.29, and AF 0.03

and that these proportions are within one standard error

of the mean from proportions reported from San

Antonio, Texas, and Los Angeles, California [27]. The

Arizona sample was later enlarged to 2249 persons with

revised WLS proportions EU 0.616, AI 0.314, and AF

0.071 and correspondingly smaller standard errors.

Additional Mexican American admixture proportions

(EU, AI and AF, respectively) have been reported from

the San Antonio Diabetes Study (0.502, 0.464, 0.031)

and the San Antonio center for Biomarkers of Risk of

Prostate Cancer (0.589, 0.382, 0.029) [28]. In two case–

control studies of breast cancer in Latinas in the San

Francisco Bay area, genetic admixture was measured;

Fejerman et al. reported proportions EU 0.53, AI 0.40,

AF 0.07 in 597 controls and 0.58, 0.35, 0.07 in 440 cases

in women born in the U.S. [29]; Ziv et al. stratified their

sample by 175 women born in Mexico, EU 0.520, AI

0.443, AF 0.037, and 100 persons born in the U.S. whose

grandparents were Mexican-born, 0.473, 0.478, 0.048

[30]. The FIND Mexican American proportions (Table 5)

fit well within these and other data reported in the lit-

erature, that the European American component is the

largest in the range of 0.45-0.65 followed by a smaller

American Indian component and 0.03–0.07 African

admixture. As the sample size increases, and the number

of American Indian informative SNPs becomes larger in

the estimate, the fraction of European admixture appears

to decrease while that of American Indians increases.

While variation across studies appears to be the norm,

the variation within the FIND Mexican American sample

is relatively consistent when stratified by sex and enrol-

ment center. The 554 males (EU 0.482, AI 0.446, AF

0.072) and the 846 females (EU 0.467, AI 0.456, AF 0.077)

are well within one standard deviation for all three pro-

portions. When the 4 enrolment centers that have sample

sizes greater than 25 are considered (center 2, N = 634; 3,

114; 4, 308; and 5, 318), the range of proportions is small:

EU 0.456–0.486, AI 0.443–0.482, and AF 0.071–0.076.

Centers 2, 3, and 5 are in California, while center 4 is in

Texas. Therefore, the FIND Mexican Americans, when

IGA is estimated with the 1300 informative markers, ex-

hibit a relatively uniform distribution of admixture across

a large geographical area.

In contrast with FIND African American and Mexi-

can American samples, the European American and

American Indian samples exhibit small amounts of

genetic admixture (Table 5). Persons who self-identify

as of European heritage have only 1.5 % AI and 2.6 %

AF mean heritage. Full Heritage Pima Indians make

up a large proportion of the 869 American Indians

who were recruited for the FIND; the amount and

origin of their genetic admixture has been reported

[10, 13, 31]. Pima Indians lie on the western end of a

cline of European admixture that has its highest

values in the northeastern United States, falls into

intermediate levels in the Midwestern states, and

reaches its lowest level in the desert southwest. This

cline generally comports with the settlement of the

country by persons of European origin from east to

west. European IGA in the Pima Indians can be

traced primarily to their genetic and cultural relations

with the people of Mexico since the Spanish first en-

tered the new world [10]. The IGA estimates derived

by the present method, and most other commonly

used methods, assume Hardy-Weinberg equilibrium,

and this assumption may not hold in some situations,

such as a case–control study when markers are asso-

ciated with disease; however, simulation studies have

shown that admixture estimates are generally robust

to deviations from Hardy-Weinberg equilibrium [32].

Standard error of the estimate

An advantage of the maximum likelihood method for in-

dividual ancestry estimation is the ability to calculate the

information matrix and invert it for estimates of the var-

iances, because point estimates of population parameters

have little meaning without a measure of error accom-

panying them. Figure 4 illustrates that the standard error
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of individual ancestry has its largest improvement, de-

crease, within the first 100 informative SNPs in the esti-

mates. After this there is steady improvement in the

precision of the numbers, though the average effect of

each additional AIM becomes progressively less. How-

ever, increasing the number of SNPs can have a signifi-

cant effect on the confidence intervals of the individual

heritage estimates. Gaining this additional precision

could be important when the magnitude of estimated

ancestry is small. At approximately 700 SNPs the mean

standard errors are below 0.01, while with 1300 AIMs in

the estimate the average standard error is in the range of

0.006–0.008.

Maximum likelihood ancestry estimates versus principle

components for measuring population structure

In the FIND samples, the principal components derived

from the GWAS SNPs and the ancestry estimates de-

rived from the AIMs capture largely the same informa-

tion, but, as they represent somewhat different functions

of the data, the interpretation of the variables may differ.

The relative advantage of PCs to account for population

structure in association studies, compared to heritage es-

timates, is their relative ease of calculation and they do

not require an a priori specification of ancestral popula-

tions. However their primary disadvantage is the ambi-

guity of their biological meaning. Maximum likelihood

individual ancestry estimates, with standard errors, have

the advantage of a clear biological meaning. Each pro-

portion represents the fraction of alleles in the individ-

ual’s genome from an historical ancestral population.

The disadvantage of the maximum likelihood method as

currently implemented is the need for a large set of par-

ental frequencies that are unlinked, balanced in their in-

formation, and with low replicate error rates in the SNP

genotyping. The computational burden of maximum

likelihood is also higher than for PCs. If these conditions

can be met, however, heritage estimates can have great

utility for tests of admixture equilibrium, monitoring in-

formation, and computing odds ratios as a function of

individual heritage, as well as being used as covariates in

tests of association in GWAS.

Population structure from combining samples leads to

the association of ancestry and diabetic nephropathy

Tests of the association of diabetic nephropathy and IGH

were computed separately for each of the 4 FIND samples

in a logistic regression with enrolled age, sex, and enroll-

ment center as covariates (Additional file 4: Tables S2, S3

and S4); no IGH component had a statistically significant

association with disease in the individual samples. When

the three tests were performed in the combined sample all

IGH components were associated with diabetic nephropa-

thy. To further parse the associations, a second set of

logistic regressions was performed on the combined sam-

ple while assessing two heritage components at a time and

using the third heritage as a reference with sex, enrolled

age, and enrollment center again as covariates (Table 6).

With AF heritage as reference, persons of European heri-

tage are protected from the disease, while persons with AI

heritage do not have an odds ratio statistically different

from 1.0, which suggests that their odds ratio is similar to

those with African heritage. A symmetrical result occurs

when AI heritage is the reference; EU heritage is again

protective while the odds ratio for AF is not statistically

different from 1.0. This is confirmed further by the model

that tests AI and AF heritage with EU as reference, in

which both AI heritage and AF heritage are significantly

greater than 1.0 while their 95 % confidence intervals

overlap. While these estimates cannot necessarily be inter-

preted as reflective of population risk because of the way

that patients are recruited in FIND, the odds ratios result-

ing from the population structure of the combined sample

do generally reflect what is known about the relative oc-

currence and risk of diabetic nephropathy in the 4 heri-

tage groups.

Conclusions

1) Failure to balance AIM information in poly-ancestry

models creates biased estimates of individual admixture

with large error. This occurs whether one employs the

fixed parental allele algorithm for estimating IGA or

the Bayesian clustering method as implemented in the

program STRUCTURE. It is very important to describe

the information contrasts explicitly and then emphasize

the attention to them that is needed to compute

correct estimates with low error because many re-

searchers who are not trained in the details of the

algorithms are downloading code, choosing sets of

AIMs, and applying these to their analysis of

population structure.

2) A set of ancestry informative markers is provided for

estimating American Indian ancestry that reflects an

ancestral tribe from the Paleo-Indian migration

across the Bering Strait, the Pima Indians [33], who

are the most completely characterized Indian

group in North America. These AIMs will be

particularly useful for estimating genetic

admixture in populations from the Americas.

3) A statistic with no measure of error has very limited

meaning and utility. Our method provides the

researcher with a tool to construct 95 % confidence

intervals for IGA and to gage how many SNPs are

necessary to achieve a desired mean error in the

sample.

4) We parse population structure by estimating both

IGA and PCs and show that the two methods are
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highly correlated and useful for adjusting for

structure in association studies, and suggest that

IGA has the further advantage of being a number

that is more easily understood in the context of the

sample than are PCs.

5) We test the association of IGA with diabetic

nephropathy in the FIND in both the individual and

combined samples and demonstrate how combining

samples to increase power in a genome wide

association study can create associations between

ancestry and the disease. We then find that the odds

ratios for the associations of IGA with disease in the

combined sample are consistent with what is known

about the incidence and prevalence of diabetic

nephropathy in these populations. Therefore we

exploit population structure to provide us with

useful information about the relative occurrence of

the disease among the groups.

Data availability

All FIND phenotype and genotype files, except those for

the American Indian subjects, are available from the

dbGAP database (accession number phs000333.v1.p1).

Data for the American Indian subjects are not publically

available for privacy reasons. Interested researchers who

meet the criteria for access to the data can contact: Rob-

ert Hanson (rhanson@phx.niddk.nih.gov) or Clifton

Bogardus (cbogardus@phx.niddk.nih.gov).
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Baltimore; National Institute of Diabetes and Digestive and

Kidney Diseases; University of California, Los Angeles, CA;

University of New Mexico, Albuquerque, NM; University

of Texas Health Science Center at San Antonio, San

Antonio, TX; Wake Forest School of Medicine, Winston-

Salem, NC) approved all procedures, and all study subjects

provided written informed consent. A certificate of confi-

dentiality was filed at the National Institutes of Health.

Consent for publication

Publication of the results of the analyses was part of the

informed consent. No individual-level clinical data were

published.

Appendix

In order to calculate the variance of the ancestral

components the information matrix must first be

computed as
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where the information elements are derived from the

second derivative of the likelihood function. First the hy-

brid frequencies for the gth SNP are calculated with the

maximum likelihood values of the individual admixture

proportions mlm1 and mlm2

PhA1g ¼ p31g þ mlm1Δ1g þ mlm2Δ2g

PhA2g ¼ p32g þ mlm1Δ3g þ mlm2Δ4g :

Each of the G genotypes produces an element for the

three distinct summations in the information matrix.

For genotype A1A1, the three contributions to the

matrix can be computed as:
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For the heterozygote A1A2 the respective contribu-

tions are:
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And for A2A2:

Im1
g ¼ 2Δ3g= PhA2g

� �� �2
= PhA2g

� �2

Im1m2
g ¼

4Δ3gΔ4g
� �

PhA2g

� �2

 !

= PhA2g

� �2

Im2
g ¼ 2Δ4g= PhA2g

� �� �2
= PhA2g

� �2
:

The variances and covariance are calculated as
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:

Additional files

Additional file 1: RCWilliamsContrastEU_AI450AIMs. (XLSX 60 kb)

Additional file 2: RCWilliamsContrastEU_AF450AIMs. (XLSX 60 kb)

Additional file 3: RCWilliamsContrastAI_AF400AIMS. (XLSX 55 kb)

Additional file 4: Table S1. Mean of Source Samples for AIMs typed
with the STRUCTURE Software Program (K = 3). Table S2. Tests for the
Association of Heritage with Diabetic Nephropathy in the FIND
Populations. Table S3. Beta Coefficients for Enrolment Centers in the
Logistic Regressions for the FIND Study. Table S4. Beta Coefficients for
Sex (Women) and Enrolment Age in the Logistic Regressions for the FIND
Study. Table S5. Distribution of the Differences in Individual Genetic
Heritage for Estimates from Two, Independent, Balanced Sets of SNPs:
1300 AIMs in the first and 975 AIMs in the second. (DOCX 24 kb)

Additional file 5: Figure S1. Repeating the individual admixture
estimates using the STRUCTURE program (K=3). Figure S2. STRUCTURE
estimates for four ancestral populations with 400 SNPs maximized for the
American Indian-African contrast. Figure S3. STRUCTURE estimates for four
ancestral populations with 450 SNPs maximized for the European-American
Indian contrast. Figure S4. STRUCTURE estimates for four ancestral popula-
tions with 450 SNPs maximized for the European-African contrast. Figure S5.

STRUCTURE estimates for four ancestral populations with all 1300 SNPs with
balanced information for each contrast. (DOCX 1104 kb)

Additional file 6: RCWilliamsBalanced975AIMs. (XLSX 120 kb)

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RCW chose the ancestry informative markers, performed the analyses with
the fixed parental allele algorithm, created and wrote the algorithm for the
standard error of the estimate for IGA, performed the associations of IGA
with diabetic nephropathy, wrote the first draft of the manuscript, and is the
corresponding author. PK performed the analyses with the program
STRUCTURE that implements the Bayesian clustering method for estimating
IGA. RCW, RCE, WCK, and RLH formed the writing group that critiqued the
MS and suggested modifications and new analyses. Authors WCK, RCE, SA,
DWB, JD, BIF, RPI, EI, SKI, PLK, MJK, OK, CDL, DJL, RGN, SBN, MVP, RSP, JIR,
JRS(1), JRS(2), VOS, MWS, KDT, FT, DTB, CAW, XG, PZ and RLH participated in
the design and implementation of the main FIND. Authors PK, SA, DWB, JD,
BIF, RPI, EI, SKI, PLK, MJK, OK, CDL, DJL, RGN, SBN, MVP, RSP, JIR, JRS(1), JRS(2),
VOS, MWS, KDT, FT, DTB, CAW, XG, PZ read and approved the final
manuscript. Coauthor Hanna E. Abboud died during the preparation of the
manuscript and its peer-review. The corresponding author RCW has shared
drafts and communications with all of the living coauthors who have read
the material and approved its publication.

Acknowledgements

A list of the members of the FIND Research Group follows (key: *Principal
Investigator; **Co-investigator; #Program Coordinator; §University of
California, Davis; †University of California, Irvine; ‡Study Chair). Genetic
Analysis and Data Coordinating Center, Case Western Reserve University: *S.K.

Iyengar,**R.C. Elston,**K.A.B. Goddard,**J.M. Olson, S. Ialacci, # J. Fondran, A.
Horvath, R. Igo Jr, G. Jun, K. Kramp, J. Molineros, S.R.E. Quade; Case Western
Reserve University: *J.R. Sedor, **J. Schelling, #A. Pickens, L. Humbert, L. Getz-
Fradley; Harbor-University of California Los Angeles Medical Center: *S. Adler,
**E. Ipp, **†M. Pahl, **§M.F. Seldin, ** S. Snyder, **J. Tayek, #E. Hernandez, #J.
LaPage, C. Garcia, J. Gonzalez, M. Aguilar; Johns Hopkins University: *M. Klag,
*R. Parekh, **L. Kao, **L. Meoni, T. Whitehead, #J. Chester; NIDDK, Phoenix,
AZ: *W.C. Knowler, **R.L. Hanson, **R.G. Nelson, **J. Wolford, #L. Jones, R.
Juan, R. Lovelace, C. Luethe, L.M. Phillips, J. Sewemaenewa, I. Sili, B. Waseta;
University of California, Los Angeles: *M.F. Saad, *S.B. Nicholas, **Y.-D.I. Chen,
**X. Guo, **J. Rotter, **K. Taylor, M. Budgett, #F. Hariri; University of New
Mexico, Albuquerque: *P. Zager, *V. Shah, **M. Scavini, #A. Bobelu; University
of Texas Health Science Center at San Antonio: *H. Abboud, **N. Arar, **R.
Duggirala, **B.S. Kasinath, **F. Thameem, **M. Stern; Wake-Forest University:
*‡B.I. Freedman, **D.W. Bowden, **C.D. Langefeld, **S.C. Satko, **S.S. Rich, #S.
Warren, S. Viverette, G. Brooks, R. Young, M. Spainhour; Laboratory of Gen-
omic Diversity, National Cancer Institute, Frederick, MD: *C. Winkler, **M.W.
Smith, M. Thompson, #R. Hanson, B. Kessing; Minority Recruitment Centers:
Loyola University: *D.J. Leehey, #G. Barone; University of Alabama at Birming-
ham: *D. Thornley-Brown, #C. Jefferson; University of Chicago: *O.F. Kohn,
#C.S. Brown; NIDDK program office: J.P. Briggs, P.L. Kimmel, R. Rasooly; Exter-
nal Advisory Committee: D. Warnock (chair), L. Cardon, R. Chakraborty, G.M.
Dunston, T. Hostetter, S.J. O’Brien (ad hoc), J. Rioux, R. Spielman. We acknow-
ledge the contributions of the Wake Forest participants and coordinators
Joyce Byers, Carrie Smith, Mitzie Spainhour, Cassandra Bethea, and Sharon
Warren and the contributions of FIND participants and physicians and
CHOICE patients, staff, laboratory, and physicians at Dialysis Clinic Inc. and
Johns Hopkins University.

Support

This study was supported in part by National Institutes of Health (NIH) grants
R01 DK 070941 and R01 DK 084149 (Dr. Freedman) and R01 DK53591 (Dr.
Bowden). Dr. Bostrom was supported by F32 DK080617 from the National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Computing
resources were provided by the Wake Forest University Health Sciences
Center for Public Health Genomics. This study was also supported by FIND
grants U01DK57292, U01DK57329, U01DK057300, U01DK057298,
U01DK057249, U01DK57295, U01DK070657, U01DK057303, U01DK070657,
U01DK57304 and CHOICE study DK07024 from the NIDDK and in part by the
Intramural Research Program of the NIDDK. This project has been funded in
whole or in part with federal funds from the NIH National Cancer Institute
(NCI) under contract HHSN26120080001E and the Intramural Research
Program of the NIH-NCI Center for Cancer Research. This work also was sup-
ported by the National Center for Research Resources for the General Clinical
Research Center grants: Case Western Reserve University, M01-RR-000080;
Wake Forest University,M01-RR-07122; Harbor–University of California, Los
Angeles Medical Center, M01-RR-00425; College of Medicine, University of
California, Irvine, M01-RR-00827-29; University of New Mexico, HSC M01-RR-
00997; and Frederic C. Bartter, M01-RR-01346. The CHOICE Study was sup-
ported in part by HS08365 from the Agency for Healthcare Research and
Quality, Rockville, MD, and HL62985 from the National Heart, Lung, and
Blood Institute, Bethesda, MD. Genotyping was performed by the Center for
Inherited Disease Research, which is fully funded through a federal contract
from the NIH to Johns Hopkins University (N01-HG-65403).

Author details
1Phoenix Epidemiology and Clinical Research Branch, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
Phoenix, AZ 85014, USA. 2Genetic Analysis and Data Coordinating Center,
Case Western Reserve University, Cleveland, OH 44104, USA. 3Division of
Nephrology, The University of Texas Health Science Center, San Antonio, TX
78229, USA. 4Department of Nephrology, Harbor-UCLA Medical Center,
Torrance, CA 90502, USA. 5Wake Forest School of Medicine, Winston-Salem,
NC 27157, USA. 6National Institute of Diabetes and Digestive and Kidney
Diseases, Bethesda, MD 20892, USA. 7Welch Center for Prevention,
Epidemiology, and Clinical Research, Baltimore, MD 21205, USA. 8The
University of Chicago Medical Center, Chicago, IL 60637, USA. 9Loyola
University Medical Center, Chicago, IL 60153, USA. 10Divisions of Nephrology
and Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles,
CA 90095, USA. 11Division of Nephrology and Hypertension, Department of
Medicine, UC Irvine School of Medicine, University of California, Orange

Williams et al. BMC Genomics  (2016) 17:325 Page 16 of 17

dx.doi.org/10.1186/s12864-016-2654-x
dx.doi.org/10.1186/s12864-016-2654-x
dx.doi.org/10.1186/s12864-016-2654-x
dx.doi.org/10.1186/s12864-016-2654-x
dx.doi.org/10.1186/s12864-016-2654-x
dx.doi.org/10.1186/s12864-016-2654-x


92868, CA, USA. 12Hospital for Sick Children, University Health Network and
the University of Toronto, Ontario M5G1X8, Canada. 13Institute for
Translational Genomics and Population Sciences, Los Angeles Biomedical
Research Institute and Department of Pediatrics, Harbor-UCLA Medical
Center, Torrance, CA 90502, USA. 14Departments of Medicine and Physiology
and Biophysics, Case Western Reserve University, Cleveland, OH 44104, USA.
15The University of New Mexico, Albuquerque, NM 87131, USA. 16National
Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
17Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
City, Kuwait. 18The University of Alabama at Birmingham, Birmingham, AL
35233, USA. 19Center for Cancer Research, National Cancer Institute, NIH,
Leidos Biomedical, Inc., Frederick National Laboratory for Cancer Research,
Frederick, MD 21702, USA.

Received: 18 December 2015 Accepted: 22 April 2016

References

1. Knowler WC, Coresh J, Elston RC, Freedman BI, Iyengar SK, Kimmel PL, et al.
The family investigation of nephropathy and diabetes (FIND) Design and
Methods. J Diabetes Complicat. 2005;19:1–9.

2. Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, Arar NH, Bowden
DW, Family Investigation of Nephropathy and Diabetes Research Group,
et al. Genome-wide scans for diabetic nephropathy and albuminuria in
multiethnic populations: the family investigation of nephropathy and
diabetes (FIND). Diabetes. 2007;56:1577–85.

3. Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Family
Investigation of Nephropathy and Diabetes Research Group, et al. MYH9 is
associated with nondiabetic and end-stage renal disease in African
Americans. Nat Genet. 2008;40:1185–92.

4. Iyengar S, Sedor JR, Freedman BI, Kao WHL, Kretzler M, Keller BJ, et al.
Genome-wide association and trans-ethnic meta-analysis for advanced
diabetic kidney disease: Family Investigation of Nephropathy and Diabetes
(FIND). PLoS Genet. 2015;11(8):e1005352. doi:10.1371/journal.pgen.1005352.

5. Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M.
Genome-wide association studies in diverse populations. Nat Rev Genet.
2010;11:356–66.

6. Knowler WC, Pettitt DJ, Saad MF, Bennett PF. Diabetes mellitus in the
Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab
Rev. 1990;6:1–27.

7. Hanson RL, Muller YL, Kobes S, Guo T, Bian L, Ossowski V, et al. A genome-
wide association study in American Indians implicates DNER as
susceptibility locus for type 2 diabetes. Diabetes. 2014;63:369–76.

8. Malhotra A, Kobes S, Knowler WC, Baier L, Bogardus C, Hanson RL. A
genome-wide association study of BMI in American Indians. Obesity. 2011;
19:2102–6.

9. Hanson RL, Bogardus C, Duggan D, Kobes S, Knowlton M, Infante AM, et al.
A search for variants associated with young-onset type 2 diabetes in
American Indians in a 100 K genotyping array. Diabetes. 2007;56:3045–52.

10. Williams RC, Knowler WC, Pettitt DJ, Long JC, Rokala DA, Polesky HF, et al.
The magnitude and origin of European admixture in the Gila River Indian
Community of Arizona: A union of genetics and demography. Am J Hum
Genet. 1992;51:101–10.

11. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, et al.
Integrated detection and population-genetic analysis of SNPs and copy
number variation. Nat Genet. 2008;40:1166–74.

12. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, et al.
Integrated genotype calling and association analysis of SNPs, common copy
number polymorphisms and rare CNVs. Nat Genet. 2008;40:1253–60.

13. Williams RC, Long JC, Hanson RL, Sievers ML, Knowler WC. Individual
estimates of European genetic admixture associated with lower body-mass
index, plasma glucose, and prevalence of type 2 diabetes in Pima Indians.
Am J Hum Genet. 2000;66:527–38.

14. Li CC. A first course in population genetics. Pacific Grove: The Boxwood
Press; 1976.

15. The International HapMap Consortium. The International HapMap Project.
Nature. 2003;426:789–96.

16. Rosenberg NA, Li LM, Ward R, Pritchard JK. Informativeness of genetic
markers for inference of ancestry. Am J Hum Genet. 2003;73:1402–22.

17. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population
structure. Evolution. 1984;38:1358–70.

18. Pritchard JK, Stephens M, Donnelly P. Inference of population structure
using multilocus genotype data. Genetics. 2000;155:945–59.

19. Liu J, Lewinger JP, Gilliland FD, Gauderman WJ, Conti DV. Confounding and
heterogeneity in genetic association studies with admixed populations. Am
J Epidemiol. 2013;177:351–60.

20. Zhang J, Stram DO. The role of local ancestry adjustment in association
studies using admixed populations. Genet Epidemiol. 2014;38:502–15.

21. Martin ER, Tunc I, Liu Z, Schmidt MA, Bustamante CD, Beecham GW.
Confounded by ancestry? Considerations for ancestry adjustments in
genetic association tests. (Abstract #1786M). Presented at the 64th Annual
Meeting of The American Society of Human Genetics, October 20, 2014 in
San Diego, CA; 2014.

22. Tang H, Peng J, Wang P, Risch NJ. Estimation of individual admixture: analytical
and study design considerations. Genet Epidemiol. 2005;28:289–301.

23. Tsai HJ, Choudhry S, Naqvi M, Rodriguez-Cintron W, Burchard EG, Ziv E.
Comparison of three methods to estimate genetic ancestry and control for
stratification in genetic association studies among admixed populations.
Hum Genet. 2005;118:424–33.

24. Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R, et al.
Estimating African American admixture proportions by use of population-
specific alleles. Am J Hum Genet. 1998;63:1839–51.

25. Parra EJ, Kittles RA, Argyropoulos G, Pfaff CL, Hiester K, Bonilla C, et al. Ancestral
proportions and admixture dynamics in geographically defined African
Americans living in South Carolina. Am J Phys Anthropol. 2001;114:18–29.

26. Halder I, Yang BA, Kranzler HR, Stein MB, Shriver MD, Gelernter J.
Measurement of admixture proportions and description of admixture
structure in different US populations. Hum Mutat. 2009;30:1299–309.

27. Long JC, Williams RC, McAuley JE, Medis R, Partel R, Tregellas WM, et al.
Genetic variation in Arizona Mexican Americans: Estimation of Admixture
Proportions. Am J Phys Anthropol. 1991;84:141–57.

28. Beuten J, Halder I, Fowler SP, Goring HHH, Duggirala R, Arya R, et al. Wide
disparity in genetic admixture among Mexican Americans from San
Antonio, TX. Ann Hum Genet. 2011;75:529–38.

29. Fejerman L, John EM, Huntsman S, Beckman K, Choudhry S, Perez-Stable E,
et al. Genetic ancestry and risk of breast cancer among U.S. Latinas. Cancer
Res. 2008;68:9723–8.

30. Ziv E, John EM, Choudhry S, Kho J, Lorizio W, Perez-Stable EJ, et al. Genetic
ancestry and risk factors for breast cancer among Latinas in the San
Francisco Bay area. Cancer Epidemiol Biomarkers Prev. 2006;15:1878–85.

31. Williams RC, Steinberg AG, Knowler WC, Pettitt DJ. Gm3;5,13,14 and stated-
admixture: independent estimates of admixture in American Indians. Am J
Hum Genet. 1986;39:409–13.

32. Bansal V, Libiger O. Fast individual ancestry inference from DNA sequence
data leveraging allele frequencies for multiple populations. BMC
Bioinformatics. 2014;16:4. doi:10.1186/s12859-014-0418-7. Published online
2015 Jan 16.

33. Williams RC, Steinberg AG, Gershowitz H, Bennett PH, Knowler WC, Pettitt DJ,
et al. Gm allotypes in Native Americans: Evidence for three distinct migrations
across the Bering Land Bridge. Am J Phys Anthropol. 1985;66:1–19.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Williams et al. BMC Genomics  (2016) 17:325 Page 17 of 17

http://dx.doi.org/10.1371/journal.pgen.1005352
http://dx.doi.org/10.1186/s12859-014-0418-7

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Study participants and phenotypes
	Genotyping
	Statistical methods

	Results
	Discussion
	A panel of SNPs informative for African, American Indian and European ancestry
	An information contrast will only return reliable estimates for two ancestral populations
	Accurate ancestry estimates require careful balancing of information between contrasts
	Using a Bayesian clustering method with K = 3 does not obviate the need for balanced information in the ancestry markers
	Balancing information in contrasts minimizes the error in replicate tests
	The FIND samples
	Standard error of the estimate
	Maximum likelihood ancestry estimates versus principle components for measuring population structure
	Population structure from combining samples leads to the association of ancestry and diabetic nephropathy

	Conclusions
	Data availability
	Ethics approval and consent to participate
	Consent for publication

	Appendix
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Support
	Author details
	References

