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Abstract — In recent years, extensive usage of simulated power 
integrity (PI) models to predict the behavior of power delivery 
networks (PDN) on a chip has become more relevant. Predicting 
adequate performance against power consumption can yield to 
either cheap or costly design solutions. Since PI simulations 
including high-frequency effects are becoming more and more 
computationally complex and expensive, it is critical to develop 
reliable and fast models to understand system’s behavior to 
accelerate decision making during design stages. Hence, 
metamodeling techniques can help to overcome this challenge. In 
this work, a comparative study between different surrogate 
modeling techniques as applied to PI analysis is described. We 
model and analyze a PDN that includes two different power 
domains and a combination of remote sense resistors for 
communication and storage CPU applications. We aim at 
developing reliable and fast coarse models to make trade off 
decisions while complying with voltage levels and power 
consumption requirements. 

Index Terms — DoE, fitting algorithms, neural networks, 
polynomial surrogate modeling, power delivery network, power 
integrity, support vector machines, surrogate model. 

I. INTRODUCTION

The usage and implementation of metamodels, so called 

surrogate based models, has been well explored in signal 

integrity applications such as high speed I/O simulation [1] 

and validation to come up with reasonable equalization tuning 

knobs and maximizing eye’s opening [2], as well as, for 

antennas and high-speed filter design applications [3], [4], or 

study of fault and tolerance analyses [5], [6].  

Power integrity (PI) has important effects on RF and signal 

integrity design, since transmitted data on high-speed 

interconnects can be severely deteriorated if the power sources 

that feed the RF circuitry and buffers is noisy or at improper 

voltage levels. 

The usage of surrogate models for PI applications has not 

been widely exploited yet. An example of its usage is 

described in [7], where machine learning (ML) techniques, 

based on Bayesian optimization (BO), are used to come up 

with a black box system where integrated voltage regulators 

(IVR) and embedded package inductors (EPI) are co-

simulated to design a robust PI solution. 

This paper focuses on the study of different surrogate-based 

modeling techniques, including response surface modeling 

(RSM) [8], polynomial surrogate modeling exploiting the 

multinomial theorem (PSM) [4], and support vector machines 

(SVM) [6], [9], to build parametrized black box models for 

power integrity applications. 

Our paper is organized as follows. In Section II, we describe 

the PI application under study. Section III briefly reviews the 

surrogate-based modeling techniques used. In Section IV, we 

compare the performance of the surrogate models developed 

and identify the best approach. Finally, we state our 

conclusions and indicate some future work. 

II. POWER DELIVERY NETWORK UNDER STUDY

The power delivery network (PDN) under study corresponds 

to a monolithic CPU processor for communication and storage 

applications. It requires sharing two power domains with a 

single voltage regulator (VR). However, these two power 

domains operate with different current and power magnitudes 

at silicon level, requiring an implementation of a dual remote 

sensing feedback scheme at silicon level, as illustrated in Fig. 

1. 

Since it is required that both power domains meet their own 

minimum voltage (Vmin) and power consumption (PD) 

specifications, we need to find optimal sense resistors (Rsense) 

to ensure the right operation at the silicon. To achieve this, 

engineers typically rely on their expert knowledge to try 

suitable combinations of Rsense and maximum current (Imax), 

collecting both PD and Vmin and selecting the combination that 

best achieves design specifications; this can be a very time 

consuming process. 

III. DEVELOPING METAMODELS FOR PI APPLICATIONS

As mentioned before, sweeping iteratively several current 

and resistance values is very time consuming from simulation 

and post-processing perspective (fine model). It is desirable to 

develop a fast surrogate (coarse) model that behaves similarly 

to our fine model. Then, we can formulate a general surrogate 

Fig. 1. Illustration of the PDN under study, with a single VR and two 

remote sense resistors for two different power domains at silicon 
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coarse model function: 

 c f( ) ( )f f ε= +x x  (1) 

where x ∈ ℜk contains the design variables or model 

parameters, in this case x = [Rsense1 Rsense2 Imax1 Imax2]T, fc(x) and 

ff(x) are the coarse and fine model functions, respectively, for 

each PDN response of interest, and ε represents the inherent 

error due to the approximate method employed to obtain our 

coarse but fast model. 

We consider three surrogate modeling techniques: response 

surface methods (RSM), polynomial surrogate modeling 

(PSM), and support vector machines (SVM). It should be 

noted that for each of these methods, we employed the same 

formulation to create our training data set denoted by: 

 c2 (2 )kb k n= + +  (2) 

where b is the number of combinations to be evaluated, k is the 

number of variables of interest, 2k is the number of scenarios 

evaluated at high and low corners, 2k corresponds to the 

number scenarios evaluated at each corner plus a given 

deviation α, and nc is the number of center points. 

Table I illustrates our DoE input data used to train and 

assess the three surrogate-based modeling techniques. Notice 

that the training region of interest is quite large, especially for 

the sensing resistors.  

A. Surrogate Model Based on Response Surface Methods 

RSM methods are obtained from first and second order 

polynomial regression equations, whose coefficients are given 

by the wellness of the fitness response [8]: 

 c 0 1 1( ) k kf x xβ β β ε= + + + +x   (3) 

 2
c 0 i i i i ij i j

i 1 1 i j

( )
k k

i

f x x x xβ β β β ε
= = <

= + + + +∑ ∑ ∑∑x  (4) 

where (3) is the general first order regression model 

formulation, and (4) corresponds to the second order 

regression model formulation. The coefficients found after 

performing the RSM analysis are in vector β. 

B. Surrogate Model Based on Polynomial Models 

As described in [4], polynomial based surrogate models 

(PSM) are similar to RSM methods. However, one of its 

advantages is that it is not restricted up to second order 

polynomial formulations. A general formulation for this 

method applying the multinomial theorem [4] is given by: 

 1 T
c c( ) ( ) ( )n n nf f −= +x x w q x  (5) 

where fc
n-1(x) is the function of the previous polynomial coarse 

model function evaluated at n−1 order, wnT is the transpose 

vector of the weighting factors and qn(x) contains the n−th 

order multinomial terms. 

C. Surrogate Model Based on Support Vector Machines 

Due to its availability in Matlab® [9] and their easy usage, 

support vector machines (SVM) becomes a suitable 

mechanism to compare against the above described methods. 

SVM makes available machine learning techniques 

particularly tailored for approximating and classifying data. 

IV.  PERFORMANCE AND SELECTION OF SURROGATE MODEL 

We are exploring three different methods to generate 

surrogate models based on a PDN with a single VR, aiming to 

find a remote sense recipe that allows two different power rails 

to perform adequately. From our DoE input data (Table I), 

each Rsense is constrained in two corners, where the maximum 

is 85 Ω and the minimum is 15 Ω. Since we are handling two 

different power domains, for the case of the current we have 

Imax1 constrained from 0.9 A to 2.2 A, and Imax2 constrained 

from 12 A to 28 A. The remaining values for all variables are 

defined by the center points and maximum and minimum 

deviations given by α, as seen in Table I. 

Time domain simulations were carried out in HSPICE1 

simulator to collect the system responses Rf in specific time 

windows, being Rf = [PD1 PD2 Vmin1 Vmin2]T. Using Rf as target 

and x as input, we implemented in Matlab2 the three surrogate 

modeling methods described previously to generate our coarse 

models. Figures 2 and 3 show a comparison of the fine and 

coarse model responses when using SVM, both normalized 

due to Intel’s confidentiality constraints. 

To compare the performance and quality of each surrogate 

model, we tested their responses against HSPICE results. As 

figures of merit, we calculate the errors for each PD and Vmin 

measurement to verify which method gave us closer results 

                                                                                              
1 Hspui for Windows, G-2012.06, Synopsys®, 690 East Middlefield Road, 

Mountain View, CA 94043. 
2 MATLAB, Version R2015a, The MathWorks, Inc., 3 Apple Hill Drive, 

Natick MA 01760-2098, 2006. 

TABLE I 

DoE TRAINING DATA SET CONSIDERING CORNER CASES 

Rsense1 Rsense2 Imax1 Imax2 

85 15 2.2 12 

50 50 1.55 20 

50 50 0.63 20 

85 85 2.2 28 

15 85 0.9 12 

85 85 0.9 12 

15 15 0.9 28 

15 15 0.9 12 

50 50 1.55 8.68 

85 15 0.9 12 

15 15 2.2 12 

0.50 50 1.55 20 

15 85 2.2 28 

85 85 0.9 28 

85 15 2.2 28 

50 50 1.55 31.31 

99.49 50 1.55 20 

85 85 2.2 12 

15 15 2.2 28 

50 50 2.46 20 

50 99.49 1.55 20 

15 85 0.9 28 

85 15 0.9 28 

50 50 1.55 20 

50 0.50 1.55 20 

15 85 2.2 12 

 



 

(see Table II). The errors were calculated using Frobenius 

norm (||E||F) as well as the maximum relative error (er). 

From Table II, it is seen that SVM yields the lowest error 

overall, since it generalizes better. PSM exhibits a quite poor 

performance. An explanation of this very low performance of 

PSM lies in the size of the training region, which as mentioned 

in Section III, is very large, along with the reduced amount of 

training data. This is consistent with prior research: as it was 

discussed in [4], PSM has best performance when the size of 

the region of interest is small. On the other hand, RSM shows 

a similar (slightly better) performance to PSM. From here, we 

select the SVM surrogate modeling method to develop our fast 

coarse model to approximate the behavior of the system. 

V.  CONCLUSION 

We analyzed in this paper a power delivery network with 

two power domains sharing a single voltage regulator solution. 

It was implemented using a dual sense resistor scheme to 

ensure the right performance of the silicon and meet minimum 

voltage and power requirements. We designed a DoE training 

data set, considering corner cases, and collected corresponding 

responses from high-fidelity HSPICE simulations. From the 

three different surrogate-based methods employed, support 

vector machines proved to be the best option to use due to the 

size of the modeling region of interest and the limited amount 

of data. Further research work will include a space mapping-

based design optimization procedure exploiting the available 

coarse model to get the best design PI recipe. 
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Fig. 2. Normalized scattered plot for PD and Vmin from power domain 

1 sweeping Rsense1 and Rsense2. A comparison between fine model 

response (star) and coarse model response using SVM (circle). 

 
Fig. 3. Normalized scattered plot for PD and Vmin from power domain 

2 sweeping Rsense1 and Rsense2. A comparison between fine model 

response (star) and coarse model response using SVM (circle). 

TABLE II 

SUMMARY OF ERRORS USING DIFFERENT COARSE SURROGATE 

MODELS FOR TWO POWER DOMAINS 

measurement ||E||FRSM ||E||FSVM ||E||FPSM 
erRSM 

(%) 

erSVM 

(%) 

erPSM 

(%) 

PD1 0.67 0.18 0.47 46.47 44.25 61.87 

PD2 0.53 0.17 0.49 37.53 41.28 61.11 

Vmin1 0.58 0.41 1.49 2.97 2.62 65.13 

Vmin2 1.01 0.30 1.20 4.15 3.59 65.33 




