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An SPRT-like method is developed for the problem of selecting the best of k multinomial 

parameter estimation procedures when only one observation per the k estimation procedures is 

possible but the k estimation procedures can be repated many tirnes. 

The rnultinomial probability mass function considered is 

where Cx i  = l  and xi=O or 1 

It is assurned that there are two or more procedures for estimating parameters pz, ,..., pn(t,,t 

for each observation t. The number of parameters n(t) can depend upon the observation number 

t. An example of this would be competing procedures for estimating the probability of a horse 

winning a race. The parameter Pj,, would represent an rstimate of the probability of horse j 

winning race t. Race t can be run only once and hence only one observation can be obtained for 

the k estimation procedures for race t. However. the k estimation procedures can be repeated 

for different races. Other examples of competing multinomial parameter estimation procedures 

would include different methods of estimating the probability of a financial market being up in 

a given tirne pcriod or different forecasts of the probability of precipitation. 

A new procedure for estimating probabilities at a racetrack is developed and the SPRT-like 

method is used to compare this new procedure to the existing theory that an rntry's probability 

of winning is equal to the fraction of the win pool bet on that rntry. 
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Chapter 1 

Introduction 

The problem considered in this thesis is how to select the best of k multinomial parameter 

estimation procedures when only one observation per the k estimation procedures is possible 

but the k estimation procedures c m  be repeated many times. 

The multinornial probability mass function considered is 

f(x,. X? ,..., x") = p;' p;: pin 

where xi=\  and xi = O  or 1 

and parameters pi, pl  ,....p. satisfy pi = I and a11 pi 2 0. 

It is assumed that there are two or more procedures for estimating parameters pl,,, pzt, ...,p,,,., 

for each observation t. The number of parameters n(t) can depend upon the observation number 

t. The goal of this thesis is to develop a Bayesian method to select the best rstimation 

procedure. The term "best" is defined as follows: 

Definition: An estimation procedure i* will be declared the best of estimation procedures 

{ 1.2, ..., k at a significance level a (a is a parameter between O and 1. typically .10, .O5 or .O 1) 

if the posterior probability of estimation procedure i* king correct is above 1-a (assuming one 

of the estimation procedures { 1.2. ..., k } is correct.) 

This is an unusual definition and some may question the assumptions and the philosophy of 

this definition. This definition assumes that one of the estimation procedures ( 1,2, ..., k) is 

correct and is generating the correct parameter estimates pl,,, Pzr ,---rPntr),t for observation t. In 

reality, it is possible that none of the parameter estimation procedures are correct. However. 

this definition is consistent with the philosophy of a simple versus simple hypothesis test of 0 = 



4 versus 0 = 0,. It is possible that the parameter 0 may be neither 90 nor 0, but the hypothesis 

test is used to detemine which is the more appropriate hypothesis. Here the definition is used 

to help determine which of the various parameter estimation procedures is the most 

appropnate. This definition is also consistent with the Baum and Veeravalli (1994) approach to 

multihypothesis testing. A second feature of this definition is its Bayesian perspective. The 

goal is to use the data collected to select the best estimation procedure. Before the data are 

collected. prior probabilities (which may be uni fom) of whether a panicular estimation 

procedure is correct are required. After data are collected, an estimation procedure i' is 

selected the best at a significance Ievel a if its posterior probability of being correct is at least 

1- a. Throughout this thesis. significance level is given this Bayesian interpretation. 

The original rationale for investigating this problem was competing probability models üt a 

racetrack. For a given race t, bettors can choose between betting entries 1. 2. .... Nt). In this 

situation x,,, = 1 if betting entry j wins race t and x,,~ = O if betting entry j does not win race t. 

One estirnate of the probability of betting entry j winning race t, is the fraction of the win pool 

bet on entry j. There are a number of studies (Fabricand ( 1979), Hausch. Ziemba and 

Rubinstein (1981), Snyder (1978) and Ziemba and Hausch (1984)) that indicate that this is a 

reasonable estimate of the probability of an entry winning a race. In this thesis a mode1 using 

both multiple regression and simulation is developed for estimating the probability pj+t of an 

entry j winning race t. Givrn that there are now two models or procedures for estimating the 

probability of entry j winning race t, which of these two procedures is more accurate? 

Another example of competing models at the racetrack are the probabilities üssociated with the 

host track and the probabilities associated with satellite tracks in simulcasting of racing. It is 

quite common for races run at one track (called the host track) to be offered to bettors at a 

remote location (called the satellite track), Sometimes the host track and the satellite track run 

separate betting pools. In this situation there are two estimates of the probability of entry j 

winning race t. The fraction of the win pool bet on entry j at the host track is an estimate of pjSl. 

The fraction of the win pool bet on entry j at the satellite track is also an estimate of p,, In a 

Jo~irnal of Business article, Hausch and Ziemba ( 1990) argue that the "tnie probabilities" are 

the probability estimates at the host track. They argue that bettors at the satellite track should 

use the probabilities established at the host track to exploit anomalies in the odds at the 

satellite track. However, their rationale for the host track's probability estimates k ing  more 



accurate is "common sense" rather than statistical. They argue that bettors at the satellite track 

have more limited access to infomtion relative to those attending the home track and 

therefore the probability estimates at the satellite track will be less accurate. However. no data 

is used to support this assurnption. An alternative "common sense" argument is thai bettors at 

the satellite track consist mainly of hard core horse playen while many bettors at the host track 

are casual bettors interested in a day of entertainment. If this argument is correct, the 

probability estimates at the satellite track will be more accurate than the probability estimates 

at the host track. This thesis will examine an example of host versus satellite pools to 

determine which probability estimate is more accurate. 

A third rxample of competing multinomial parameter estimation procedures is rneteorological 

services that provide probability of precipitation (POP) forecasts. The multinornial reduces to 

the Bernoulli probability mass function. If there is precipitation on day t. then xi,, = I and xl, = 

O, whereas if there is no precipitation on day t xi, = O and x;, = 1. Consumers of 

meteorological services would naturally like to select the most accurate service. The current 

literature on POP forecasts has measures of accuracy. Accuracy in POP forecasts is generally 

measured by a quadratic scoring rule developed by Brier (1950). The Brier score BS' is given 

by 

where in a sample of T POP forecasts, P , ,  is the POP forecast for the t-th occasion and xi,, 

equals one if there was precipitation on the t-th occasion and zero otherwise. The range of BS* 

is between O and I with O representing the best score and 1 the worst. 

In weather forecasting BS" denotes the average Brier score for a constant forecast of the 

climatological probability of precipitation (probability of precipitation based on data from an 

appropriate historical period). Murphy and Brown (1984) define a ski11 score, SS, of r 

forecasting procedure by 



SS represents the percentage improvement in the average Brier score for the forecasts of 

interest over the average Brier score for the corresponding climatological forecasts. However, 

the drawback of the skill score and Brier scores is that they do not provide any rneasure of 

statistical significance. The meteorological service with the lowest Brier score or highest SS in 

a sample of T forecasts is not necessarily best at a significance level a. 

The sport of baseball provides a fourth example for competing probability models. What is the 

probability of a batter getting a hit in his next official at bai? An obvious answer would be the 

batter's batting average for that season. However, an alternative answer or procedure would be 

to use the batter's lifetime batting average. A third procedure would be to use the batter's 

lifetime average against the particular pitcher he is facing at his next at bat. Thus there are at 

les t  three reasonable procedures for estimating the probability. Which of these procedures is 

best? 

A final example of competing multinomial parameter estimation procedures would be financial 

models that forecast the probability of a financial market king up in a given time period. 

Larsen and Wozniack(l995) developed a Iogit model to forecast the one month ahead 

probabilities that the market retum on equities will exceed the return on debt. The goal of this 

model was to develop a strategy for market timing. However, standard financial approach in 

modeling the price of a financial security at time T is to assume a lognormal distribution 

where 

Po = price of the security at time O. 

PT = price of security at time T, 

T = time in years, 

p = continuously compounded growth rate of security per year, 

a = standard deviation of growth rate, 

and 

Z = standard normal variate. 



Using the lognormal model, the probability that the market retum in I month / P o  exceeds 

the retum on debt d is equal to 

A third procedure would be to assume the probability that the market retum in I month. Pllll 

/Po  exceeds the retum on debt, d, is constant from month to month and can be estimated by the 

historical frequency. This may have implications for investors who use market timing 

strategies. Investors who use market timing want to be in the market when they believe the 

market will go up and out of the market when they believe it will go down. Hypothetically. 

three different models might provide estimates of say, .8, .6, and -4 for the market retum 

exceeding the retum on debt. However, if it was established that the model chat provided the .8 

estimate was selected as the best of the three models, an investor might use that in his or her 

financial decisions. 

The instrument recommerided in this thesis for selecting the best multinomial parameter 

estimation procedure is a variation of the sequential probability ratio test or SPRT. A very 

succinct description of the SPRT is given by Kendall and Buckland ( 1960): 

A sequenrial test for the hyporhesis Ho againsr an alternative hvpothesis HI, is 

dite to Waid(1944). At the end of each stage in the sumpiing the probabitity ratio 

pl/po is comprited where the suff~tes 0 und / reJTr to the nrill and aiternative 

hypothrses respectively and p is the (known) probability Jinction of al1 sarnpie 

members so fur drawn. Then if B < pJpo < A the sampling is continiied unother 

stage. Btit i fp& S B the nul1 hypothesis (Ho) is occepted, and if pl/po 2 A the 

nitll hvpothrsir is rejected and the alternative hypothesis (Hl) is acceptrd. The 

nvo constants A and B are determined by re/erence to prrscribed reqiiirements 

concerning the two types of errors mode in testing hypotheses, the rejection of 

Ho when it is true and the acceptance of HI ivhen it is false. 

in this thesis the SPRT is slightly modified in order to provide a Bayesian interpretation of the 

stopping rule. 



In rny view, SPRT or more generally likelihood ratio tests, are ideal in situations where there is 

a need to select one of two estimation procedures and the consequence of selecting the 

incorrect procedure is the same for both procedures. Hypotheses cm be set up in the fonn 

procedure I is correct venus procedure 2 correct. In tenns of selection of one of the two 

procedures, this is a more effective technique than a null hypothesis that states the two 

procedures are equally good venus an alternative hypothesis that states they are not equally 

good. In addition, it will be shown in Chapter 2 that this can be genenlized to the selection of 

one of k estimation procedures. 



Chapter 2 

An SPRT Approach 

The structure of the multinomial probability mass function considered 

where xi = l  and Xi  = O or 1 

and parameters pi. pz, ....p. satisfy 1 pi = l  and al1 pi 2 0, 

results in a very simple likelihood function. Defining a discrete random variable Y by 

Y = y  i f x ,= l  

results in the probability mass function 

f(y) = p, for y = 1.2 .... n. 

If yt is the observation corresponding to parameter estimates pi,,. pl,,....p,,,,, then. assuming 

independence, the likelihood of (y[, y:, .... ym), L(plml, pze.. y1 * y2, .... y,,,), would br given 

by 

Given the simple nature of the likelihood function. Wald's (1947) Sequential Probability Ratio 

Test (SPRT) is a natunl technique for choosing between two multinomial parameter estimation 

procedures. The SPRT is designed to test a simple hypothesis Ho against a simple alternative 

hypothesis Hi. The SPRT procedure in an expenment where the data (yl, fi, ...* ym) is obtained 

sequentially is as follows: 

1. Two positive constants A and B are chosen (B < l< A). 



2. At any stage rn of the experiment. with data (y,. y?, ..., y3, the likelihoods of the data under 

each of the hypotheses, 4(y l ,  y?, .... ym) and Li(yi, y?, ...* ym). are calculated, as well as the 

ratio 

3. If Be h, c A the experiment is  continued by taking an additional observation y,l. If h, 2 A 

the process is terminated with the rejection of Ho and the acceptance of Hi. If h, 5 B the 

process is terminated with the rejection of HI and the acceptance of Ho. 

fAy1) 
Wald proved that this process teninates provided z, = log(- ) has a positive variance 

fo(y, 

where fo and fi are the probability mass or density functions under Ho and Hi. respectively and 

the 2,'s are independent and identically distributed. The situation here is different since the zj's 

are not idrnticall y distri buted. Therefore, there is no guarantee that the process will terminate. 

In order to guarantee termination in  the cornparison of parameter estimation procedures. a 

maximum sample size M is required. If the maximum sample size M is reached the test is 

inconclusive. 

The constants A and B are usually detemined by the prescribed requirements of Type 1 and 

Type II errors. 

a = probability of rejecting Ho given chat Ho is crue (the probability of a Type 1 error) 

and 

B= probability of accepting Ho given that Hi is true (the probability of a Type II error). 

Wald(1947) established the relationship between (cc$) and (A.B). He defined a sample (y, ,  y?, 

..., y,), as type O if 

Bc h, < A for m=1,2, ..., n- 1 

and 

8 



Similarly, a sample (yl, y?, ..., yn), is defined as type 1 if 

B< & c A for rn=1,2, .... n-1 

and 

For any type 1 sample ( y ~  y ~ ,  .... y,), the probability of obtaining such a sample is at least A 

tirnes as large under HI as under &. 

That is 

Therefore 

1 - P 
Thus an upper bound for A is - . 

a 

Similarly, for any type O sample (yi, y?, ..., y,). the probability of obtaining such a srmple is at 

lrast 0 times as large under Ho as under Hi.  

That is 

There fore 



B Thus a lower bound for B is -. 
1-a 

An actual determination of A and B is a difficult computational problem. Therefore. A and B 

1 4  ' respctively. This will mean that when are almost always approximated by - and - 
O! 1-a 

the SPRT terminates the probability of a Type I error is at most a and the probability of a 

Type il error is at most P. 

Lf the underlying problem is to select the better of two multinomial parameter estimation 

models where the consequence of selecting the incorrect procedure is the same for both 

procedures, it is natural to select a = P. The resulting hypothesis test concems 

H l :  Pararneter estimation procedure 1 is correct 

Hz: Pararneter estimation procedure 2 is correct. 

In this context a is the probability of accepting an hypothesis when the alternative hypothesis 

is correct. (1 have decided to cal1 the hypotheses HI and Hz instead of ternis nul1 hypothesis Ho 

and an alternative hypothesis Hi or Ha. The objective is to select the better of two panmeter 

estimation methods and in most situations there is no pnor reason to prefer one method over 

the other). 



SPRT-like algorithm for selecting the better of two estimation procedures: 

1. A constant a (O < a c 1) and a maximum sample size M are chosen. 

2. At any stage m of the experiment, with data (yi, y?, ..., yd ,  the ratio 

Li* (y, , y2 ,.*'> Ynt ) 
L= for j * i* 

is calculated where Li = Ll(yl, y?, ..., ym) and L2 = LL(yI, y?, .... ym) are the likelihoods of the 

data under each of the hypotheses and 

(Note: There is no need to directly compute LI and L?. These numbers will becorne extremely 

srnall and subject to round-off error. However, it is easy to store Ll/L2 and update this nurnber 

with each new data point. Comparing the ratio with I will determine which one is Li..). 

3. If h, 2 ( 1 -ûc)/a. the experiment is teminated with the accrptance of Hi. and the rejrction of 

H, , j # i*. If k,,, c (1- a) 1 a and m < M the experiment is continued by taking an additional 

observation y,,. Finally, if &,, < (1- a) / a and m = M. the experiment is tenninated with an 

inconclusive result. 

As an illustration of the SPRT-like algorithm. consider the following example: An um contain 

50 white balls and 50 black bah. 10 balls are randomly selected without replacement from the 

um. The number of white balls, n,, and the number of black balls, nb, in this sample of 10 are 

recorded. A bal1 is then randomly selected from this sample of 10. 



Let pw and pt be the probabilities that this bal1 is white and black respectively. Consider the 

following two estimation procedures: 

Estimation procedure 1: pw = nJ10 and pt, = ndlO. 

Estimation procedure 2: p, =.5 and pb =S. 

Estimation procedure I is the correct rstimation procedure. Suppose in the fint observation. n, 

=7, n b  =3 and a white bal1 is chosen. Then LI(W) =.7. L2(W) =.S. i* = I and hl = (.7/ 3). 

Suppose in the second observation n, = 4, n b  = 6 and a white bal1 is again chosen. Then 

Ll(W.W) = (.7)(.4) or 2 8 .  L2(W,W) = ( .5)( .5) or 2 5  . i' = 1 and h2 = (.28)/(.25). Suppose in the 

third observation n, = 9, nb = I and the black bal1 is chosen. Then Ll(W,W,B) = ( .7)(.3)(. 1 ) or 

.028. L2(W.W.B) = (.5)(.5)(.5) = .125, i' = 2 and hl = (.125)/(.028). The rxperiment will 

continue until hm 2 (1-a)/a. 

The SPRT-like algorithm with a =.O5 and M =5ûû was simulated for this rxarnple with IO00 

replications using @Risk 3.5E with a random number seed of 1. The SPRT-like algorithm 

chose estimation procedure 1 the better of two procedures 962 tirnes and chose rstimation 

procedure 2 the better procedure 38 tirnes. There were no inconclusive results. The mean 

sample size was 6O.4 1 with a maximum sample size of 37 1 and a minimum sample size of 5. 

A view of the probabilities involved in this SPRT-like approach can be seen through a 

Bayesian perspective. Since, the underlying problem is to select the better of two parameter 

selection procedures. it is reasonable to assume that their is no prior preference of one 

procedure over the other. This would correspond to a unifonn prior. That is pnor to the 



collection of data, the probability that procedure 1 is correct is assumed to be equal to the 

probability of procedure 2 is correct. At the conclusion of the expriment the posterior 

probability of the procedure with the maximum likelihood being correct would be 

However, since km 2 ( 1-@la, 

Hence the probability that Hi* is true is at least 1- a (assuming either Hi or Ht is tnie) whilr 

the probability of rejecting the true hypothesis is below a. That is estimation procedure i' is 

selected the better of estimation procedures ( 1,2 } at a significance level a. 

This Bayesian perspective provides an attractive interpretation in a non-sequential situation. By 

a non-sequential situation I mean a situation where n data points (y,, y,, ..., y.) are already 

available. If h. > (1- a) 1 a then procedure i m  would be selected the better procedure at a 

significance level a. Otherwise, the test is inconcIusive and we do not have sufficient evidence 

to conclude that one of the procedures is better than the other procedure at a significance level 

a, 

This Bayesian view easily generalizes to the selection of the best of k parameter selection 

procedures. The underlying hypothesis test concems: 



Hl: Parameter estimation procedure 1 is correct 

H,: Parameter estimation procedure 2 is correct 

versus 

Ht : Parameter estimation procedure k is correct. 

With data (y,, y2, ...? y.). let L, = L,(y,. y?, ..., y,) be the likelihood given chat H, is me. Define 

L i a  = maximum ( Li, L2, .... Lt ). Assurning, a uniforni prior. the probability that the hypothesis 

i* with the maximum Iikelihood is true (assuming one of the k hypotheses is true) is 

Aliernatively, defining kjm = L&, y?, ..., y.) I L,(yi, y:, ..., y.) for j # i*. the probability that the 

hypothrsis i* with the maximum likelihood is tnie (assuming one of the k hypotheses is [me) 

can be written as 



The number 1 - 
1 

can be viewed as the p-value in the test of i' k i n g  the correct 
I + ~ ( ~ I ~ , J  

estimation procedures versus one of the other k-1 estimation procedures being correct. 

If the goal is to select the procedure i* with the maximum likelihood provided the probability 

that hypothesis i* is crue is at least 1- a, then this is equivalent to requiring 

The resulting SPRT likr algorithm for selecting the best of k estimation procedures would be 

as follows: 

SPRT-like algorithm For selecting the best of k estimation procedures: 

1 .  A constant a (O c a < 1 )  and a maximum sample size M are chosen. 

2. At any stage m of the experiment. with data (yi, y:, ..., Y.) calculate the ratios 

L,.(y, ,..Yp.--y,) 
)im= forj # i* 

L,(Y,,YZT=.*Y,) 

where L, = L,(y,, y:, ..., y.) for j = 1.2, ... k are the likelihoods of the data under each of the 

hypotheses and L,. = L,*(y,, y,, .... y,) = Maximum (L,(y,, y,, .... y,) 1 j = 1.2 .... k) . 

(Note: There is no need to directly compute L,, L,, ... Lk. These numbers will become extremely 

small and subject to round-off emr. However, it is easy to store L , L ,  LA,,.. L,.,/L,. and 

update these nurnber with each new data point. Comparing these ratios with 1 will determine 

which one is L+) 



3. If ern = 1 + ç (1 / 2, ) I If(!-a) the expenrnent is terminated with the acceptance of Hi*. 
jsi* 

If cR. = 1 + x(1/ A,,,, ) > l/(l-a) and m < M the experiment is continued by taking an 
jzi* 

additional observation y,,. If A = 1 + (1 I A, ) > Il(1-a) and m = M the experiment is 
jsi' 

tetminated with an inconclusive result. 

The acceptance of Hi* means procedure i *  is selected the best of procedures { 1, 2, ... k}  at a 

significance level a. Baum and Veenvalli (1994) used the same idea in their paper on 

sequential multihypothesis testing. 

One of the consequences of this SPRT-like approach is that an estimation procedure that gives 

a panmeter estimate of O or I and is "wrong" will never be chosen as the best procedure. By 

"wrong I mean giving a parameter estimate of I to an outcome that did not occur or giving a 

parameter estimate of O to an outcome that did occur. This may seem "un fair" panicularly if its 

Brier score (which in effect captures mean square error) is quite good. However, 1 would argue 

that a model that gives a parameter estimate of O or 1 and can be "wrong" should never be 

viewed as a reasonable model. For example. if an investor believed a particular model was 

correct and it gives a probability of say 0.97 that the market will be up, the investor may or not 

invest depending upon his or her risk attitude. However. if the investor believed a particular 

model was correct and it gives a probability of 1 that the market will be up. the investor should 

logically and aggressively invest in the market regardless of risk attitude. Therefore, I believe 

any parameter estimation procedure that gives estimates of O or 1 and can be "wrong" should 

never be chosen as the best procedure. The SPRT-like approach is consistent with this 

philosophy. 

A final point with respect to the issues in this chapter is about the assumption of a uniforrn 

prior. There could be a situation where the decision maker had prior views on which estimation 

procedure is correct. However, the SPRT-like algorithm can easily be modified to handle this 

situation. For example, in choosing between two estimation procedures, suppose the decision 

maker believed prior CO the collection of any data that the probability of pmcedure 1 being 

correct was p and the probability of pmcedure 2 k ing  correct was 1-p. Presumably a < p c l -  



a. After collecting data (yi,yt, ...y& the revised probability of  procedure 1 being correct would 

be 
PL, (YI * . * * ~ m )  . Defining 6, = L,(yi.yt, . . . y & L l ( y ~ 9 ~ ~ 9 . - . y r n )  the 

~L,(Y,?*-*Y,)+(~ - ~)L,(Y,,.-Y,) 

revised probability could be written as p 6,I (p&,+l-p). If this nurnber was greater than or 

equal to 1- a procedure 1 would be selected while if this number was less than or equal to a 

procedure 2 would be selected. 



Chpter 3 

A Probability Mode1 for the Racetrack 

A. The Pari-Mutuel Market 

Pari-mutuel betting is the dominant fom of wagering in North Amencan thoroughbred racing. 

Pari-mutuel, originally a French word for "mutual stake" means that winners divide the total 

amount that is bet (less any deductions) in proportion to the arnount each winner wagered. 

When a bettor makes a wager, the betting facility or track merely acts as the broker for the 

transaction. For every dollar wagered at the track, the track deducts r commission. The track. 

the state and the cornpetitors (in the forrn of purses) share this commission. The commission 

rate varies from track to track. In North America the commission rate varies from as low as 

15% and to as high as 30% but the most common rate is approximately 17%. Thus between 

70% CO 85% of ilIl money bet is retumed to winning bettors. 

Bettors have a choice of a number of betting pools for each race. In a pool the bettor is trying 

to select a winning entry or a winning combination of entries. An entry is usuülly one horse. 

but on occasion because of common ownership, two or more horses are "coupled into a 

betting entry. A given race may offer: 

Win betting (wagering on an entry to come in first) 

Place betting (wagering on an entry to come in first or second) 

Show betting (wagering on an entry to come in either first, second, or third) 

Quinella betting (wagering on two rntrirs to corne in first and second in any 

order) 

Exacta betting (wagering on two entry to come in first and second in correct 

order) 

Trifecta or triacta betting (wagenng on three entries to corne first, second, and 

third in correct order) 



and 

Daily double betting (wagering on the winners of two consecutive races). 

Each of these pools form a separate market. 

The relative arnounts bet on a winning combination and the track's commissions determine the 

pnces paid on winning bets. For example. in the win pool let 

Wi = the total amount bet on entry i to win; 

W = ç i w i  = the win pool ai the track; 

Qw = the track's payback proportion on win bets. 

The payoff to the bettor of a dollar bet on entry i is O if entry i loses. If entry i wins. one first 

calculates Qw W /Wi and then rounds this number down to the nearest 5 or 10 cents (called 

bredcage). All Canadian tracks round down to the nearest 5 cents while ûlmost al1 U.S. tracks 

round down to the nearest 10 cents. For example, if Qw W/W, equals 4.28. the payoff per 

dollar bet would be $4.20 with 10 cent breakage and $4.25 with 5 cent bredcage. The one 

exception to this rule occurs if the number Q, W/Wi is below 1.05 or 1.10. All jurisdictions in 

North Amencrt have a minimum payoff on a winning bet. Races run in the state of Kentucky 

have a minimum payoff of $1.10 per $1 bet while d l  other States and provinces have a 

minimum payoff of $1.05. 

B. The Efficient Market Theory 

A theory in research related to the racetrack, is that the win pool at the racetrack is an efficient 

market. This means an entry's probability of winning a race is equal to the fraction of the win 

pool bet on that entry (the probability of betting entry j winning race t = pjt = Wjl/W: where Wjt 

is the amount of money bet on j to win while W, is the total amount of money in the win pool 



in race t). The rationale for this theory is that data collected over thousands of races indicate 

that entries that have fraction p of the win pool, as a group win about fraction p of the races. 

For example Fabricand ( 1979) provides the fol lowing table for the theoretical probabil ity 

(fraction of the win pool) versus actual probability (fraction of horses that win) for United 

States thoroughbred tracks for the years 1955 to 1962 ( 10.000 races). 



Table 1 

U.S. Tracks 1955-1%2 

Number of 

Horses 

Average Theoretical 

Probability 

Ac tua1 Frequency 

of Winning 



Similarly Hausch. Ziemba and Rubinstein (1981) provide the following table for Exhibition 

Park in 1979: 

Table 2 

Exhibition Park 1979 

- 

Average 

theoretical 

probability 

Actual 

frequenc y 

of 

Esti mated 

standard 

error 

Theoretical 

probability 

of 

Number 

of 

horses 

winning 

,000-,025 

winning 

Additional details of this efficient market theory or mode1 clin be found in Fabricand [1979], 

Hausch, Ziernba and Rubinstein [1981], Snyder [1978) and Ziemba and Hausch [198J]. It 

should be noted that these authors acknowledge a longshot-favorite bias. That is heavy 

favorites (entries with over 35% of the win pool) tend to be underbet by the public while 

longshots (horses with less than 5% of the win pool) tend to be overbet by the public. The 

reason for this may be the risk seeking behavior of bettors at a racetnck. However, in most 

situations entries that have fraction p of the win pool. as a group win approximately fraction p 

of their races. 

While it might appear reasonable to assign a probability of p to an entry with a fraction p of the 

win pool. this rnay not necessarily be the most desirable probability assignment. An analogy 



would be assigning probabilities for snow on a given day in Winnipeg. If, for example, 

historical records indicates chat Winnipeg receives snow on 10% of al1 days, assigning a 

probability of -10 for snow on July 1 is unlikely to be the best probability estimate. Among the 

group of horses that have say 25% of the win pool it is possible that 50% of them have a .50 

probability of winning while the remaining 508 have no chance of winning. This group as a 

whole will win 25% of their races but assigning a probability of 2 5  to all of thern is again not 

the best probability estimate. 

Thus this efficient market rnodel for the win pool at the racetrack may not be the most 

appropriate model. However. it is still reasonable to compare any other possible probability 

mode1 with the efficient market model since a necessary condition for the success of a betting 

model in parimutuel betting is that it produces more accurate probabilities ihan the efficient 

market model. 

C. Previous Racetrack Research 

There has been ri considerable amount of previous research on racetrack betting issues. This 

previous research can be partitioned into five broad areas. One area is the question of market 

efficirncy in the win pool. In finance a market is considered efficient if current security prices 

reflect al1 relevant information. In an efficient market an expert should not be able to achieve 

higher than average retums with regularity . Snyder ( 1978) investigated whether becs at 

different odds level yield the same average retum. Ali (1979) investigated whether 

independently derived bets with identical probabilities of winning have the same odds 

statisticall y. Asch, Malkiel and Quandt ( l984), Hausch. Lo and Ziemba ( 1994), Hausch, 

Ziemba and Rubinstein (198 1), Fabricant(1965) and Figlewski (1979) have also contributed to 

this issue. 

A second area is various arbitrage or risk-free hedge strategies at the racetrack. This is an 

attempt to create a wager that will win money regardless of the outcome of the race. Hausch 

and Ziemba (INTERFACES 1990) give an example where a profit in show betting is 

guaranteed. Hausch and Ziemba (Journal of Bttsiness 1990) show how under certain conditions 

profits can be guaranteed in cross-track betting. Cross-track betting involves sirnulcasting of 



races with separate pools at different tracks. However, Rosenbloom (1992) found certain flaws 

with these strategies. 

A third area is the question of how a person should bet in the win pool given the probability of 

each horse winning and the odds on each horse. There has k e n  a number of approaches in the 

literature to this problem. lsaacs (1953) gives a solution under the assumption that bettor is risk 

neutral with intinite wealth and is able to be the last bettor in the race. The reason for this last 

restriction is that in the pan-mutuel betting system the odds are affected by any bet. A more 

realistic scenario is that the bettor is risk averse with a finite arnount of betting wealth and that 

the bets are not sufficiently large to affect the odds. Rosner (1975) provides a solution to this 

problem under the assumption that the decision rnaker's attitude towards risk cm be modeled 

by a loganthm utility function. However. both of these models assume that the bettor knows 

the exact or true pmbability of each horse winning the race. Bolton and Chapman ( 1986) point 

out that these models may not work very well in practice if only an estirnate of the exact 

probability is available. They suggest modifications to the Rosner model when dealing with 

approximate probabilities. 

A founh area of reserrch is how to bet in alternative pools such as the place pool, the show 

pool and exacta pool. Hausch. Ziernba and Rubinstein ( 198 1) presents a model with a positive 

expectation for betting in place and show pools. Ziernba and Hauscti (1987) provides a mode1 

with a positive expectation for betting in exacta, quinella and trifecta pools. Both these models 

require an rstimate of the probability of an entry winning the race. The estirnate that they 

suggest for the probability of an entry winning is the fraction of the win pool bet on the entry. 

A fifth area of research is how to estimate the probability of an entry winning a race. The only 

published work in this area is by Bolton and Chapman (1986) who use a multinomial logit 

rnodel for estimating the probabilities. Their mode1 assurned that the random utility of horse j, 

UJ, can be wntten as 



where Vj is a deterministic component and EJ is a random component thai reflects the 

measurement error in the modeling process. if there are N horses in a race, the probabiiity of 

horse j* winning the race c m  be written as 

P,. = Rob (UI. 2 Uj, j = 1.2 ,... N). 

By assuming the error terms ~j are identically and independently distribuied according to a 

double exponential distribution 

Prob ( E ~  5 E) = exp (-exp(-E)) 

it can be shown chat 

v>* 

P,. = - , for j* = 1.3 ,... N. 

The Vj*s are obtained through a logit model. The explanatory variables for this logit model 

were chosen because of the availability of data through a newspaper called the Duily Racing 

Form. The Dai& Racing Form contains data about each horse in every race at a particulnr track 

rach day as well as data on jockeys. The Dai& Racing Form contains data on horses such as 

breeding, post position. weight camed. age, gender, jockey. trainer, owner, workouts. past 

record, earnings and past performances of the horse. Past performances refers ro a detailed 

description of typically the last ten races nin by the horse. This past performance data would 

include dates. distances, previous jockeys, conditions of the race, fractional times and final 

times. 

Among the explanatory variables chosen in the Bolton-Chapman logit model were the horse's 

winning percentage over the last two yean, the average speed nting over the last four races, 

the speed rating in the horses last race, the eamings per race in the past year, the post position. 

the weight camed by the horse, the jockey's winning percentage and nurnber of jockey wins. 

Multinomial logit models m often used in marketing research to forecast the probability of a 

consumer choosing a particular brand j* among competing brands 1,2, ... n. Here it is being used 



to forecast the probability of nature "choosing" horse j* as the winner among competing horses 

1.2, ... n. 

The Bolton-Chapman multinomial logit model is a very clrver and innovative approach to 

estimating the probability of a horse winning. However, in my view there are two flaws with 

this model. One is the assumption that the &J 's are independent. As an example consider the 

role of post position. Post position was one of the explanatory variables in the Bolton-Chapman 

model. In the logit model the coefficient of post position is negative. This reflects the fact that 

horses with inside post positions tend to win a higher percentage of races than horses with 

outside position. However track conditions can vary dramatically from day to day because of 

weather and soi1 conditions. There are days when the track is very biased. This means that one 

ponion of the track (the inside or the outside) is much faster than the other portion. On days 

when the inside is faster, horses with inside post position will have a highrr true probability of 

winning than what is predicted by the model while conversely horses on the outside will have a 

lower probability. Similarly on days when the outside is faster. horse with inside post position 

will have a lower true probability of winning then what is predicted by the model while horses 

on the outside will have a higher probability. Thus the assurnption that the ~i 's are independent 

is questionable. 

In my view the second flaw in the Bolton-Chapman model involves the issue of rime. Since the 

fastest horse will likely win the race, one rnight expect previous finishing times would be the 

major tool in predicting which horse will win. Typically it is not. There are number of reasons 

why previous final times are a questionable handicapping tool. Races are run at a variety of 

distances. Shorter races (often called sprints) are run at 4.5 furlongs (a furlong being 118 of a 

mile), 5 furlongs, 5.5 furlongs. 6 furlongs, 6.5 furlongs and 7 furlongs. Longer races (often 

called routes) are run at 1 mile, I mile and 70 yards, 1 and 1/16 miles, I and II8 miles, 1 and 

3/ 16 miles, 1 and I/4 miles, 1 and 318 miles and 1 and 112 miles. Different tracks because of 

their composition and configuration will result in quite different times for horses of similar 

ability. For example 1 :O9 ( 1 minute and 9 seconds) would be considered an exceptionally fast 

tirne for a 6 furlong race at Belmont ( a major track in New York) and an average tirne for a 6 

furlong race at Santa Anita ( a major track in California). Even at the same track, times cm 

change dramatically from day to day because of moisture, temperature, track maintenance, and 

wind conditions. 



The Bolton-Chaprnan mode1 used a surrogate for time from the Doily Racing Form called 

speed ratings. In a speed rating a horse's final time for a race is compared to the track's record 

at that distance. The track record is given a speed rating of 100 while one point is subtracted 

for every one-fifth of a second slower than the track record. For example if the track record for 

6 furlongs is 1 :O8 and a horse runs a 6 furlong race in 1 : 1 1. the horse receives a speed rating of 

85. In the Bolton-Chapman mode1 average speed rating accounted for the most variation in the 

mode 1. 

Although speed ratings take into account the fact that some triicks are intrinsically faster than 

others, there are three major drawbacks to speed ratings. One. the speed rating does not cake 

into account the quality of horses running at a particular track. The track record for a 12 

furlong race at Belmont Park was set by a horse called Secretariat (arguably the greatest horse 

of dl tirne). The track record for a 12 furlong race at Assiniboia Downs (a minor track in 

Winnipeg) was set by a horse called Baron Hudec (a horse worth about $10.000). A horse 

running two seconds slower than Secretariat's track record of 224 at Belmont would receive a 

speed rating of 90 while a horse running two seconds slower than Baron Hudec's track record 

of 232  ai Assiniboia Downs would also receive a speed rating of 90. However, the 

performance of the horse at Bclmont is almost certainly much supenor to the performance of 

the horse at Assiniboia Downs. 

A second drawback is that speed rating is not adjusted for distance. [t is much more common to 

be within 2 seconds of the track record at 6 furlongs than it is to be within 2 seconds of the 

track record at 12 furlongs. Thus a speed rating of 90 at 12 furlongs is almost always a superior 

performance than a speed rating of 90 ai 6 at 6 furlongs. 

Finally, as pointed out earlier, times can change dramatically from day to day because of 

moisture, temperature, track maintenance. and wind conditions. Thus one day, two seconds off 

the track record cm in a tremendous performance while another day two seconds off the track 

record may be a mediocre performance. Yet both will receive a speed rating of 90. 

D. Beyer Speed Numbers 



Starting in 1992, the Daily Racing Form began providing the previous 10 Beyer speed nurnbers 

of al1 horses in a race. In explaining the use of Beyer speed numbers the Daily Racing Form 

States: 

Every peflormance by every horse in North Arnericn is assigned a nitmber which 

reflclcts the time of the race and the inherent speed of the track over which it is nrn, 

and permits easy comparison of efforts ut diflrrent distances. A horse who rarns a 

90 has rnn faster than one who runs an 80. 

Beyer speed numben are named after the popular racing columnist for the Washington Post, 

Andrew Beyer. A Beyer speed number is a performance number or a speed rating for a hone 

which takes into account the quality of the hones at a particular track, the track conditions and 

the distance. Thus Beyer speed numbers try to correct for the deficiencies in speed ratings. 

Beyer speed numbers Vary from O to about 130. They are reported as integers. The higher the 

number the better the performance. Beyer speed numbers are calculated by the Daily Racing 

Form using typical winning performances of certain classes of horses. Although neither 

Andrew Beyer nor the Daiiy Racing Form have ever provided the cornplete procedure or 

algorithm for calculation of the Beyer speed numbers, Beyer in his books has described a 

general approach. As a starting point for calculation of Beyer speed numbers. the average 

winning performance of races restncted to horses valued between $10,000 and $14.000 (U.S.) 

is arbitrarily assigned as 85. As an approximate illustration of the logic behind the calculations 

of Beyer speed ratings, suppose on a particular race day there are three 6 furlong races 

restricted to horses valued between % 1 0 . 0  to $14,000 and the winning times are 1 : 10.80, 1 : 1 1 

and 1:11.20. The horse that finished ai 1:ll would likely be assigned by the Daiiy Racing 



Form a Beyer speed number of 85, the horse that finished in 1 : 10.8 would be assigned a higher 

Beyer number (likely 87), and the horse that finished at 1 : 1 1.20 would be assigned a lower 

Beyer speed number (likely 83). Al1 other hoees in 6 furlong races that day would be assigned 

Beyer speed numben in a similar manner based on their final time. Horses that ran a different 

distance are assigned Beyer speed numbers based on charts for that track which conven tirnes 

at that distance to the equivalent performance for 6 furlongs. 

Thus while the details of the calculation of Beyer speed numbers are likely beyond the grasp of 

most racetrack bettors. the final Beyer speed number are relatively easy to interpret. In a given 

race the horse who obtains the highest Beyer speed number will almust always win the race 

(the rare exception is a home that finishes first and is disqualified for interfering with other 

horses). Therefore. forecasting the winner of a race is almost equivalent to forecasting which 

horse will have the highest Beyer speed nurnber. 

A natural statistical question is whether past Beyer speed numbers can be used to forecast 

future Beyer speed numbers. In particular is it possible to obtain a reasonable estimate of the 

statistical distribution of a horse's next Beyer speed number'? If so, will it be possible to use 

this to estimate the probability of a hone having the highest Beyer speed number in a race? In 

the remainder of this chapter I w il1 show that the answers to these questions are positive. 

E. A Pmbability Mode1 for Beyer Speed Nurnbers 

In Noah America horses c m  begin racing at the age of 2. However, horses are not fully grown 

and mature until at least the age of 4. This is usually refiected in their Beyer speed numbers. 

Beyer (1993) estimates that a hone's Beyer speed numbers usually improve at a rate one to one 



and a half points a month until the end of their three year old career. After that their Beyer 

numbers usually do not have any obvious long term trend. Nonh Amencan races are run on 

two surfaces, dirt and grass. While Beyer speed numbers are calculated for both surfaces, most 

horses perform better on one of these two surfaces. Therefore, most horses race either almost 

exclusively on dirt or almost exclusively on grass. The great majority of al1 Nonh Amencan 

races are on dirt. 

A data base of past performances of thoroughbreds was obtained from the Dai& R w i n g  Form. 

The data base consisted of 1056 horses who were racing in either the faIl of 1996 and the 

spring of 1997 ai Woodbine. Hollywood Park, Belmont. Assiniboia Downs or Hastings Park. 

These were al1 four year olds or older who were racing on din and had raced ai least 10 times. 

While not a random sample of al1 four year or older horses this is n fairly representative sample 

including horses at the best tracks (Belmont, Hollywood Park), middle level tracks (Woodbine) 

and lower level tracks (Hastings and Assiniboia Downs). 

The data coltected on each of these horses were the last 10 Beyer speed numbers as well as an 

indicator of whether the horse had been laid off before its last race. The DaiZy Racing Form 

defines a layoff as 45 days without a race. Typically hones dunng a racing meet will race 

every two to four weeks. Hence a layoff of 15 days or more is somewhat atypical and may 

indicate an injury or some physical problem. A histogram of the Iast Beyer speed numbers of 

these 1056 horses is as follows: 



Figure 1 

Histogram of Beyer Speed Numbsrs 

The Beyer speed numbers Vary between O to about 130. They are calculated as real numbers 

but are rounded off to integers in the Daily Racing Form. It is reasonablr to mode1 Beyer 

numkrs greater than O as a continuous random variable. However. a Beyer number recorded as 

a O can represent a number of events. A horse will receive a Beyer number of O if he or she nn 

an unusually slow time or did not finish the race (the jockey fell off or ihere was an accident or 

the horse bled or the horse was injured). For older hones (four years old and above) a O Beyer 

speed number usually means the hone did not finish the race. Therefore. the probability of a 

horse getting a O Beyer number should be modeled as non-zero and may be dependent on 

whether or not the horse has been laid off before its Iast race. Horses are often Iaid off because 

of physical problems. 

Of the 1056 horses in the data base, 247 horses had been laid off before their last race white 

809 had not. Of the 247 horses who had been laid off, 7 had a Beyer number of 0 in their last 

race, while of the 809 horses that had not been laid off, only 4 received a Beyer number of O. 



Defining p~ as the probability of a horse without a layoff getting a O Beyer number and pi as 

the probûbility of a horse with a layoff getting a O Beyer number the two-sample hypothesis 

test of 

results in a Z-score of 3.17 and a p-value of .O0 15. Hence. for horses that have not been laid off 

, 41809 (or .ûû5) would be an estimate of the probability of a O Beyer number. For horse that 

have been laid off, 71247 (or ,028) would be an rstimate of the probability of a O Beyer 

number. 

Removing these eleven horses with O Beyer numbers in their lrst race from our sample means 

chat we have 1045 horsrs left. For each of these horses we have the following data: 

where Llo = O if horse was not laid off before its last race, Lia = 1 if the horse has ken  laid 

off, and BIO, Bq, ... Bi the last 10 Beyer speed numbers with Bio being the most recent, B g  being 

the second rnost recent etc. Thus the statistical question becomes cm Lia, Bg, B8, ...BI be used 

to predict Bio ? 

A table of Pearson correlations and corresponding p-values are as follows: 

32 



Pearson Correlations 

An examination of this table reveals that Bio is positively correlated with Bq, Bs, ... and Br. In 

addition, al1 ihese corretarions are al t significant at a .O 1 level. 

It also appears from the correlation mairix that there is a stronger correlation between Blo and 

the more recent data (B9, B8, B7 and Bo) than Blo and the less recent data (B5. B4, BJ, B?, and 

BI). This suggests using multiple regression to predict Blo. 8 9 ,  Ba. B7, and B6 could be 

explanatory variables. While it is also possible to use Bs. Ba, B3. B2T and Bi as explanatory 

variables it was decided to use M, the median of B5. BJ, B1, Bz. and Bt as an explanatory 

variable. The variable M would capture less recent performance and would be less sensitive to 



one unusually go& or unusually bad past performance. The Pearson correlation between M 

and Blo was -728 and is significantly different from O a[ a .O1 level. 1 also decided to use Lio as 

an explanatory indicator variable. Whether a horse has raced recently my affect his or her 

performance. In addition. there is likely going to be an interaction effect between Lio and the 

other explanatory variables. Handicapping logic suggests that if the horse has raced recently 

(Lia = O). the most recent race (Bq) will be the most important predictor of future performance. 

However. if a horse has not raced recently (LIO = 1 ). the relative importance of the rnost recent 

data is diminished. Thus LIO*B~, Lio*Bs, Lio*B7, Lla*B6 and Llo*M would be explanatory 

variables in the multiple regression as well. 

The results of the multiple regression are as follows: 

- 

Regression Stutistics 

Multiple R 0.822 1 

R Square 0.6758 
Adjusted R 0.6724 
Square 
Standard Error 12.1667 
Observations 1045 

ANOVA 

Regression 1 I 318811.21 28982.84 195.79 1.10~-243 
Residual 1033 1529 13.89 138.03 
Total 1044 471725.10 



Coeficients Standard t Star P-value Lawer 95% Upper 95% 

Error 

In tercept 3.1 1 1.5 1 2.06 4.0 1 E-02 O. 14 6.07 
LIO -9.52 3.33 -2.86 4.37E-03 -16.06 -2.98 
h o * M  0.18 0.09 2.02 4.40E-02 0.00 0.36 

L i O*& -0.03 0.07 -0.47 6.36E-0 1 -0.17 0.1 1 

Lio*B7 0.07 0.08 0.95 3.44E-01 -0.08 0.23 

Lto*Ba 0.08 0 .O7 1 -06 2.90E-O 1 -0.07 0.22 

L t0*B9 -0.23 0.07 -3.20 1.39E-03 -0.37 -0.09 
M 0.18 0.04 4.23 3.59E-05 0.10 0.27 

Bb 0.16 0.04 4.42 1.07E-05 0.09 0.22 

B-l 0.13 0.03 3.70 2.29E-04 0.06 O. 19 

Bs 0.1 1 0.03 3 2 2  1.30E-03 0.04 0.17 
BQ 0.38 0.03 1 1-15 2.54E-27 0+3 1 0.44 

Not al1 the explanatory variables are significant. Dropping the explanatory variables, one by 

one using backwards elimination results in the following reduced regression model: 

Rearession Statistics 
. - -  

Multiple R 0.82 16! 

R Square 0.67504 
Adjusted R Square 0.67254 
Standard Error 12.16400 
Observations 1045 

ANOVA 

Of SS MS F Significance F 
Regression 8 3 18435.57 39804.45 269.02 9.63E-247 
Residud 1036 153289.53 1 47.96 
Total 1044 47 1725.10 



Caeficients Standard Error t Stat P-value Lower 95% Upper 95% 

Interce pt 2.95 1.50 1.96 4.99E-02 0.00 5.9 1 

A cornparison of the full model and the reduced model shows an F3,io33 of ,8459 with a 

corresponding p-value of .47. Thus the reduced model is appropriate. 

Define the random variable B to be a horse's next Beyer speed number. and (L, Blo. Bq, ... B I )  

the previous data with respect to that horse. The indicator variable L = I if the horse has had a 

layoff before its coming race. L = 0. otherwise. The two-sample hypothesis test and the 

regression results suggest the following probability model: 

If L = O (the horse has not had n Iayoff) the probability is .O05 that B = O. With probability .995 

the distribution of B is aven by 

where E is a random error terni and M is the median of {BI ,  B?, B3, B4, B5, B6}. 

If L=l (the horse has had a layoff of at least 45 days) the probability is -028 that B =O. With 

pmbability .972 the distribution of B is given by 



where E is a random error term and M is the median of [BI, B2, B3, Ba, Bs, Bg } . 

This model is consistent with fundamental horse race handicapping. If a horse has been racing 

recently (L = O). the most recent data point, B 10. is a gnod predictor of future performance. 

However. if a horse has not raced recently (L=l). the most recent data point, Bia, is not as 

relevant. The horse's historical performance. captured by the variable M. is more relevant. 

Finally. a layoff is often viewed as negative in terms of a horse's next performance. This is 

reflected in the intercepts which is 2.95 for L = O horses and -5.84 for L = 1 hones. 

As for the random error tenn E, the histogram of the residuals of the regression is as follows: 

Figure 2 
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In the simulation mode1 in the next section, I decided to use the typical regression assumption 

of normaiity for the random error tenn & e was modeled as normai with mean O and standard 

deviation 12.164 where 12.164 was the standard error of the regression. Other reasonable 



choices for modeling the random error term were an empirical distribution using the residuals, 

a truncated normal and the logistic distribution. However, in using simulation to estimate the 

probabilities of horses winning, the choice of the distribution for the random error terrn had 

very little effect upon the estimated probabilities. 

F. A Simulation Model for a Race. 

The previous section provided a rnodel for a horse's Beyer speed number in his or her next 

race. Thus if horses 1. 2, .... n compete in a given race, we have a model for their Beyer speed 

numbers BI, B2, .... B.. However, will these random variables be independent? Initially. one 

might suspect that since Beyer speed numbers take into account distance and track conditions, 

the Beyer speed numbers of horses in the srrne race would be independent. However. there are 

races that are run quite tiictically. Sometimes the jockey on the horse with the lead is able to 

have a relatively slow early pace. The final result would be that the race is run in a relatively 

slow final time for the quality of horses in the race. This would mean relatively lower Beyer 

speed numbers for al1 horses in the race. If chat is the case, there will be a positive correlation 

brtween Ei and Ej where i and j are two horses in the same race with Ei and Ej being the random 

rrror terms for horse i and horse j respectively. 

In order to rstimate the correlation, the residuals (predicted Beyer speed number from 

regression model - actual Beyer speed number) were calculated for a pair of horses in the same 

race in a sample of 100 different races. However, there is no rneaningful criterion for assigning 

one member of the pair to one variable rather than the other. This is analogous to measuring 

the correlation of a characteristic in twins. A statistic which is used to estimate the correlation 



in this situation is the sample intraclass correlation ri. The sample intraclass correlation r~ is 

defined by 

r~ = [MS(among classes) -MS(within classes)] / [ MS(among classes) +(n-1 )MS(within 

classes) ] 

where there are n observation in a class. In Our example n = 2. The result was a sample 

intraclass correlation ri of 236 with a p-value of ,009. A more detailed discussion of intraclass 

correlation can be found in Steel (1980). 

Thus ignonng the O Beyer numbers, the Beyer numbers of horses 1.2. ..A in a race c m  be 

modeled as a with mean vector p = (pl, k, ... p. )T and covariance matnx x. The rxpected 

Beyer number for horse i, p, can be estimated from the regression formula in Section E. The 

covariance matrix Z can be estirnated by using ( 12.164)' for the diagonal elements and 2 3 6  

( 12.164)' for the off-diagonal elemenis where 12.164 was the standard error of regression and 

,236 is the intraclass correlation. 

By exarnining the residuals of the regression 1 made the assumption that ignoring the O Beyer 

numbers a horse's next Beyer nurnber can be modeled as normal. This does not guarantee that 

the joint distribution of BI, BI, .... Bn is multivariate normal since the fact that the marginals are 

normal does noi necessanly establish that the joint distribut ion is multivariate normal. 

However, in order to be able to generate random variates in a simulation, 1 will make the 

additional assumption that the joint distribution of Bi, B2, ..., B, is multivariate normal. With 

this assumption the following algorithm for simulating the Beyer numbers of d l  horses in a 

horse race is possible. 



Step 1: Generate Xi, X2, ..., Xn as multivariate normal with mean p and covariance matrix 1. 

(This c m  be done by generating 21, Zl ,  ..., & as iiD standard Normal and defining X = p + CZ 

where X = (XI, Xz, .... x. )~  and Z = (ZI, Z2, ..., Z,JT and Z is uniquely factored as ccT where C 

is lower triangular.) 

Step 2: If for horse i,  L =O. generate Y, as Bernoulli (.995). Othenvise (L= 1 )  generate Yi as 

Bernoulli (.972). 

Step 3: Let Bi = XiYi. 

The winner of the simulated race is the horse with the maximum Bi, Thus this mode1 provides a 

tool for estirnating the probability of an entry winning a race. If N is the number of replications 

of the simulated race and N, is the numbrr of times entry j has the maximum Bi thrn N j N  is an 

estimate of the probability of entry j winning the race. 



Chapter 4 

A Test of the Beyer Probability Mode1 

The previous chapter developed a simulation mode1 for estimating the probability of an entry 

winning a race. However, the dominant theory in horse racing is that an entry with fraction p of 

the win pool has a probability p of winning the race. The SPRT-like alprithm in Chapter 2 

provides a rnethod of detennining which of these two rnodels is  more appropriate. 

The two hypotheses tested are 

Hi: The probability of entry j winning the race equals the fraction of win pool bet on entry j 

Hz: The probability of entry j winning the race equals the fraction of simulated races won by 

entry. j. 

Alternatively these two hypotheses can be stated as 

Hi: The probability of betting rntry j winning race t i s  given by pil = W,, /W, 

Hz : The probability of betting entry j winning race t is given by ai = Njt /N, , 

where W,, is the amount bet on entry j in the t-th race, W, is money bet in the win pool in the t- 

th race, Nt is the nurnber of replications of race t in the simulation and Nji is the number of 

times entry j won race t in the simulation, 

In conducting the SPRT-like algorithm the following steps were followed in collecting data: 



1. a was set equal to -01. Thus experimentation ends when h, 2 99. 

2. Races available from Assiniboia Downs in Winnipeg were selected (either live a< 

Assiniboia Downs or through simulcast from Woodbine. Hastings Park, Del Mar, and 

Saratoga). 

3. Races were selected before the card on weekend days when 1 could be present at the track. 

The experiment started on h l y  26. 1997. In order for a race to be selected: 

-The race had to be run on din. 

- All the horses in the race had to have had at least 10 previous Beyer numbers run as 3 

year old horses or older. 

4. The betting entry chat was declared the winner by the stewards would be treated as the 

winning betting entry in the experiment. ( It is possible. although rare. for the horse that 

crosses the finish line fint (and hence will have the highest Beyer number) to be disqualified 

for interfering with other horses.) 

5. In the rare situation of dead heats, the likelihood under Ho and Hi would be calculated as 

fol lows: 

If betting entries a and b dead heat in race t, f(xr 1 Ho) = (paf and f(x, 1 HI) = (qat qb()'5 . 

(If more than 2 horses dead heat the geometnc rnean of the probabilities would be used. With 

modem photographie equipment, dead heats are rare and multiple dead heats are extremely 

rare). 

6. The simulation was performed using @RISK 3SE, an add-on to Microsoft Excel. The 

nndom number seed was set equrl to the number 1. There was 1000 iterations for each 

simulation (Nt = 1000). 

7. The crowd's probability (Ho) for the winning horse was calculated using the final winning 

price (which is the retum for a $2 bet.). Because of "breakage" this is an approximation. 

Breakage rneans that pari-mutuel payoff is rounded down to the nearest dirne. That is a bet that 

should have paid say $7.56 is reported as $7.50. Thus a winning payoff of $7.50 could have 



been any payoff in the interval [ $7.50. $7.60) if there was no breakage. in order to reduce any 

bias in estimating the crowd's probability, $0.05 is added to the winning price. The resulting 

formula used to estimate the crowd's probability is 

Crowd's Probability = 2 Q / ( Win Price +$.05) 

where Q is the fraction of money retumed to bettors in the pan-mutuel system. As an example 

a win pnce reported as $7.50 at Assiniboia Downs (with a Q = .82), would correspond by this 

formula to a crowd probability of .217. If the win payoff without breakage was exactly $7.50 

the crowd probability would be .2 19 while a win payoff without breakage of say $7.599 would 

correspond -21 6. 

After 37 data points h, reached 110.16. The relatively rare conditions 1 and 5 of the 

exprnrnental protocol did not occur during the data collection. Since h, 2 99, the Hz 

msumption should be accepted. It therefore. can be concluded chat the probability rnodel is 

more appropriate than the efficient market hypothesis. 

The meteorological statistics such as Brier scores and skiII scores are consistent with the above 

conclusions. The Brier score BS' for the model was .564 in cornparison to the Bner score BS" 

of .6 10 for the base or crowd probabilities. The resulting skill score SS was 7.48%. 

There was a strong positive correlation between the crowd's probabilities and the probabilities 

estimated by the model. In most situations both methods agreed on which horse should be the 

favorite but with somewhat different probabilities. Considering the fact ihat the crowd has 

access to the Beyer speed numbers and likely uses them in a reasonable but non-statistical 

manner, this is not surprising. Although, not the purpose of the study. the results were only 

partially consistent with the longshoi-favorite bias. In most cases when crowd thought a horse 

had a low probability of winning say -05. the mode1 estirnated a much lower probability, say 

.W5. However, there were a number of exceptions such as Race 3 where the crowd estimated a 

probability of -055 for the winning horse and the model's estimate was .194. However, with 

heavy favorites (horses with more than 50% of the win pool) the situation was less clear. Often 

the model predicted slightly lower probabilities than the crowd. In the 3 cases in the 



experiment when a heavy favorite won (with crowd probabilities of ,552. -552 and S21) the 

mode1 probabilities were .495, ,466 and ,456 respectively. It may be that the introduction of 

Beyer speed numben in the Daily Racing Form has changed betting habits. Bettors may be 

overbetting horses that have the highest Beyer speed numbers and underestimating the natural 

variation associated with Beyer speed numben. However, we are dealing with a srnall sarnple 

and a sarnple restricted to older horses mnning on dirt. 

The data from the expriment was as follows: 



Date 

7/26/97 
7/26/97 

7/26/97 

7/27/97 
7/27/97 

7/27/97 

7/27/97 

7/27/97 
7/27/97 

7/27/97 

7/27/97 

7/27/97 
8/2/97 

8/2/97 

8/2/97 

8/2/97 
8/2/97 

8/2/97 

8/2/97 
8/2/97 

8/2/97 
8/4/97 

8/4/97 

8/4/97 

8/4/97 

8/4/97 
8/4/97 

8/4/97 

5/4/97 

8/4/97 
8/4/97 

8/4/97 

8/4/97 
8/8/97 

8/8/97 

8/8/97 

8/9/97 

Table 3 

SPRT for Two Parameter Selection Methods 

Trac k 

WO 

WO 

WO 
AsD 

AsD 

AsD 

AsD 

AsD 

AsD 

AsD 

Hs t 

Dmr 

WO 

WO 

WO 

Su 

Hst 
Hst 

Hs t 
Drnr 

AsD 
WO 
AsD 

wo 
AsD 

WO 
AsD 

WO 

AsD 

AsD 

Hst 

Dmr 

Hst 

WO 
WO 

Sar 

Sar 

Race 

3 

1 

1 1  

1 

2 
4 

6 

7 

8 

9 

9 

8 

1 

3 
4 

8 

3 

4 

7 

7 

7 

1 

4 

7 

5 
8 

6 

9 

8 

9 

I 

2 
4 

3 
9 

8 

7 

Distance 

8.5 

8.5 

8.5 
8.5 

7 

6 
7 

6 

3.5 
6 

8.5 
6 

7 
8 -5 
6 

9 

6.5 

6.5 

8.5 
6 

8 
7 

7 

7 

6 

8.5 
6 

6 

7 
6 

8.5 
6 

6.5 

8.5 
7 

6 

9 

Entries Crowd Model 

Finaliy, in order to illustrate how this SPRT-like algorithm can be used to choose between 

more chan two hypotheses, consider the following three hypotheses: 



Hi: The probability of entry j winning the race equals the fraction of win pool bet on entry j 

Hz: The probability of entry j winning the race eqwls the fraction of simulated races won by 

entry j 

Ha- The probability of rntry j winning the race = I/m where rn is the number of rntries in the 

race. 

Using the same data set as before cp,, is below iI(1-.01) after 37 data points. Thus estimation 

procedure 2 (the simulation model) i s  selectrd best at a level a =.01. The calculations needed 

are demonstrated in the following table: 



Table 4 

SPRT for Three Parameter Selection Methods 

n Entries Crowd Model Equiprob Llk2  LULI i+l/L3 L3/L1 

1 8 0.254 0.128 0-13 1.98 0.50 2.03 0.49 

2 6 0.42 0.43 0.17 1-88 0.53 5.12 0.20 

3 8 0.055 0.194 0.13 0.53 1.87 2.25 0.44 

4 5 0.229 0.266 0.20 0.16 2.18 2.58 0.39 

5 9 0.233 0.224 0.1 1 0.48 2.09 5.41 0.18 
6 8 0.201 0.108 0.13 0.89 1.12 8.70 0.1 1 

7 7 0.130 0.195 0.14 0.59 1.69 7.92 0.13 
8 7 0.147 0.282 0.14 0.31 3.21 8.15 0.12 

9 6 0.449 0.357 0.17 0.54 1.85 21.94 0.05 

10 10 0.098 0.24 0.10 0.22 4-54 31-51 0.05 

1 1  5 0.552 0.495 0.20 0.25 4.07 59.35 0.02 

12 7 0.076 0.194 0.14 0.10 10.39 31.58 0.03 

13 7 0.363 0.332 0.14 0.1 1 9.50 80.24 0.01 

14 8 0.125 0.057 0.13 0.23 4.33 80.24 0.01 

15 6 0.371 0.311 0.17 0.28 3.63 178.61 0.01 

16 6 0.239 0.2 0.17 0.33 3.04 356.12 0.00 

17 6 0.265 0.388 0.17 0.22 4.45 407.23 0.00 

18 6 0.552 0.466 0.17 0.27 3.76 1318.76 0.00 

19 5 0.362 0.336 0.20 0.29 3.49 2441.25 0.00 

20 10 0.1340.188 0.10 0.20 4.89 3271.28 0.00 

21 8 0.437 0.352 0.13 0.25 3.94 11436.40 0.00 

22 7 0.263 0.523 0.13 0.13 7.83 21054.41 0.00 

23 9 0.106 0.188 0.11 0.07 13.90 20085.91 0.00 

24 9 0.130 0.027 0.1 1 0.35 2.89 23500.5 1 0.00 

25 10 0.102 0,WI 0.10 0.86 1.16 23970.52 0.00 

26 7 0.521 0.456 0.14 0.98 1.03 87420.49 0.00 

27 5 0.125 0.299 0.20 0.41 2.43 54637.80 0.00 

28 7 0.181 0.238 O .  0.31 3.19 69236.10 0.00 

29 8 0.026 0.02 0.13 0.41 2.46 14399.03 0.00 

30 1 1  0.051 0.106 0.09 0.20 5.1 1 8077.85 0.00 

31 6 0.378 0.53 0.17 0.14 7.16 18320.57 0.00 

32 6 0.193 0.35 0.17 0.08 12-92 21325.15 0.00 

33 6 0.331 0.176 0.17 0.14 7.08 41072.24 0.00 

34 6 0.191 0.308 0.17 0.09 11-42 47068.78 0.00 

35 8 0.113 0.271 0.13 0.04 27.39 42550.18 0.00 

36 7 0.117 0.167 0.14 0.03 39.09 34848.60 0.00 



Chapter 5 

A Test of Cross Track Betting Strategies 

The American joumalist. politician and scientist Benjamin Franklin said chat the only sure 

things in life are death and taxes. Hausch and Ziemba (1990) claimed that there was another 

sure thing - risk free wagers in cross-track betting. As explained in their article 

Cross-truck betting permits bettors ru place wagers at their local tracks on a race 

being riin ut another track. Since each track operates a separate betting pool, the odds 

can van, across the trucks. The data siiggests that the odds vap. and they ofen Vary 

drarnatically, allowirig arbitrage opportiinities. 

Major races are often simulcast from the host track to many satellite tracks. In the situation 

where the satellite tracks had separate betting pools Hausch and Ziemba suggested a syndicate 

have agents at each track. If the agents were in communication they could determine which 

track provided the best odds on on individual hone. By betting each horse at the track with the 

best odds it might be possible to create a risk-free hedge or arbitrage opponunity. The example 

given in their article was the betting on the 1983 Preakness race. 

Table 5 

Cross Track Betting 1983 Preakness 

$ amount of wager 

that will return 
%1 

Horse No. 

I 
2 

3 
4 

5 

1 i 1 l 40.60 1 Los Alamitos 1 .O246 

Highest Win Return 
(on a $1 kt)  

29.40 
12.70 

6 

7 
r 

8 

9 

10 
I 

Track 

33.60 
1 69 -90 

56.90 

Louisiana Downs 
Louisiana Downs 

5.70 
10.60 
76-60 
1 16.10 
2.20 

.O340 
,0787 

Los Alamitos 
Hollywood 

Louisiana Downs 

-0389 
-0059 

- .O 176 
Louisiana Downs 

Pimlico 

Louisiana Downs 
Hollywood 

Los Almitos 

-1754 
-0943 

.O13 1 

.O086 

.4545 



Thus by wagering $0.9356 the syndicate is guaranteed $1.00 regardless of which horse won the 

race. It must be pointed out that in pari-mutuel betting the bets affect the odds. Therefore, 

betting $9.356 will retum less than $10,000 although Iikely more than $9,356. 

Hausch and Ziemba admit that it is difficult (if not impossible) to successfully implement the 

above approach. However, they do recommend a strategy for an individual bettor at a satellite 

track. They suggest that the individual bettor at the satellite track view the odds at the host 

track and use these "true" win probabilities to search for "overlays" at the satellite track. In 

gambling the tenn "overlay" refers to a wager wiih a positive expeciation. 

Hausch and Ziemba assume that the betting at the host track provides the true probabilities 

while the betting at thc satellite track provides inaccurate estimates of the probability. They 

provide a number of reasons for this assumption. First, the efficient market theory on win 

probabilities is based on host track data. Second. bettors at the host track should be more 

knowledgeable about the races at their track. They can see the horses in  the paddock before the 

race. They are more likely to be aware of jockey and track biases. Third, bettors at the host 

track include jockeys, agents. trainers and owners who may have inside information. Finall y. 

the host track usually has much bigger pools than the satellite track and a bigger pool should be 

more efficient. However. al1 of these reasons are common sense and had no data to support 

them. An sltemrte common sense argument is that bettors at the satellite track tend to be hard 

core horse racing gamblers while bettors at the host track tend to be casual bettors interested in 

a day of entenainment. It would follow from ihat argument that the probabilities determined by 

bettors ai the satellite track are the true probabilities. 

1 decided to use the SPRT algorithm for the better of two estimation procedures with an a 

=.O5 The host tracks were the southem California tracks Hollywood and Santa Anita. The 

satellite track was Woodbine in Toronto. Canada. 

in effect, the underlying assumptions being tested were: 

Hi: The probability of entry j winning the race equals the fraction of win pool bet on entry j at 

the host track. 



Hz: The probability of entry j winning the race equals the fraction of win pool bet on entry j ai 

the satellite track. 

Data was obtained from the intemet after a day of racing. This rneant that if there were s q  9 

races in a given day, the data points would be captured in a block of 9. This leads to the 

question of what should be done if there is extra data available after the sequential probability 

ratio test has terminated. 

The data frorn this experiment was as follows: 

Table 6 

SPRT for Cross Track Betting 

Date 

1 u30/97 
1220197 

1 2120197 

1 320197 

1 z20197 

1 u20/97 

12/20/97 

1 2/20/97 

1 7Z20/97 
1 320197 

1 2 2  1/97 

12/21/97 

122 1/97 

122 1/97 

122 1/97 

i 2/2 1/97 

132 1/97 

132 1/97 
1 212 f 197 

123 1/97 
1 222/97 

12/22/97 
1 2/22/97 

1 U22/97 
1 U2UW 
1 m a 9 7  
1 2/22/97 

Race 
I 

2 
3 

4 

5 
6 

7 

8 

9 

10 

1 

2 
3 
3 

5 
6 

7 

8 

9 

10 
I 

2 
3 
4 

5 
6 

7 

Host prob 

0.36 
0.32 
0.39 

0.32 
0.25 
0.46 

0.38 

0.46 

0.26 
0.15 

0.16 

0.1 1 

0.55 

0.20 

O. 10 

0. I O  

0.26 
O. 19 
0.29 

0.5 1 
0.04 

0.13 

O* 15 

0.43 

0.33 
0.2 1 

0.32 

Satellite prob LIIL2 







8.27 

8.59 

8.94 

9.48 

IO. 10 

9.92 

8.85 

8.40 

8.83 
7.67 

7.1 1 

6.66 

6.64 

7.72 

8 -74 

7.96 

7.97 

8.19 

8.8 1 

8.88 

8 .JO 

7.5 1 

6 -49 

7 .O3 

6.70 

7.73 

8 A6 

8 .go 

10.60 

10.85 
11.06 

14.46 

12.98 

14.33 

14.39 

12.44 

1 3.79 

12.18 

12.85 

13.1 1 

1 1.71 

9.72 

9-57 

10.88 

10.84 

9.54 

10.88 

13.44 



With a = .05, the sequential probability ratio test should end when A, reaches 19. A,, reached 

19 after 212 data points which rneans the assumption of the host track probabilities being 

correct should be accepted at a significance level of .05. However, because of the way the data 

was collected, 4 additional data points were available at the end of the experiment. It seems 

wrong to ignore relevant data. However, if data points 2 13, 2 14, 2 15 and 2 16 are included, k,, 

drops to 14.16 and the resuits are no longer significant at a 5% level. If a selection must be 

made (wiih no prior views on which hypothesis is correct), the hypothesis with the higher 

likelihood would be selected. in this case, the assurnption that the host track probabilities are 



correct is selected. With a ii, = 14.16, the postenor probability that the host track's 

probabilities are correct (assuming either the host track's or the satellite track's probabilities 

are correct) is k,, / (l+L) or -93. Finally, with respect to the definition in Chapter 1. the host 

track procedure for estimating parameten is selected the better of the host and the satellite 

procedures at a significance level of .07. Thus although this is not a proof of the Hausch- 

Ziemba conjecture. the results are at les t  consistent with the views of Hausch and Ziembn. 

In order to avoid a future ambiguous outcorne, I would required a stopping rule of k,,, 2 ( l -  

a)/a after a block of data has been captured. 



Chapter 6 

Conclusions 

This thesis developed a rnethod for selecting the best of k multinomial parameter estimation 

procedures when only one observation per the k estimation procedures is possible but the k 

estimation procedures cm be repeated many times. The inspiration for this rnethod was the 

Sequential Probability Ratio Test (SPRT). In my view an SPRT-Like approach is ideal in 

situations where one of k procedures must be selected and the consequence of selecting an 

incorrect procedure is the same for al1 procedures. 

Chapters 4 and 5 demonstrated the use of this SPRT-like procedure. Both chapters examined 

the SPRT-like approach with respect to racetrack models. However. in my view the most 

important future application of this procedure would be in test ing financial models t hat forecast 

probabilities in financial markets. Market timing is a controversial area in financial research. 

This SPRT-like approach pmvides an objective test to determine which probability model 

developed for market timing is best. 

Chapter 3 developed a probability model for the racetrack. The SPRT-like approach in Chapter 

4 established chat assuming one of the two models was correct. the Beyer probability model 

should be selected over the efficient market mdel. Howrver. horse racing is so complrx. it is 

doubtful that any model will ever be able to provide the "true probabilities". 

Nevertheless. the fact that a statistical model provides better probabilities than the crowd's 

probabilities is important. In pan-mutuel betting, the crowd's probabi lities determine the odds. 

A necessary condition for a winning betting strategy is to have better probabilities than the 

crowd, 

The results of this chapter are relevant to other research problems associated with the race 

track. Given an estimate of the probability of each horse winning and the odds on each horse, 

how should a decision maker bet the race? As pointed out earlier, Isaacs (1953), Rosner 

(1975), and Bolton and Chapman (1986) have provided models for this problem. The results of 

this chapter provide a tool for implementing these models. 



There are a number of models (Hausch, Ziemba and Rubinstein (1981), Ziemba and Hausch 

(1984) and Ziemba and Hausch (1985). Asch and Quandt (1987) ) which require estimates of 

the win probabilities in order to exploit anomalies in other pools at the race track. These 

models al1 used the fraction of the win pool as the estimate of the tnie probability of an entry 

winning a race. These models should perfonn better with a more accunte estimate of the win 

probabil ities. 

Chapter 5 examined the Hausch and Ziemba (1990) assumption on cross track betting 

strategies. The results were consistent with the Hausch and Ziemba assumption. 

The SPRT-like approach in Chapter 2 was developed for discrete random variables. A natural 

extension of this work would be in continuous random variables. For example suppose there 

were k procedures for generating a probability density function for next month's retum in a 

particular stock. Which of these procedures is correct? Again this is a situation where one 

observation per the k procedures is possible but the k procedures can be repeated each month. 

A second area of future research is the probability model for the ricetrack in Chapter 3. 

Simulation was used to estimate the parameten. Simulation can only approximate the expec~ed 

value of a parameter. If an analytic solution can be developed an exact solution can be 

obtained. However, it should be noted that rven with an exact solution to the parameters, the 

model will not necessarily be generating the "tnie probabilities". While I believe the best type 

of model for the race track is one which uses the future Beyer number as the response variable. 

different analysts might choose different explanatory variables and develop a better model. 

However, the SPRT-like procedure does provide a technique for comparing that model with the 

model developed in this thesis. 
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