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Selecting the Corner in theL-Curve Approach to Tikhonov  along the resulting curve. As long as the uncorrelated measurement

Regularization noise in¢,, dominates the more highly correlated geometry noise in
A, this plotis in the form of arl., and thet value at the corner of the
Peter R. Johnston and Ramesh M. Gulrajani* intuitively suggests an appropriate solution wherein both the norm and

the residual simultaneously attain low values. Since the corner of the
Abstract—The performance of two methods for selecting the corner L is often rounded, Hansen and O’Leary [4] suggested that the corner

in the L-curve approach to Tikhonov regularization is evaluated via P€ found as the point of maximum curvature. More recently, eiead

computer simulation. These methods are selecting the corner as the point [5] have proposed that thtevalue, and hence the corner, be selected as
of maximum curvature in the L-curve, and selecting it as the point where the point on thel.-curve where the product

the product of abcissa and ordinate is a minimum. It is shown that both

these methods resulted in significantly better regularization parameters

than that obtained with an often-used empirical Composite REsidual and P(t) = ||0]|[|Ad — oml| (3)
Smoothing Operator approach, particularly in conditions where corre-

lated geometry noise exceeds Gaussian measurement noise. It is also shown

that the regularization parameter that results with the minimum-product  is @ minimum. This minimum-product criterion is a special case (cor-

method is identical to that selected with another empirical zero-crossing responding to\ = 1) of a more general criterion that minimizes the

approach proposed earlier. product(||8||*)* (||Aé — ¢..]|*) whereX > 0 [6]. The present short
Index Terms—Electrocardiography, electroencephalography, inverse communication describes simulation tests that we have done to eval-
problems, L-curve, regularization. uate the Hanseet al. and Lianet al. choices fort. Results with both

choices are compared to those obtained with the optimal and CRESO
choices fort. We also show that the minimum-product criterion yields

] o ) ) ) at value that is identical to one that results with a “zero-crossing” ap-
Tikhonov regularization is often employed in the ill-posed inversgroach recently proposed by us [7].

problems of electrocardiography and electroencephalography in order
to stabilize the solution in the face of measurement noise or errors in ge- I

ometry. In the zero-order version of Tikhonov regularization, the func-
tional to be minimized is given by A. Hansen and O’Leary’s Point of Maximum Curvature

. INTRODUCTION

. METHODS

Many of the expressions needed below are most conveniently de-
M(¢) = [|Ad — om|l* + tll0])* (1) termined following a singular value decompositidan= ULVT of
the transfer matrixd. For example, the regularized solution (2) can be

wheres denotes the x 1 solution matrix,¢,, them x 1 column ma- written as [7]
trix of data potentials, and the transfer matrix relating the two. The
symbol|| || denotes the Euclidean norm and the regularization param- o(t) = Z < 04 ) o 4)
etert serves to determine the relative weight accorded to the residual ol +t
error and the solution norm. The corresponding regularized solution is

given by where
. Tii are the elements of the diagonal mafrix
6(t) = (ATA n ﬂ) Ao, @ is the scalar produat! ¢, ;
u; andw; are thecolumns o8 andV, respectively.

wherel is the identity matrix and the superscriftdenotes the trans- Accordingly, since the matricd§ andV are orthonormal, we have
pose. Too small a value forresults in continued instability of the so-
lution, whereas too large a value results in an overregularized solution
. . . 0—77()‘
that, while stable, has an unnecessarily large residual error. If the true [|6(¢) Z i o2 (5)
solution ¢, is knowna priori (as in simulation studies), an optimal i)
choicet,p for t can be determined where the relative eriRE, de-
fined asRE(t) = ||¢ — ¢s||/|los], is @a minimum. In a clinical situa- Similarly, the residual can be written as [7]
tion, however, an alternative choice fois needed that ideally should
approacht,p. . a2 N
Two approaches for selectimghat have gained wide acceptance are A6 = éml|” Z o > 3 + (el (6)
Composite REsidual and Smoothing Operator (CRESO) [1] and the 7ii-
L-curve [2], [3]. TheL-curve approach involves a plot, using a log-log
scale, of the norm of the solutidfp|| on the ordinate against the normwherer__is the residual vector of a conventional unregularized least-
of the residual|A¢ — &,.|| on the abscissa, with as a parameter squares-error solution given by.. = (A" A)""A" ¢, i.e,r. =
Aq)lsc - @m-
. . . ) Hanseret al’s choice is the point on thé-curve
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where differentiation is with respect tolmplementation of the above C. The CRESO Regularization Parameter

formula is reasonably straightforward. Recall that The CRESO regularization parameter,. is determined as the

smallestvalue oft > ( that results in a local maximum of the function

n(t) =log ()] = 3 log llo(t)]” 9)
‘ d .,
C(t) = lle®I” + 2t llo®)*. (14)
S0 t
. 1d||é()])? . Using (5), this CRESO function can be rewritten as
i = 340 oo (10 n 2
and C(t) = {WMY}{I— 4#}. (15)
PO 2 <d||<b<f>||2>z ; b+l b+l
" dt? ' dt
i (t) = EGIE (1) This function can be plotted for different valuestadnd its first local

maximum determined.

with similar expressions faf’ (¢) and¢” (¢) in terms of||A¢ — & ||?
and its derivatives with respecttoThe first and second derivatives of
l¢]|* and||A¢ — ¢..||* can be found by differentiating (5) and (6), The simulation protocol that we used to compare the performances
respectively. Substituting the expressions:#fary”, ¢’ and¢” in (8)  of the maximum-curvature, minimum-product and CRESS@lues is
finally allows evaluation of the curvature#). The maximum curvature described in our earlier paper [7] and hence is only briefly summarized
is found by simply evaluating(¢) over the entire.-curve, and yields here. It consists of three radial dipoles (two pointing inward and one

D. Simulation Protocol

thet value denoted,, in the sequel. outward) placed inside a realistic-geometry epicardium comprising 610
nodes and 1216 triangles. Infinite-medium potential equations were
B. The Lian et al. Minimum-Product Criterion for the Corner used to approximate the epicardial potential distribution at the 610 node

We wish to find the value of that minimizes the produd®(t) = points. This epicardial source distribl_Jtion was placed inside a h'omo-
6]1|Aé = ... ||. Since this product is always positive, we can look foB€N€OUs torso model that also comprised 6_10 nodes and ;2}6 triangles
the value oft that minimizes the squared produiet]|?||A¢ — dm 2. and_the boundary t_alement method employing a linear varlatlor_w of po-
To find the required value of, we differentiate the squared product€ntial over each triangle was used to compute a:6B10 A matrix,

with respect td, and set the derivative to zero. Employing (5) and (62nd hence, the 610 torso node potentials. The three dipoles resulted in
an epicardial potential distribution with one maximum and two minima,

we have DTV ) . -
but a smoothed torso potential distribution with a single maximum and
d oz Ab— o |2 a single minimum (see [7, Fig. 4]). Next, 168 of these torso potentials
5[”‘*’” 149 = om|I'] were used to inversely compute the potentials at 114 uniformly dis-
d "L g2 a2 n 1202 N tributed epicardial nodes. The required 168114 A matrix for the
=X ==] > 5+ el inverse solution was recomputed from a coarser 114-node epicardial
dt |\~ (t+ %) Lo (t402) _ o X :
i=1 o =1 v mesh, with, however, the original 610-node torso, by first computing
I T S P ) a 610x 114 A matrix and then extracting rows corresponding to the
D Z (t+0%)? Z (t+c2)? + el 168 torso positions. Using the smaller 188114 reducedA matrix
’*:L Y o 17711 Y in the inverse computations introduced an intrinsic amount of geom-
+ |ot Z 0507 Z T etry noise on account of the simplified epicardial geometry. To this,
S(t+ol) | | = (t+07)? we added some more geometry noise by offsetting the heart 1 cm in

n 5 o r n o9, o each of two diametrically opposite directions, one inward toward the
Tii (Vg a; (o —t) 2 i
[Z 23} tz ———t = lrL ]| } . torso center and the other outward toward the anterior torso surface.
i= (t+o3) L i=1 (t+o3) An incorrect reduced. matrix was computed each time and used for
the inverse computations. The geometry noise introduced by the offset-
Since each term in the first summation is positive, it follows that thgng is an even more highly correlated form of noise than the intrinsic
above derivative is zero when geometry noise. A final set of simulations added 0.5% Gaussian mea-
"ot 1) surement noise to the 168 starting torso potentials.
;i (0 — 2
t; (t+o7)? el =0 (12) IIl. RESULTS
As in our earlier study, the initial simulations with geometry noise
alone verified that thé.-curve approach broke down under these con-
n s ditions. This is shown more explicitly in Fig. 1 (left column) where
. a; (o5 —t) _ 2y 2 L2 we show (from top to bottom) thé-curve, a plot of its curvature, the
B(t) = t; (t+02)2 e [I7 = #ioOI = llA¢ = om] minimum product functior”(¢) together with the relative error curve
(13) RE(t), and the CRESO functio€'(¢), for simulations with intrinsic
The zero-crossing approach described by us [7] also involved solviggometry noise plus the heart offset 1 cm inward. Theurve has an
B(t) = 0, and taking the smallestvalue for which a solution exists indistinct corner. Its curvature plot exhibits three maxima, of which the
as the zero-crossing regularization parameter. Thus, the zero-crosSirsis the largest. If the value (6x 10™'?) corresponding to this first
approach and the minimum-product corner criterion are equivalent, andximum is selected, the solution will be extremely underregularized,
the determined value is denotedy in the sequel. The parametier  as may be verified by looking at tHeF (¢) curve which reveals,,; as
can be found either from the smallest zerdif) or, equivalently, by 8 x 10~ *. Indeed, the value corresponding to the third (smallest) peak
plotting P(¢) and determining its minimum. in the curvature plot lies closest tg,; and is the one that should be

Equation (12) can be written d(t) = 0, where
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Fig. 1. Inverse solutions with realistic heart-torso geometries. The left-hand column shows the curves for intrinsic geometry noise plus gisernétained
by offsetting the heart 1 cm inward toward the center of the torso (see text). The right-hand column shows curves when, in addition to the intemgingisem
and geometry noise due to a 1 cm heart offset inward, 0.5% Gaussian measurement noise is also included. The first raliplotetehe second the curvature
of the L-curves as a function af the third P(¢) and RE(t) (dotted and solid trace, respectively), and the fourth the CRESO fun€tion Values oft,,; (o),

t; (A), tp (+) andtcre (X) are marked as appropriate.

selected, and is, accordingly, the one marked on the curvaturB Bnd local maximum in order to be closestitg,;. Thus, all three techniques
plots. Strictly speaking though, the absence of a corner id.tbarve for selectingt break down, with the minimum-product criterion iden-
alerts us to the fact that the curvature plot is meaningless, and accdifging this breakdown by the absence of a minimumHA(¢) and the

ingly that the maximume-curvature criterion for the corner breaks dowmaximum-curvature criterion by the absence of a sharp corner in the
What is more interesting is the absence of a minimum in the produttcurve. Very similar situations prevailed for the case of intrinsic ge-
function P(¢). Thus, this function also serves as an indicator of themetry noise and that of intrinsic geometry noise plus the heart offset
absence of a corner in the-curve, and the minimum-product crite-1 cm outward (see Table 1).

rion also breaks down. Finally, the CRESO function revealstthat: This complete breakdown is avoided when Gaussian measurement
has to be selected corresponding to the second (rather than the finsise is added, even as little as 0.5% noise. The corner ihihgrve



1296 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 9, SEPTEMBER 2000

TABLE | minimum appears id(t), thus, explicitly indicating that the method
SUMMARY OF INVERSION PARAMETERS FORREALISTIC HEART-TORSO breaks down. The same can also be saidtfoas the corner in the
GEOMETRIES WITHTHREE RADIAL DIPOLESWITHIN THE HEART L-curve disappears under these conditions, and when, accordingly, no
Simulation Solution 7 RE maximum-curvature criterion is applicable. No such warning is pro-
Tntrinsic geometry noise Optimal 4% 10-5 | 0.521 vided by CRESO. Indeed, the first local maximum of the CRESO func-
Max Curvature* | 4 x 10~% | 0.521 tion under these geometry noise conditions may not yield the most ap-
CRESO* 1x 1077 |0.997 propriate solution. In the real clinical or experimental solution, how-
Intrinsic geometry noise + | Optimal 8 x107% | 0.652 ever, once measurement noise is present, this drawbatksof dis-
Heart offset 1 cm inward Max Curvature* | 4 x 107° | 0.827 appears
ESO* 4% 1078 | 2.206 ) . . .

— - CR‘ — Thus, when Gaussian measurement noise starts to dominate geom-
Intrinsic geometry noise + Optimal 8x10 0.553 .

Heart offset 1 cm outward Max Curvature* | 1 x 10™* | 0.560 ?UY n0|se,_a_ll Fhree methods W_Ork- The paramettersp andtc{;{F) all

CRESO* 2% 1078 | 0.622 lie in the vicinity of the corner in thé-curve witht,, to the right of
Intrinsic geometry noise + | Optimal 0x 10°%] 0652 the corner. Additional simulations described by us earlier [7] showed
Heart offset 1 cm inward + | Max Curvature |5 x 1078 | 2.241 that with increased Gaussian noise, the corner moves outward, i.e., to
0.5% Gaussian noise Min Product 3x 1078 | 2.428 the right, and eventually catches up with,. At this point, ., tp,

_ , CRESO" 7x 1072 | 2.140 tere, andt,p: are all close to the comner. As the noise increases fur-
Intrinsic geometry noise + | Optimal 1> 10771 0.559 ther and the corner continues to move outward, all four continue to
I;g?;t offset 1 cm outward + | Max Curvature | 2 x 1077} 0.695 move outward with the corner. Thus, it is mainly in the low-noise set-

5% Gaussian noise Min Product 2x 10 0.695 . L . o
CRESO 1x10-7 | 0.749 ting that significant differences are seen between all four, and it is in

T - ] this low-noise setting that inverse solutions computed witht », and
Asterlsks_mdlcate where Max!mum Curvatu_re and CRESO .t_echnlques broke te e exhibit larger relative errors than the optimum solution.
down. No Minimum Product solutions were obtained under conditions of geometry . . . . .
noise alone. These simulations indicate that an appropriate strategy for inverse
solutions obtained by Tikhonov regularization would be to first com-
. . . . ute theL-curve and ensure the presence of a corner. The corner can
becomes prominent, the maximum in the curvature plot does ident . - . ; . ) )
o . . en be identified either by the point of maximum curvature, or in easier
the corner, and a minimum appears in the product function plot. Tht?se . ) N .
. e . . ashion by plottingP(¢) and finding its minimum. Both these corner
features are easily verified in Fig. 1 (right column) which shows the. =~ “= " . Y .
. . N . cr;ttena will yield solutions that will either be close to the optimal so-
results when, in addition to the intrinsic geometry noise and heart offse . . .
. . . tion or, if £,,; does not happen to be at the corner, solutions that will
inward, 0.5% noise was added to the body surface potentials. Nortjg‘underre Ularized
however, that while both,;, andt, fall in the corner region of the 9 '
L-curve,t,,¢ falls to the right of the corner. Also, once again it is the
second local maximum in the CRESO function that is closest,ig REFERENCES
and one could argue thatthe CRESO approach again breaks down. Witf1] P. Colli-Franzone, L. Guerri, B. Taccardi, and C. Viganotti, “Finite el-
intrinsic geometry noise, heart offset outward and 0.5% noise, however, ~ement approximation of regularised solutions of the inverse potential
all three techniques worked as stipulated withalues at the corner of problem of electrocardiography and applications to experimental data,

; : . Calcolg, vol. XXII, no. 1, pp. 91-186, 1985.
the L-curve, but,,, still remained to the right of the corner (Table I). [2] P.C. Hansen, “Truncated singular value decomposition solutions to dis-

crete ill-posed problems with ill-determined numerical rar&lAM J.

IV. DISCUSSION Sci. Stat. Computvol. 11, pp. 503-518, 1990.
[3] ——, “Analysis of discrete ill-posed problems by means of the
The demonstration that the Liat al. minimum-product corner cri- L-curve,”SIAM Rev.vol. 34, pp. 561-580, 1992.

terion results in the samevalues as our earlier more empirical zero- [4] P.C.Hansen and D. P. O'Leary, “The use of theurve in the regular-
crossing approach offers a rational explanation as to why the latter 'Zat"l’zg nggetiégfosed problems31AM J. Sci. Computvol. 14,
approach for regularization parameter selection was successful, somes) .’]).pl-_ian, D_. Yao"and B He, “A new method for implementation of reg-
thing that we were not able to show earlier, and that we redress here.  ularization in cortical potential imaging,” iRroc. 20th Annu. Int. Conf.
Quite simply, the zero-crossing approach is equivalent td toeirve IEEE/EMBS 1998, pp. 2155-2158.
approach employing a minimum-product corner criterion. (6] Lnie,gg?:a’ J“Aséieggloirqizaii\?or} [f;ramet?join72gsclrgge6i”_pOSEd Prov
Our.SImuIatlons show thag, apdfp are generally superior e rz, [7] P. R. Johnston and R. MF.)uGuIréjar;i,pPA new method for regularization
resulting more often than not in a lowRE One advantage daf- is parameter determination in the inverse problem of electrocardiography,”

that when correlated geometry noise dominates measurement noise, no IEEE Trans. Biomed. Engvol. 44, pp. 19-39, Jan. 1997.



