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Abstract

Objective measures such as support, confidence, interest factor, correlation, and entropy are often used to evaluate

the interestingness of association patterns. However, in many situations, these measures may provide conflicting

information about the interestingness of a pattern. Data mining practitioners also tend to apply an objective measure

without realizing that there may be better alternatives available for their application. In this paper, we describe several

key properties one should examine in order to select the right measure for a given application. A comparative study of

these properties is made using twenty-one measures that were originally developed in diverse fields such as statistics,

social science, machine learning, and data mining. We show that depending on its properties, each measure is useful for

some application, but not for others. We also demonstrate two scenarios in which many existing measures become

consistent with each other, namely, when support-based pruning and a technique known as table standardization are

applied. Finally, we present an algorithm for selecting a small set of patterns such that domain experts can find a

measure that best fits their requirements by ranking this small set of patterns.

r 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of relationships between variables
is a fundamental task at the heart of many data
mining problems. For example, the central task
of association analysis [1,2] is to discover sets
of binary variables (called items) that co-occur
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together frequently in a transaction database, while
the goal of feature selection is to identify groups
of variables that are highly correlated with each
other, or with respect to a specific target variable.
Regardless of how the relationships are defined,
such analyses often require a suitable measure to
evaluate the dependencies between variables. For
example, objective measures such as support,
confidence, interest factor, correlation, and entropy
have been used extensively to evaluate the inter-
estingness of association patterns—the stronger is
the dependence relationship, the more interesting
is the pattern. These objective measures are defined
in terms of the frequency counts tabulated in a
2 � 2 contingency table, as shown in Table 1.

Although there are numerous measures avail-
able for evaluating association patterns, a sig-
nificant number of them provide conflicting
information about the interestingness of a pattern.
d.
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Table 1

A 2 � 2 contingency table for items A and B

Table 2

Ten examples of contingency tables
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To illustrate this, consider the 10 contingency
tables, E1–E10, shown in Table 2. Table 3 shows
the ranking of these tables according to 21
different measures developed in diverse fields such
as statistics, social science, machine learning, and
data mining.1 The table also shows that different
measures can lead to substantially different rank-
ings of contingency tables. For example, E10 is
ranked highest according to the I measure but
lowest according to the f-coefficient; while E3 is
ranked lowest by the AV measure but highest by
the IS measure. Thus, selecting the right measure
for a given application poses a dilemma because
many measures may disagree with each other.
To understand why some of the measures are
inconsistent, we need to examine the properties of
each measure. In this paper, we present several key
properties one should consider in order to select
the right measure for a given application. Some of
these properties are well-known to the data mining
community, while others, which are as important,
have received less attention. One such property is
the invariance of a measure under row and column
scaling operations. We illustrate this with the
following classic example by Mosteller [3].
1A complete definition of these measures is given in Section 2.
Table 4(a) and (b) illustrates the relationship
between the gender of a student and the grade
obtained for a particular course for two different
samples. Note that the sample used in Table 4(b)
contains twice the number of male students in
Table 4(a) and 10 times the number of female
students. However, the relative performance of
male students is the same for both samples and the
same applies to the female students. Mosteller
concluded that the dependencies in both tables are
equivalent because the underlying association
between gender and grade should be independent
of the relative number of male and female students
in the samples [3]. Yet, as we show later, many
intuitively appealing measures, such as the f-
coefficient, mutual information, Gini index or
cosine measure, are sensitive to scaling of rows
and columns of the table. Although there are
measures that consider the association in both
tables to be equivalent (e.g., odds ratio [3]), they
have properties that make them unsuitable for
other applications.

In this paper, we perform a comparative
study of the properties for 21 existing objective
measures. Despite the general lack of agreement
among many of these measures, there are two
situations in which they become consistent with
each other. First, we show that the rankings
produced by many measures become highly
correlated when support-based pruning is used.
Support-based pruning also tends to eliminate
mostly uncorrelated and poorly correlated
patterns. Second, we show that a technique
known as table standardization [3,4] can also
be used to make the measures consistent with
each other.

An alternative way to find a desirable measure is
by comparing how well the rankings produced by
each measure agree with the expectations of
domain experts. This would require the domain
experts to manually rank all the contingency
tables extracted from data, which is quite a
laborious task. Instead, we show that it is possible
to identify a small set of ‘‘well-separated’’ con-
tingency tables such that finding the most suitable
measure using this small set of tables is almost
equivalent to finding the best measure using the
entire data set.



ARTICLE IN PRESS

Table 3

Rankings of contingency tables using various objective measures. (lower number

means higher rank)

Table 4

The grade-gender example
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1.1. Paper contribution

The specific contributions of this paper are as
follows.
1.
 We present an overview of 21 objective
measures that were proposed in the statistics,
social science, machine learning, and data
mining literature. We show that application of
different measures may lead to substantially
differing orderings of patterns.
2.
 We present several key properties that will help
analysts to select the right measure for a given
application. A comparative study of these
properties is made using the twenty-one existing
measures. Our results suggest that we can
identify several groups of consistent measures
having similar properties.
3.
 We illustrate two situations in which most of
the measures become consistent with each
other, namely, when support-based pruning
and a technique known as table standardi-
zation are used. We also demonstrate the
utility of support-based pruning in terms of
eliminating uncorrelated and poorly correlated
patterns.
4.
 We present an algorithm for selecting a small
set of tables such that domain experts can
determine the most suitable measure by looking
at their rankings for this small set of tables.
1.2. Related work

The problem of analyzing objective measures
used by data mining algorithms has attracted
considerable attention in recent years [5–11].
Piatetsky-Shapiro proposed three principles that
must be satisfied by any reasonable objective
measures. Our current work analyzes the proper-
ties of existing measures using these principles as
well as several additional properties.

Bayardo et al. [9] compared the optimal rules
selected by various objective measures. They
showed that given a collection of rules A-B;
where B is fixed, the most interesting rules selected
by many well-known measures reside along
the support-confidence border. There is an intui-
tive reason for this observation. Because the rule
consequent is fixed, the objective measure is a
function of only two parameters, PðA;BÞ and
PðAÞ; or equivalently, the rule support PðA;BÞ and
rule confidence PðBjAÞ: More importantly, Bayar-
do et al. showed that many well-known measures
are monotone functions of support and confi-
dence, which explains the reason for the optimal
rules to be located along the support-confidence
border. Our work is quite different because our
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analysis is not limited to rules that have identical
consequents. In addition, we focus on under-
standing the properties of existing measures under
certain transformations (e.g., support-based prun-
ing and scaling of rows or columns of contingency
tables).

Hilderman et al. [6,7] compared the various
diversity measures used for ranking data summa-
ries. Each summary is a relational table containing
a set of attribute-domain pairs and a derived
attribute called Count, which indicates the number
of objects aggregated by each tuple in the
summary table. Diversity measures are defined
according to the distribution of Count attribute
values. In [7], the authors proposed five principles
a good measure must satisfy to be considered
useful for ranking summaries. Some of these
principles are similar to the ones proposed by
Piatetsky-Shapiro, while others may not be applic-
able to association analysis because they assume
that the Count attribute values are in certain
sorted order (such ordering is less intuitive for
contingency tables).

Kononenko [8] investigated the properties of
measures used in the construction of decision trees.
The purpose of his work is to illustrate the effect of
the number of classes and attribute values on the
value of a measure. For example, he showed that
the values for measures such as Gini index and J-
measure increase linearly with the number of
attribute values. In contrast, the focus of our
work is to study the general properties of objective
measures for binary-valued variables. Gavrilov
et al. [10] and Zhao et al. [11] compared the
various objective functions used by clustering
algorithms. In both of these methods, it was
assumed that the ground truth, i.e., the ideal
cluster composition, is known a priori. Such an
assumption is not needed in our approach for
analyzing the properties of objective measures.
However, they might be useful for validating
whether the selected measure agrees with the
expectation of domain experts.

1.3. Paper organization

The remainder of this paper is organized as
follows. In Section 2, we present an overview of
the various measures examined in this paper.
Section 3 describes a method to determine whether
two measures are consistent with each other.
Section 4 presents several key properties for
analyzing and comparing objective measures.
Section 5 describes the effect of applying sup-
port-based pruning while Section 6 describes the
effect of table standardization. Section 7 presents
an algorithm for selecting a small set of tables to
be ranked by domain experts. Finally, we conclude
with a summary and directions for future work.
2. Overview of objective measures

Table 5 provides the list of measures examined
in this study. The definition for each measure is
given in terms of the probabilities estimated from a
2 � 2 contingency table.
3. Consistency between measures

Let TðDÞ ¼ ft1; t2;y; tNg denote the set of 2 �
2 contingency tables derived from a data set D:
Each table represents the relationship between a
pair of binary variables. Also, let M be the set of
objective measures available for our analysis. For
each measure, MiAM; we can construct an interest

vector MiðTÞ ¼ fmi1;mi2;y;miNg; where mij cor-
responds to the value of Mi for table tj : Each
interest vector can also be transformed into a
ranking vector OiðTÞ ¼ foi1; oi2;y; oiNg; where oij

corresponds to the rank of mij and 8j; k : oijpoik if
and only if mikXmij :

We can define the consistency between a pair of
measures in terms of the similarity between their
ranking vectors. For example, consider the pair of
ranking vectors produced by f and k in Table 3.
Since their rankings are very similar, we may
conclude that both measures are highly consistent
with each other, with respect to the data set shown
in Table 2. In contrast, comparison between the
ranking vectors produced by f and I suggests that
both measures are not consistent with each other.

There are several measures available for com-
puting the similarity between a pair of ranking
vectors. This include Spearman’s rank coefficient,
Pearson’s correlation, cosine measure, and the
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Table 5

Objective measures for association patterns

A summary description for each measure:

f-coefficient.[4]. This measure is analogous to Pearson’s product–moment correlation coefficient for continuous variables. It is

closely related to the w2 statistic since f2 ¼ w2=N: Although the w2 statistic is often used for goodness of fit testing, it is seldom used as a

measure of association because it depends on the size of the database [3].

l-coefficient [12]. The l coefficient, also known as the index of predictive association, was initially proposed by Goodman and

Kruskal [12]. The intuition behind this measure is that if two variables are highly dependent on each other, then the error in predicting

one of them would be small whenever the value of the other variable is known. l is used to capture the amount of reduction in the

prediction error.

Odds ratio [3]. This measure represents the odds for obtaining the different outcomes of a variable. For example, consider the

frequency counts given in Table 3. If B is present, then the odds of finding A in the same transaction is f11=f01: On the other hand, if B is

absent, then the odds for finding A is f10=f00: If there is no association between A and B; then the odds for finding A in a transaction

should remain the same, regardless of whether B is present in the transaction. We can use the ratio of these odds, ðf11f00=f01f10Þ; to

determine the degree to which A and B are associated with each other.

Yule’s Q- [13] and Y-coefficients [14]. The value for odds ratio ranges from 0 (for perfect negative correlation) to N (for perfect positive

correlation). Yule’s Q and Y coefficients are normalized variants of the odds ratio, defined in a way that they range from 	1 to þ1:
k-coefficient [15]. This measure captures the degree of agreement between a pair of variables. If the variables agree with each other,

then the values for PðA;BÞ and Pð %A; %BÞ will be large, which in turn, results in a higher value for k:
Entropy [16], J-measure [17], and Gini [18]. Entropy is related to the variance of a probability distribution. The entropy of a uniform

distribution is large, whereas the entropy of a skewed distribution is small. Mutual information is an entropy-based measure for

P.-N. Tan et al. / Information Systems 29 (2004) 293–313 297
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evaluating the dependencies among variables. It represents the amount of reduction in the entropy of a variable when the value of a

second variable is known. If the two variables are strongly associated, then the amount of reduction in entropy, i.e., its mutual

information, is high. Other measures defined according to the probability distribution of variables include J-Measure [17] and Gini

index [18].

Support [1]. Support is often used to represent the significance of an association pattern [1,19]. It is also useful from a

computational perspective because it has a nice downward closure property that allows us to prune the exponential search space of

candidate patterns.

Confidence, Laplace [20], and Conviction [21]. Confidence is often used to measure the accuracy of a given rule. However, it can

produce misleading results, especially when the support of the rule consequent is higher than the rule confidence [22]. Other variants of

the confidence measure include the Laplace function [20] and conviction [21].

Interest factor [22–26]. This measure is used quite extensively in data mining for measuring deviation from statistical independence.

However, it is sensitive to the support of the items (f1þ or fþ1). DuMouchel has recently proposed a statistical correction to I for small

sample sizes, using an empirical Bayes technique [26]. Other variants of this measure include Piatetsky-Shapiro’s rule-interest [5],

certainty factor [27], collective strength [28] and added value [29].

IS measure [30]. This measure can be derived from the f-coefficient [30]. It is the geometric mean between interest factor ðIÞ and the

support measure ðsÞ: The IS measure for pairs of items is also equivalent to the cosine measure, which is a widely-used similarity

measure for vector-space models.

Jaccard [31] and Klosgen measures [32]. The Jaccard measure [31] is used extensively in information retrieval to measure the

similarity between documents, while Klosgen K measure [32] was used by the Explora knowledge discovery system.

Table 5
(Continued)
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inverse of the L2-norm. Our experimental results
suggest that there is not much difference between
using any one of the measures as our similarity
function. In fact, if the values within each ranking
vector is unique, we can prove that Pearson’s
correlation, cosine measure and the inverse of the
L2-norm are all monotonically related. Thus, we
decide to use Pearson’s correlation as our similar-
ity measure.

Definition 1 (Consistency between measures).
Two measures, M1 and M2; are consistent each
other with respect to data set D if the correlation

between O1ðTÞ and O2ðTÞ is greater than or equal
to some positive threshold t:2
4. Properties of objective measures

In this section, we describe several important
properties of an objective measure. While some of
these properties have been extensively investigated
in the data mining literature [5,33], others are not
well-known.
2The choice for t can be tied to the desired significance level

of correlation. The critical value for correlation depends on the

number of independent tables available and the confidence level

desired. For example, at 99% confidence level and 50 degrees of

freedom, any correlation above 0.35 is statistically significant.
4.1. Desired properties of a measure

Piatetsky-Shapiro [5] has proposed three key
properties a good measure M should satisfy:
P1:
 M ¼ 0 if A and B are statistically independent;

P2:
 M monotonically increases with PðA;BÞ when

PðAÞ and PðBÞ remain the same;

P3:
 M monotonically decreases with PðAÞ (or

PðBÞ) when the rest of the parameters (PðA;BÞ
and PðBÞ or PðAÞ) remain unchanged.
These properties are well-known and have been
extended by many authors [7,33]. Table 6 illus-
trates the extent to which each of the existing
measure satisfies the above properties.

4.2. Other properties of a measure

There are other properties that deserve further
investigation. These properties can be described
using a matrix formulation. In this formulation,
each 2 � 2 contingency table is represented by a
contingency matrix, M ¼ ½f11f10; f01f00� while each
objective measure is a matrix operator, O; that
maps the matrix M into a scalar value, k; i.e.,
OM ¼ k: For instance, the f coefficient is equiva-
lent to a normalized form of the determinant
operator, where DetðMÞ ¼ f11f00 	 f01f10: Thus, sta-
tistical independence is represented by a singular
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Table 6

Properties of objective measures. Note that none of the measures satisfies all the properties
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matrix M whose determinant is equal to zero. The
underlying properties of a measure can be
analyzed by performing various operations on
the contingency tables as depicted in Fig. 1.

Property 1 (Symmetry under variable permuta-
tion). A measure O is symmetric under variable

permutation (Fig. 1(a)), A2B; if OðMTÞ ¼ OðMÞ
for all contingency matrices M: Otherwise, it is

called an asymmetric measure.

The asymmetric measures investigated in this
study include confidence, laplace, J-Measure,
conviction, added value, Gini index, mutual
information, and Klosgen measure. Examples of
symmetric measures are f-coefficient, cosine ðISÞ;
interest factor ðIÞ and odds ratio ðaÞ: In practice,
asymmetric measures are used for implication
rules, where there is a need to distinguish between
the strength of the rule A-B from B-A: Since
every contingency matrix produces two values
when we apply an asymmetric measure, we use the
maximum of these two values to be its overall
value when we compare the properties of sym-
metric and asymmetric measures.

Property 2 (Row/column scaling invariance). Let

R ¼ C ¼ ½k1 0; 0 k2� be a 2 � 2 square matrix,
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 B B  
A p q 
A  r s 

 

 A A  
B p r 
B  q s 

 

 B B  
A p q 
A  r s 

 

 B B  
A k3 k1p k4 k1q 
A k3 k2r k4 k2s 

 

 B B  
A p q 
A  r s 

 

 B B  
A r s 
A  p q 

 

 B B  
A p q 
A  r s 

 

 B B  
A s r 
A  q p 

 

 B B  
A p q 
A  r s 

 

 B B  
A p q 
A  r s + k  

 

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 1. Operations on a contingency table. (a) Variable

permutation operation. (b) Row and column scaling operation.

(c) Row and column permutation operation. (d) Inversion

operation. (e) Null addition operation.

3A measure is normalized if its value ranges between 	1 and

þ1: An unnormalized measure U that ranges between 0 and

þN can be normalized via transformation functions such as

ðU 	 1Þ=ðU þ 1Þ or ðtan	1 logðUÞÞ=p=2:
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where k1 and k2 are positive constants. The product

R�M corresponds to scaling the first row of matrix

M by k1 and the second row by k2; while the product

M� C corresponds to scaling the first column of M

by k1 and the second column by k2 (Fig. 1(b)). A

measure O is invariant under row and column

scaling if OðRMÞ ¼ OðMÞ and OðMCÞ ¼ OðMÞ
for all contingency matrices, M:

Odds ratio ðaÞ along with Yule’s Q and Y

coefficients are the only measures in Table 6 that
are invariant under the row and column scaling
operations. This property is useful for data sets
containing nominal variables such as Mosteller’s
grade-gender example in Section 1.

Property 3 (Antisymmetry under row/column
permutation). Let S ¼ ½0 1; 1 0� be a 2 � 2
permutation matrix. A normalized3 measure O is

antisymmetric under the row permutation operation

if OðSMÞ ¼ 	OðMÞ; and antisymmetric under the

column permutation operation if OðMSÞ ¼ 	OðMÞ
for all contingency matrices M (Fig. 1(c)).

The f-coefficient, PS; Q and Y are examples of
antisymmetric measures under the row and col-
umn permutation operations while mutual infor-
mation and Gini index are examples of symmetric
measures. Asymmetric measures under this opera-
tion include support, confidence, IS and interest
factor. Measures that are symmetric under the row
and column permutation operations do not
distinguish between positive and negative correla-
tions of a table. One should be careful when using
them to evaluate the interestingness of a pattern.

Property 4 (Inversion invariance). Let S ¼
½0 1; 1 0� be a 2 � 2 permutation matrix. A measure

O is invariant under the inversion operation (Fig. 1(d))
if OðSMSÞ ¼ OðMÞ for all contingency matrices M:

Inversion is a special case of the row/column
permutation where both rows and columns are
swapped simultaneously. We can think of the
inversion operation as flipping the 0’s (absence) to
become 1’s (presence), and vice versa. This
property allows us to distinguish between sym-
metric binary measures, which are invariant under
the inversion operation, from asymmetric binary
measures. Examples of symmetric binary measures
include f; odds ratio, k and collective strength,
while the examples for asymmetric binary mea-
sures include I ; IS; PS and Jaccard measure.

We illustrate the importance of inversion
invariance with an example depicted in Fig. 2. In
this figure, each column vector is a vector of
transactions for a particular item. It is intuitively
clear that the first pair of vectors, A and B; have
very little association between them. The second
pair of vectors, C and D; are inverted versions of
vectors A and B: Despite the fact that both C and
D co-occur together more frequently, their f
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(a) (b)

0
1
1
1
1
1
1
1
1
0

0
0
0
0
1
0
0
0
0
0

(c)

E F

Fig. 2. Comparison between the f-coefficients for three pairs of

vectors. The f values for (a), (b) and (c) are 	0:1667; 	0:1667

and 0.1667, respectively.
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coefficient are still the same as before. In fact, it is
smaller than the f-coefficient of the third pair of
vectors, E and F ; for which E ¼ C and F ¼ B:
This example demonstrates the drawback of using
f-coefficient and other symmetric binary measures
for applications that require unequal treatments of
the binary values of a variable, such as market
basket analysis [34].

Other matrix operations, such as matrix addi-
tion, can also be applied to a contingency matrix.
For example, the second property, P2, proposed
by Piatetsky-Shapiro is equivalent to adding the
matrix M with ½k 	 k; 	 k k�; while the third
property, P3; is equivalent to adding ½0 k; 0 	 k�
or ½0 0; k 	 k� to M:

Property 5 (Null invariance). A measure is null-

invariant if OðMþ CÞ ¼ OðMÞ where C ¼
½0 0; 0 k� and k is a positive constant.

For binary variables, this operation corresponds
to adding more records that do not contain the
two variables under consideration, as shown in
Fig. 1(e). Some of the null-invariant measures
include IS (cosine) and the Jaccard similarity
measure, z: This property is useful for domains
having sparse data sets, where co-presence of
items is more important than co-absence. Examples
include market-basket data and text documents.

4.3. Summary

The discussion in this section suggests that there
is no measure that is consistently better than
others in all application domains. This is because
different measures have different intrinsic proper-
ties, some of which may be desirable for certain
applications but not for others. Thus, in order to
find the right measure, we need to match the
desired properties of an application against
the properties of the existing measures. This can
be done by computing the similarity between a
property vector that represents the desired proper-
ties of the application with the property vectors
that represent the intrinsic properties of existing
measures. Each component of the property vector
corresponds to one of the columns given in Table
6. Since property P1 can be satisfied trivially by
rescaling some of the measures, it is not included
in the property vector. Each vector component can
also be weighted according to its level of im-
portance to the application.

Fig. 3 shows the correlation between the
property vectors of various measures. Observe
that there are several groups of measures with very
similar properties, as shown in Table 7. Some of
these groupings are quite obvious, e.g., Groups 1
and 2, while others are quite unexpected, e.g.,
Groups 3, 6, and 7. In the latter case, since the
properties listed in Table 6 are not necessarily
comprehensive, we do not expect to distinguish all
the available measures using these properties.
5. Effect of support-based pruning

Support-based pruning is often used as a pre-
filter prior to the application of other objective
measures such as confidence, f-coefficient, interest
factor, etc. Because of its anti-monotone property,
support allows us to effectively prune the expo-
nential number of candidate patterns. Beyond this,
little else is known about the advantages of
applying this strategy. The purpose of this section
is to discuss two additional effects it has on the rest
of the objective measures.

5.1. Elimination of poorly correlated contingency

tables

First, we will analyze the quality of patterns
eliminated by support-based pruning. Ideally, we
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Kappa       

Gini        
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Odds ratio  
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IS          
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0
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0.4

0.6

0.8

1

Fig. 3. Correlation between measures based on their property vector. Note that the column labels are the same as the row labels.

Table 7

Groups of objective measures with similar properties
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prefer to eliminate only patterns that are poorly
correlated. Otherwise, we may end up missing too
many interesting patterns.

To study this effect, we have created a synthetic
data set that contains 100; 000 2 � 2 contingency
tables. Each table contains randomly populated fij

values subjected to the constraint
P

i;j fij ¼ 1: The
support and f-coefficient for each table can be
computed using the formula shown in Table 5. By
examining the distribution of f-coefficient values,
we can determine whether there are any highly
correlated patterns inadvertently removed as a
result of support-based pruning.

For this analysis, we apply two kinds of
support-based pruning strategies. The first strategy
is to impose a minimum support threshold on the
value of f11: This approach is identical to the
support-based pruning strategy employed by most
of the association analysis algorithms. The second
strategy is to impose a maximum support thresh-
old on both f1þ and fþ1: This strategy is equivalent
to removing the most frequent items from a data
set (e.g., staple products such as sugar, bread, and
milk). The results for both of these experiments are
illustrated in Figs. 4(a) and (b).

For the entire data set of 100,000 tables, the f-
coefficients are normally distributed around f ¼ 0;
as depicted in the upper left-hand corner of both
graphs. When a maximum support threshold is
imposed, the f-coefficient of the eliminated tables
follows a bell-shaped distribution, as shown in
Fig. 4(a). In other words, imposing a maximum
support threshold tends to eliminate uncorrelated,
positively correlated, and negatively correlated
tables at equal proportions. This observation can
be explained by the nature of the synthetic data—
since the frequency counts of the contingency
tables are generated randomly, the eliminated
tables also have a very similar distribution as the
f-coefficient distribution for the entire data.

On the other hand, if a lower bound of support
is specified (Fig. 4(b)), most of the contingency
tables removed are either uncorrelated ðf ¼ 0Þ or
negatively correlated ðfo0Þ: This observation is
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Fig. 4. Effect of support pruning on contingency tables. (a)

Distribution of f-coefficient for contingency tables that are

removed by applying a maximum support threshold. (b)

Distribution of f-coefficient for contingency tables that are

removed by applying a minimum support threshold.
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quite intuitive because, for a contingency table
with low support, at least one of the values for f10;
f01 or f00 must be relatively high to compensate for
the low frequency count in f11: Such tables tend to
be uncorrelated or negatively correlated unless
their f00 values are extremely high. This observa-
tion is also consistent with the property P2
described in Section 4.2, which states that an
objective measure should increase as the support
count increases.

Support-based pruning is a viable technique as
long as only positively correlated tables are of
interest to the data mining application. One such
situation arises in market basket analysis where
such a pruning strategy is used extensively.

5.2. Consistency of measures under support

constraints

Support-based pruning also affects the issue of
consistency among objective measures. To illus-
trate this, consider the diagram shown in Fig. 5.
The figure is obtained by generating a synthetic
data set similar to the previous section except that
the contingency tables are non-negatively corre-
lated. Convex measures such as mutual informa-
tion, Gini index, J-measure, and l assign positive
values to their negatively-correlated tables. Thus,
they tend to prefer negatively correlated tables
over uncorrelated ones, unlike measures such as f-
coefficient, Yule’s Q and Y ; PS; etc. To avoid such
complication, our synthetic data set for this
experiment is restricted only to uncorrelated and
positively correlated tables.

Using Definition 1, we can determine the
consistency between every pair of measures by
computing the correlation between their ranking
vectors. Fig. 5 depicts the pair-wise correlation
when various support bounds are imposed. We
have re-ordered the correlation matrix using the
reverse Cuthill-McKee algorithm [35] so that
the darker cells are moved as close as possi-
ble to the main diagonal. The darker cells indicate
that the correlation between the pair of measures is
approximately greater than 0.8.

Initially, without support pruning, we observe
that many of the highly correlated measures agree
with the seven groups of measures identified in
Section 4.3. For Groups 1–5, the pairwise correla-
tions between measures from the same group are
greater than 0.94. For Group 6, the correlation
between interest factor and added value is 0.948;
interest factor and K is 0.740; and K and added
value is 0.873. For Group 7, the correlation
between mutual information and k is 0.936;
mutual information and certainty factor is 0.790;
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Fig. 5. Similarity between measures at various ranges of support values. Note that the column labels are the same as the row labels.

Table 8

Effect of high-support items on interest factor
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and k and certainty factor is 0.747. These results
suggest that the properties defined in Table 6 may
explain most of the high correlations in the upper
left-hand diagram shown in Fig. 5.

Next, we examine the effect of applying a
maximum support threshold to the contingency
tables. The result is shown in the upper right-hand
diagram. Notice the growing region of dark cells
compared to the previous case, indicating that
more measures are becoming highly correlated
with each other. Without support-based pruning,
nearly 40% of the pairs have correlation above
0.85. With maximum support pruning, this per-
centage increases to more than 68%. For example,
interest factor, which is quite inconsistent with
almost all other measures except for added value,
have become more consistent when high-support
items are removed. This observation can be
explained as an artifact of interest factor. Consider
the contingency tables shown in Table 8, where A

and B correspond to a pair of uncorrelated items,
while C and D correspond to a pair of perfectly
correlated items. However, because the support for
item C is very high, IðC;DÞ ¼ 1:0112; which is
close to the value for statistical independence. By
eliminating the high support items, we may resolve
this type of inconsistency between interest factor
and other objective measures.

Our result also suggests that imposing a mini-
mum support threshold does not seem to improve
the consistency among measures. However, when
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it is used along with a maximum support thresh-
old, the correlations among measures do show
some slight improvements compared to applying
the maximum support threshold alone—more
than 71% of the pairs have correlation above
0.85. This analysis suggests that imposing a tighter
bound on the support of association patterns may
force many measures become highly correlated
with each other.
6. Table standardization

Standardization is a widely used technique in
statistics, political science, and social science
studies to handle contingency tables that have
different marginals. Mosteller suggested that
standardization is needed to get a better idea of
the underlying association between variables [3],
by transforming an existing table so that their
marginals become equal, i.e., f �1þ ¼ f �0þ ¼ f �þ1 ¼
f �þ0 ¼ N=2 (see Table 9). A standardized table is
useful because it provides a visual depiction of
how the joint distribution of two variables would
look like after eliminating biases due to non-
uniform marginals.

6.1. Effect of non-uniform marginals

Standardization is important because some
measures can be affected by differences in the
marginal totals. To illustrate this point, consider a
pair of contingency tables, X ¼ ½a b; c d� and
Y ¼ ½p q; r s�: We can compute the difference
between the f-coefficients for both tables as
follows.

logðfX Þ ¼ logðad 	 bcÞ 	 1
2
½logða þ bÞ þ logða þ cÞ

þ logðb þ cÞ þ logðb þ dÞ�; ð1Þ
Table 9

Table standardization
logðfY Þ ¼ logðpq 	 rsÞ 	 1
2
½logðp þ qÞ þ logðp þ rÞ

þ logðq þ sÞ þ logðr þ sÞ�; ð2Þ

where the f-coefficient is expressed as a logarith-
mic value to simplify the calculations. The
difference between the two coefficients can be
written as

logðfX Þ 	 logðfY Þ ¼ D1 	 0:5D2;

where

D1 ¼ logðad 	 bcÞ 	 logðpq 	 rsÞ

and

D2 ¼ logða þ bÞða þ cÞðb þ cÞðb þ dÞ

	 logðp þ qÞðp þ rÞðq þ sÞðr þ sÞ:

If the marginal totals for both tables are identical,
then any observed difference between logðfX Þ and
logðfY Þ comes from the first term, D1: Conversely,
if the marginals are not identical, then the
observed difference in f can be caused by either
D1; D2; or both.

The problem of non-uniform marginals is
somewhat analogous to using accuracy for evalu-
ating the performance of classification models. If a
data set contains 99% examples of class 0 and 1%
examples of class 1, then a classifier that produces
models that classify every test example to be class 0
would have a high accuracy, despite performing
miserably on class 1 examples. Thus, accuracy is
not a reliable measure because it can be easily
obscured by differences in the class distribution.
One way to overcome this problem is by stratifying
the data set so that both classes have equal
representation during model building. A similar
‘‘stratification’’ strategy can be used to handle
contingency tables with non-uniform support,
i.e., by standardizing the frequency counts of a
contingency table.
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6.2. IPF standardization

Mosteller presented the following iterative
standardization procedure, which is called the
Iterative Proportional Fitting algorithm or IPF
[4], for adjusting the cell frequencies of a table
until the desired margins, f �iþ and f �þj ; are obtained:

Row scaling:

f
ðkÞ

ij ¼ f
ðk	1Þ

ij �
f �iþ

f
ðk	1Þ

iþ

; ð3Þ

Column scaling:

f
ðkþ1Þ

ij ¼ f
ðkÞ

ij �
f �þj

f
ðkÞ
þj

: ð4Þ

An example of the IPF standardization procedure
is demonstrated in Fig. 6.

Theorem 1. The IPF standardization procedure is

equivalent to multiplying the contingency matrix

M ¼ ½a b; c d� with

k1 0

0 k2

" #
a b

c d

" #
k3 0

0 k4

" #
;

where k1; k2; k3 and k4 are products of the row and

column scaling factors.

Proof. The following lemma is needed to prove
the above theorem.
15 10 25
35 40 75
50 50 100

30.00 20.00 50.00
23.33 26.67 50.00
53.33 46.67 100.00

28.12 21.43 49.55
21.88 28.57 50.45
50.00 50.00 100.00

28.38 21.62 50.00
21.68 28.32 50.00
50.06 49.94 100.00

Original Table

Standardized
Table

k=0 k=1

k=3 k=2

28.35 21.65 50.00
21.65 28.35 50.00
50.00 50.00 100.00

28.34 21.65 49.99
21.66 28.35 50.01
50.00 50.00 100.00

k=4 k=5

Fig. 6. Example of IPF standardization.
Lemma 1. The product of two diagonal matrices is

also a diagonal matrix.

This lemma can be proved in the following way.
Let M1 ¼ ½f1 0; 0 f2� and M2 ¼ ½f3 0; 0 f4�: Then,
M1 � M2 ¼ ½ðf1f3Þ 0; 0 ðf2f4Þ�; which is also a
diagonal matrix.

To prove Theorem 1, we also need to use
Definition 2, which states that scaling the row and
column elements of a contingency table is equiva-
lent to multiplying the contingency matrix by a
scaling matrix ½k1 0; 0 k2�: For IPF, during the
kth iteration, the rows are scaled by f �iþ=f

ðk	1Þ
iþ ;

which is equivalent to multiplying the matrix by
½f �1þ=f

ðk	1Þ
1þ 0; 0 f �0þ=f

ðk	1Þ
0þ � on the left. Meanwhile,

during the ðk þ 1Þth iteration, the columns are
scaled by f �þj=f

ðkÞ
þj ; which is equivalent to multi-

plying the matrix by ½f �þ1=f
ðkÞ
þ1 0; 0 f �þ0=f

ðkÞ
þ0 � on the

right. Using Lemma 1, we can show that the result
of multiplying the row and column scaling
matrices is equivalent to

f �1þ=f
ðmÞ
1þ ?f �1þ=f

ð0Þ
1þ 0

0 f �0þ=f
ðmÞ
0þ ?f �0þ=f

ð0Þ
0þ

" #

�
a b

c d

" #

�
f �þ1=f

ðmþ1Þ
þ1 ?f �þ1=f

ð1Þ
þ1 0

0 f �þ0=f
ðmþ1Þ
þ0 ?f �þ0=f

ð1Þ
þ0

" #

thus, proving Theorem 1.

The above theorem also suggests that the
iterative steps of IPF can be replaced by a single
matrix multiplication operation if the scaling
factors k1; k2; k3 and k4 are known. In Section 6,
we will provide a non-iterative solution for k1; k2;
k3 and k4:

6.3. Consistency of measures under table

standardization

Interestingly, the consequence of doing standar-
dization goes beyond ensuring uniform margins in
a contingency table. More importantly, if we apply
different measures from Table 5 on the standar-
dized, positively correlated tables, their rankings
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become identical. To the best of our knowledge,
this fact has not been observed by anyone else
before. As an illustration, Table 10 shows the
results of ranking the standardized contingency
tables for each example given in Table 3. Observe
that the rankings are identical for all the measures.
This observation can be explained in the following
way. After standardization, the contingency ma-
trix has the following form ½x y; y x�; where x ¼
f �11 and y ¼ N=2 	 x: The rankings are the same
because many measures of association (specifi-
cally, all 21 considered in this paper) are mono-
tonically increasing functions of x when applied to
the standardized, positively correlated tables. We
illustrate this with the following example.

Example 1. The f-coefficient of a standardized
table is

f ¼
x2 	 ðN=2 	 xÞ2

ðN=2Þ2
¼

4x

N
	 1: ð5Þ

For a fixed N ; f is a monotonically increasing
function of x: Similarly, we can show that other
measures such as a; I ; IS; PS; etc., are also
monotonically increasing functions of x:

The only exceptions to this are l; Gini index,
mutual information, J-measure, and Klosgen’s K ;
which are convex functions of x: Nevertheless,
these measures are monotonically increasing when
we consider only the values of x between N=4 and
N=2; which correspond to non-negatively corre-
lated tables. Since the examples given in Table 3
are positively correlated, all 21 measures given in
Table 10

Rankings of contingency tables after IPF st
this paper produce identical ordering for their
standardized tables.

6.4. Generalized standardization procedure

Since each iterative step in IPF corresponds to
either a row or column scaling operation, odds
ratio is preserved throughout the transformation
(Table 6). In other words, the final rankings on the
standardized tables for any measure are consistent
with the rankings produced by odds ratio on the
original tables. For this reason, a casual observer
may think that odds ratio is perhaps the best
measure to use. This is not true because there are
other ways to standardize a contingency table. To
illustrate other standardization schemes, we first
show how to obtain the exact solutions for f �ij s
using a direct approach. If we fix the standardized
table to have equal margins, this forces the f �ij s to
satisfy the following equations:

f �11 ¼ f �00; f �10 ¼ f �01; f �11 þ f �10 ¼ N=2: ð6Þ

Since there are only three equations in (6), we
have the freedom of choosing a fourth equation
that will provide a unique solution to the table
standardization problem. In Mosteller’s approach,
the fourth equation is used to ensure that the odds
ratio of the original table is the same as the odds
ratio of the standardized table. This leads to the
following conservation equation:

f11 f00

f10 f01
¼

f �11 f �00

f �10 f �01

: ð7Þ
andardization
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After combining Eqs. (6) and (7), the following
solutions are obtained:

f �11 ¼ f �00 ¼
N

ffiffiffiffiffiffiffiffiffiffiffiffi
f11 f00

p
2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
f11 f00

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
f10 f01

p
Þ
; ð8Þ

f �10 ¼ f �01 ¼
N

ffiffiffiffiffiffiffiffiffiffiffiffi
f10 f01

p
2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
f11 f00

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
f10 f01

p
Þ
: ð9Þ

The above analysis suggests the possibility of using
other standardization schemes for preserving
measures besides the odds ratio. For example,
the fourth equation could be chosen to preserve
the invariance of IS (cosine measure). This would
lead to the following conservation equation:

f11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf11 þ f10Þðf11 þ f01Þ

p ¼
f �11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf �11 þ f �10Þðf
�
11 þ f �01Þ

p ;

ð10Þ

whose solutions are:

f �11 ¼ f �00 ¼
Nf11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf11 þ f10Þðf11 þ f01Þ

p ; ð11Þ

f �10 ¼ f �01 ¼
N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf11 þ f10Þðf11 þ f01Þ

p
	 f11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf11 þ f10Þðf11 þ f01Þ
p : ð12Þ

Thus, each standardization scheme is closely
tied to a specific invariant measure. If IPF
standardization is natural for a given application,
then odds ratio is the right measure to use. In
other applications, a standardization scheme
that preserves some other measure may be more
appropriate.

6.5. General solution of standardization procedure

In Theorem 1, we showed that the IPF
procedure can be formulated in terms of a matrix
multiplication operation. Furthermore, the left
and right multiplication matrices are equivalent
to scaling the row and column elements of the
original matrix by some constant factors k1; k2; k3

and k4: Note that one of these factors is actually
redundant; theorem 1 can be stated in terms of
three parameters, k0

1; k0
2 and k0

3; i.e.,
k1 0

0 k2

" #
a b

c d

" #
k3 0

0 k4

" #

¼
k0

1 0

0 k0
2

" #
a b

c d

" #
k0

3 0

0 1

" #
:

Suppose M ¼ ½a b; c d� is the original contin-
gency table and Ms ¼ ½x y; y x� is the standar-
dized table. We can show that any generalized
standardization procedure can be expressed in
terms of three basic operations: row scaling,
column scaling, and addition of null values.4

k1 0

0 k2

" #
a b

c d

" #
k3 0

0 1

" #
þ

0 0

0 k4

" #

¼
x y

y x

" #
:

This matrix equation can be easily solved to
obtain

k1 ¼
y

b
; k2 ¼

y2a

xbc
; k3 ¼

xb

ay
;

k4 ¼ x 1 	
ad=bc

x2=y2

� �
:

For IPF, since ad=bc ¼ x2=y2; therefore k4 ¼ 0;
and the entire standardization procedure can be
expressed in terms of row and column scaling
operations.
7. Measure selection based on rankings by experts

Although the preceding sections describe two
scenarios in which many of the measures become
consistent with each other, such scenarios may not
hold for all application domains. For example,
support-based pruning may not be useful for
domains containing nominal variables, while in
other cases, one may not know the exact standar-
dization scheme to follow. For such applications,
an alternative approach is needed to find the best
measure.
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In this section, we describe a subjective ap-
proach for finding the right measure based on the
relative rankings provided by domain experts.
Ideally, we want the experts to rank all the
contingency tables derived from the data. These
rankings can help us identify the measure that
is most consistent with the expectation of the
experts. For example, we can compare the
correlation between the rankings produced by
the existing measures against the rankings pro-
vided by the experts and select the measure that
produces the highest correlation.

Unfortunately, asking the experts to rank all the
tables manually is often impractical. A more
practical approach is to provide a smaller set of
contingency tables to the experts for ranking and
use this information to determine the most
appropriate measure. To do this, we have to
identify a small subset of contingency tables that
optimizes the following criteria:
1.
 The subset must be small enough to allow
domain experts to rank them manually. On the
other hand, the subset must be large enough to
ensure that choosing the best measure from the
subset is almost equivalent to choosing the best
measure when the rankings for all contingency
tables are available.
2.
 The subset must be diverse enough to capture
as much conflict of rankings as possible among
the different measures.

The first criterion is usually determined by the
experts because they are the ones who can decide
the number of tables they are willing to rank.
Therefore, the only criterion we can optimize
algorithmically is the diversity of the subset. In this
paper, we investigate two subset selection algo-
rithms: RANDOM algorithm and DISJOINT
algorithm.

RANDOM Algorithm. This algorithm ran-
domly selects k of the N tables to be presented
to the experts. We expect the RANDOM algo-
rithm to work poorly when k5N : Nevertheless,
the results obtained using this algorithm is still
interesting because they can serve as a baseline
reference.
DISJOINT Algorithm. This algorithm attempts
to capture the diversity of the selected subset in
terms of
1.
 Conflicts in the rankings produced by
the existing measures. A contingency table
whose rankings are ð1; 2; 3; 4; 5Þ according
to five different measures have larger ranking
conflicts compared to another table whose
rankings are ð3; 2; 3; 2; 3Þ: One way to
capture the ranking conflicts is by computing
the standard deviation of the ranking vector.
2.
 Range of rankings produced by the existing
measures. Suppose there are five contin-
gency tables whose rankings are given as
follows.
Table t1:
 1
 2
 1
 2
 1

Table t2:
 10
 11
 10
 11
 10

Table t3:
 2000
 2001
 2000
 2001
 2000

Table t4:
 3090
 3091
 3090
 3091
 3090

Table t5:
 4000
 4001
 4000
 4001
 4000
The standard deviation of the rankings are
identical for all the tables. If we are forced
to choose three of the five tables, it is better to
select t1; t3; and t5 because they span a wide
range of rankings. In other words, these tables
are ‘‘furthest’’ apart in terms of their average
rankings.

A high-level description of the algorithm is pre-
sented in Table 11. First, the algorithm computes
the average and standard deviation of rankings for
all the tables (step 2). It then adds the contingency
table that has the largest amount of ranking
conflicts into the result set Z (step 3). Next, the
algorithm computes the ‘‘distance’’ between each
pair of table in step 4. It then greedily tries to
find k tables that are ‘‘furthest’’ apart according
to their average rankings and produce the
largest amount of ranking conflicts in terms
of the standard deviation of their ranking vector
(step 5a).

The DISJOINT algorithm can be quite expen-
sive to implement because we need to compute the
distance between all ðN � ðN 	 1ÞÞ=2 pairs of
tables. To avoid this problem, we introduce an
oversampling parameter, p; where 1op5JN=kn;
so that instead of sampling from the entire N
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Fig. 7. Evaluating the contingency tables selected by a subset

selection algorithm.

Table 12

Data sets used in our experiments

5Only frequent items are considered, i.e., those with support

greater than a user-specified minimum support threshold.
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tables, we select the k tables from a sub-population
that contains only k � p tables. This reduces
the complexity of the algorithm significantly to
ðkp � ðkp 	 1ÞÞ=2 distance computations.

7.1. Experimental methodology

To evaluate the effectiveness of the subset
selection algorithms, we use the approach shown
in Fig. 7. Let T be the set of all contingency tables
and S be the tables selected by a subset selection
algorithm. Initially, we rank each contingency
table according to all the available measures. The
similarity between each pair of measure is then
computed using Pearson’s correlation coefficient.
If the number of available measures is p; then a
p � p similarity matrix will be created for each set,
T and S: A good subset selection algorithm should
minimize the difference between the similarity
matrix computed from the subset, Ss; and the
similarity matrix computed from the entire set of
contingency tables, ST : The following distance
function is used to determine the difference
between the two similarity matrices:

DðSs;ST Þ ¼ max
i;j

jST ði; jÞ 	 Ssði; jÞj: ð13Þ
If the distance is small, then we consider S as a
good representative of the entire set of contingency
tables T :

7.2. Experimental evaluation

We have conducted our experiments using the
data sets shown in Table 12. For each data set, we
randomly sample 100,000 pairs of binary items5 as
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Fig. 8. Average distance between similarity matrix computed

from the subset (Ss) and the similarity matrix computed from

the entire set of contingency tables (ST ) for the re0 data set.

re0 Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 8 7 4 16 15 10 11 9 17 18 2 12 19 3 20 5 1 13 6 14

k=20 6 6 5 16 13 10 11 12 17 18 2 15 19 4 20 3 1 9 6 14

la1 Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 10 9 2 7 5 3 6 16 18 17 13 14 19 1 20 12 11 15 8 4

k=20 13 13 2 5 8 3 6 16 18 17 10 11 19 1 20 9 4 12 13 7

Product Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 12 11 3 10 8 7 14 16 17 18 1 4 19 2 20 5 6 15 13 9

k=20 13 13 2 7 11 10 9 17 16 18 1 4 19 3 20 6 5 8 13 11

S&P500 Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 9 8 1 10 6 3 4 11 15 14 12 13 19 2 20 16 18 17 7 5

k=20 7 7 2 10 4 3 6 11 17 18 12 13 19 1 20 15 14 16 7 4

E-Com Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 9 8 3 7 14 13 16 11 17 18 1 4 19 2 20 6 5 12 10 15

k=20 7 7 3 10 15 14 13 11 17 18 1 4 19 2 20 6 5 12 7 15

Census Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 10 10 2 3 7 5 4 11 13 12 14 15 16 1 20 19 18 17 10 6

k=20 6 6 3 2 9 5 4 11 13 12 14 15 16 1 17 18 19 20 6 9

All tables:  Rankings when all contingency tables are ordered.

k=20 : Rankings when 20 of the selected tables are ordered.
Fig. 9. Ordering of measures based on contingency tables selected by the DISJOINT algorithm.
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our initial set of contingency tables. We then apply
the RANDOM and DISJOINT table selection
algorithms on each data set and compare the
distance function D at various sample sizes k: For
each value of k; we repeat the procedure 20 times
and compute the average distance D: Fig. 8 shows
the relationships between the average distance D

and sample size k for the re0 data set. As expected,
our results indicate that the distance function D

decreases with increasing sample size, mainly
because the larger the sample size, the more
similar it is to the entire data set. Furthermore,
the DISJOINT algorithm does a substantially
better job than random sampling in terms of
choosing the right tables to be presented to the
domain experts. This is because it tends to select
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tables that are furthest apart in terms of their
relative rankings and tables that create a huge
amount of ranking conflicts. Even at k ¼ 20; there
is little difference (Do0:15) between the similarity
matrices Ss and ST :

We complement our evaluation above by show-
ing that the ordering of measures produced by the
DISJOINT algorithm on even a small sample of
20 tables is quite consistent with the ordering of
measures if the entire tables are ranked by the
domain experts. To do this, we assume that the
rankings provided by the experts is identical to
the rankings produced by one of the measures, say,
the f-coefficient. Next, we remove f from the set
of measures M considered by the DISJOINT
algorithm and repeat the experiments above with
k ¼ 20 and p ¼ 10: We compare the best measure
selected by our algorithm against the best measure
selected when the entire set of contingency tables is
available. The results are depicted in Fig. 9. In
nearly all cases, the difference in the ranking of a
measure between the two (all tables versus a
sample of 20 tables) is 0 or 1.

8. Conclusions

This paper presents several key properties for
analyzing and comparing the various objective
measures developed in the statistics, social science,
machine learning, and data mining literature. Due
to differences in some of their properties, a
significant number of these measures may provide
conflicting information about the interestingness
of a pattern. However, we show that there are two
situations in which the measures may become
consistent with each other, namely, when support-
based pruning or table standardization are used.
We also show another advantage of using support
in terms of eliminating uncorrelated and poorly
correlated patterns. Finally, we develop an algo-
rithm for selecting a small set of tables such that an
expert can find a suitable measure by looking at
just this small set of tables.

For future work, we plan to extend the analysis
beyond two-way relationships. Only a handful of
the measures shown in Table 5 (such as support,
interest factor, and PS measure) can be general-
ized to multi-way relationships. Analyzing such
relationships is much more cumbersome because
the number of cells in a contingency table grows
exponentially with k: New properties may also be
needed to capture the utility of an objective
measure in terms of analyzing k-way contingency
tables. This is because a good objective measure
must be able to distinguish between the direct
association among k variables from their partial
associations. More research is also needed to
derive additional properties that can distinguish
between some of the similar measures shown in
Table 7. In addition, new properties or measures
may be needed to analyze the relationship between
variables of different types. A common approach
for doing this is to transform one of the variables
into the same type as the other. For example, given
a pair of variables, consisting of one continuous
and one categorical variable, we can discretize the
continuous variable and map each interval into a
discrete variable before applying an objective
measure. In doing so, we may lose information
about the relative ordering among the discretized
intervals.
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