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Abstract Support vector machines (SVMs) are a supervised classifier successfully applied

in a plethora of real-life applications. However, they suffer from the important shortcomings

of their high time and memory training complexities, which depend on the training set size.

This issue is especially challenging nowadays, since the amount of data generated every

second becomes tremendously large in many domains. This review provides an extensive

survey on existing methods for selecting SVM training data from large datasets. We divide

the state-of-the-art techniques into several categories. They help understand the underlying

ideas behind these algorithms, which may be useful in designing new methods to deal with this

important problem. The review is complemented with the discussion on the future research

pathways which can make SVMs easier to exploit in practice.

Keywords Support vector machine · Training set selection · Data reduction · Classification

1 Introduction

Support vector machine (SVM) (Cortes and Vapnik 1995) is a supervised classifier which

has been proved highly effective in solving a wide range of pattern recognition and computer

vision problems (Arana-Daniel and Bayro-Corrochano 2006; Cyganek 2008; Arana-Daniel

et al. 2009; Bayro-Corrochano and Arana-Daniel 2010; Cyganek et al. 2015; Li et al. 2016;

Rodan et al. 2016). Nowadays, in the era of big data, the machine learning community

faces new challenges concerned with applying SVMs in real-life scenarios, which result

from data variety, volume, velocity, and veracity. The amount of data (of varying quality)

which is being generated every day grows tremendously in the majority of scientific and
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engineering domains, including, among others, medical imaging, text categorization, com-

putational biology, genomics and banking. Although it may appear quite beneficial at the

first glance—more data could mean more possibilities of extracting and revealing useful

underlying knowledge—training SVMs from extremely large and difficult datasets became

a pivotal issue due to the high time and memory complexity of the SVM training (Liu et al.

2016; Qiu et al. 2016).

SVM training consists in determining a hyperplane to separate the training data belonging

to two classes. Its position is defined with a (usually small) subset of vectors from the

training set (T ), called support vectors (SVs). Knowing which vectors are selected as SVs

increases the interpretability of the SVM decisions. Though the hyperplane separates the data

linearly, SVMs are applicable to non-linear problems, thanks to mapping the data into higher-

dimensional spaces, in which they are linearly separable—this mapping is achieved using

kernel functions. A crucial drawback of SVMs lies in their high O(t3) time and O(t2) memory

training complexities, where t is the cardinality of T . This problem has attracted significant

attention from the researchers—developed techniques are aimed either at improving the

training phase, or at extracting reduced (significantly smaller) SVM training sets from which

SVs are likely to be determined. This review summarizes the achievements in this field. To

the best of our knowledge, this is the first review of methods devoted to selecting the SVM

training sets reported in the literature so far.

1.1 Broader context

To better contextualize this review in the literature, we highlight the main problems related

to SVMs which are actively being tackled and should be inevitably resolved—they reach

far beyond dealing with large datasets. These problems concern selecting the SVM hyper-

parameters (Sect. 1.1.1) and learning SVMs from data of questionable quality (Sect. 1.1.2).

Both issues, along with selecting SVM training data from large datasets, significantly affect

the applicability of the SVM classifier in practice. Addressing them successfully will help

exploit this classifier in emerging big data scenarios.

1.1.1 Model selection for SVMs

Model selection for SVMs—being a problem of determining the SVM hyperparameters,

including a kernel function and its parameters—is a pivotal, yet computationally expensive

task (Gold and Sollich 2003; Ding et al. 2015). Automatic model selection is a crucial issue,

since improperly tuned parameters can affect the SVM performance. Although there exist

techniques tailored to tune pre-defined kernels (Tang et al. 2009), the research effort is put

into designing algorithms which determine the desired kernels.

Friedrichs and Igel (2005) proposed the covariance matrix adaptation evolution strategy

to determine a kernel from a parameterized kernel space. Their experimental study showed

that this strategy easily outperforms a standard grid-search approach for selecting these

hyperparameters (which is obviously not scalable for large numbers of parameters). Lessmann

et al. (2006) incorporated the model selection criterion into the fitness function of their genetic

technique. In the hybrid genetic algorithm (GA), the evolutionary optimization was combined

with the gradient descent method (Zhou and Xu 2009). GAs were recently used for the

smooth twin parametric-margin SVMs (Wang et al. 2013b). In the latest algorithm by Chou

et al. (2014), the SVM parameters were optimized using a fast messy Ali and Smith-Miles

(2006) explored the possibility of applying rule-based classifiers to generate SVM models.

Other interesting approaches include tabu searches (Lebrun et al. 2008), compression-based
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techniques (Luxburg et al. 2004), and genetic-programming-based systems (Sullivan and

Luke 2007). Zhang and Song (2015) noticed that various kernels may perform equally well

for a certain dataset, and proposed a multi-label kernel recommendation method built on the

data characteristics. An interesting model adaptation, which combines the swarm intelligence

with a grid search, was proposed by Kapp et al. (2012).

To speed up the process of model selection for SVMs, a number of parallel algorithms

have been proposed (Devos et al. 2014). However, their underpinning approaches are often

very simple (Shi and Liu 2012; Ripepi et al. 2015). A promising research direction includes

algorithms to construct new kernels tailored for a problem at hand (Lessmann et al. 2006).

Such approaches include neuro-fuzzy systems which construct kernels from scratch (Simiński

2014). This algorithm was used in the preliminary research on parameter-less SVMs (Nalepa

et al. 2015b). It is worth mentioning that determining the desired SVM model should be

coupled with techniques for training SVMs from large datasets (especially for reducing the

cardinality of SVM training sets), because the best-performing kernel may be dependent

on the outcome of a training set selection algorithm. This research direction has not been

exploited so far, and we believe it will significantly change in the nearest future.

1.1.2 Learning from weakly-labeled, noisy, and poor-quality data

Retrieving correctly labeled datasets is an expensive and challenging task, because it may

involve repeating experiments or performing time-consuming annotation procedures (e.g., in

the field of medical imaging). Therefore, learning from weakly-labeled data became an

important issue. All weak-label problems are divided into several groups, based on the label

characteristics. They include problems with (i) partially-known labels (most of the train-

ing set vectors are unlabeled and only some of them are labeled), (ii) implicitly-known

labels (training vectors are grouped into bags for which the labels are known1—the labels

of the training set vectors are implicit and they are based on their bag membership), and

(iii) unknown labels (Li et al. 2013). Other potential issues concerned with the data quality

relate to the label and/or feature noise, which can adversely impact the classifier performance.

It is especially visible in practical medical applications, in which a majority of diagnostic

tests are not 100% accurate, and cannot be considered a gold standard (Frenay and Verleysen

2014) (e.g., there may be discrepancies between the segmentation of the same medical image

analyzed by two independent radiology experts). The consequences of the label noise on

the behavior of a classifier can be very severe. First, its performance may be significantly

deteriorated, the learning requirements can be easily affected (e.g., an appropriate cardinality

of the training set can notably increase to compensate mislabeled or noisy data points), the

final model can be much more complex than it should be, and the other algorithms (e.g., for

feature selection) may be polluted as well. Frenay and Verleysen (2014) indicate that the

label noise affects the observed frequencies of medical test results, hence leads to incorrect

conclusions on population characteristics.

There exist three main groups of approaches for dealing with noisy sets (manual analysis

should not be considered, because it is unacceptably time-consuming and infeasible for real-

life data). First, there are classifiers that are said to be robust against the noise (however, the

underlying nature and model of such noise is not considered in these techniques at all) (Duan

and Wu 2017). Alternatively, it is possible to build a noise model (typically, it is retrieved

1 In most applications, a bag is labeled positive if it contains at least one positive-class vector—it is negative

otherwise. Therefore, the implicit labels of all negative-class vectors belonging to a positive-class bag are in

fact incorrect (Li et al. 2013).
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in parallel with the learned classifier, and they are finally coupled for the higher-quality

classification). Such embedded data cleansing was used for SVMs (Xu et al. 2006), also

for adversarial label noise (Xiao et al. 2015). The last group encompasses algorithms which

filter noisy and/or mislabeled vectors from the input set. Although it appears quite tempting

(and natural), since it resembles removing outliers and anomalies from the data, it is not

trivial. These filtering algorithms include various graph- and ensemble-based methods, and

those which detect mislabeled vectors by analyzing their impact on the learning procedure.

There are works indicating that evolutionary techniques can effectively detect and remove

(or just identify) the noise (Ghoggali and Melgani 2009; Han and Chang 2013). A generic

solution for learning SVMs from weak labels was introduced by Li et al. (2013)—labels

are subject to the optimization. This is effective, if vectors belonging to the opposite classes

form well-separated clusters in the kernel space, but this assumption may not hold in many

scenarios (Cour et al. 2009; Tapaswi et al. 2015).

Handling poor quality data attracts more and more research attention nowadays (Zhu et al.

2014). It concerns not only dealing with noisy and weakly-labeled sets, but also with detecting

ambiguous or duplicated data (with overlapping feature values), and outliers (Tsyurmasto

et al. 2014; Kourou et al. 2015). As mentioned by Frenay and Verleysen (2014), most of

the algorithms make assumptions concerning the data, and are characterized by difficult-to-

tune parameters. These approaches should be validated using a larger number of real-life

scenarios to find the real noise characteristics. Evolving labels can significantly improve

the SVM performance for weakly-labeled sets, as shown by Kawulok and Nalepa (2015).

An interesting research direction involves algorithms which evolve both labels and reduced

training sets. Such methods could address the problems of training SVMs from large datasets

and coping with low-quality data comprehensively.

1.2 Motivation and goals

The problem of training SVMs from large datasets is becoming increasingly important since

the amount of data grows extremely rapidly (note that the term large dataset is very ambigu-

ous in the literature—sizes of such datasets range from hundreds to millions of training

vectors). There exist generic training set selection techniques [also referred to as instance

selection algorithms in the literature (Olvera-López et al. 2010)], and those designed for

other classifiers [k-nearest neighbors (Angiulli 2005), neural networks (Reeves and Taylor

1998), and many other (Hernandez-Leal et al. 2013; Wenyuan et al. 2013)], but—due to the

specific characteristics of the SVM training process and operation—the majority of SVM

training set selection algorithms are crafted for this classifier. In this review, we summarize

the state-of-the-art algorithms for selecting SVM training data from large datasets.

The purpose of this review is twofold:

– We present an extensive review of the state-of-the-art methods for selecting SVM training

sets. Not only do we report these methods, but we also discuss their potential weaknesses,

strengths, and ideas behind them. This will allow for better understanding (i) how to cope

with massive real-life sets, and (ii) how to select an appropriate method for a problem at

hand.

– We believe that this review will notably help in developing new approaches for select-

ing SVM training sets. The presented taxonomy should be useful in identifying the

potential pitfalls of emerging training set selection algorithms, and in determining which

techniques could be successfully combined into hybrid algorithms to further boost all

available knowledge concerning the T vectors (e.g., those methods which utilize com-

plementary sources of information in search of valuable training vectors). The literature
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in this field is very diverse—we hope that this review will clearly highlight the areas

which should (or should not) be further explored.

1.3 Structure of the review

Section 2 serves as a short theoretical introduction to SVMs. Section 3 begins with the pro-

posed taxonomy to classify the methods of selecting SVM training data from large datasets.

We discuss in detail techniques which help reduce the size of the SVM training sets, and

highlight their most important characteristics. Section 4 concludes the review and serves as

an outlook to the future work.

2 Theoretical background

Consider a set T of t training feature vectors xi ∈ R
D , i = 1, . . . , t , and the corresponding

class labels yi ∈ {+1,−1} (for the binary classification). Vectors with the class label +1 are

the positive ones (class C+), whereas the others belong to the negative class C−.

2.1 Linear SVMs

Linear SVMs separate data in the D-dimensional input space with the use of the decision

hyperplane defined as

f (x) : w
T

x + b = 0, (1)

where w is the hyperplane normal vector, w ∈ R
D , and b/ ||w|| is the perpendicular distance

between the hyperplane and the origin (||·|| is the 2-norm), b ∈ R. This hyperplane is

positioned such that the distance between the closest vectors of the opposite classes to the

hyperplane is maximal.

For two linearly separable classes (as already mentioned, with the class labels yi ∈
{+1,−1}), the training data must satisfy the following conditions:

w
T

xi + b ≥ 1 yi = +1 (2)

w
T

xi + b ≤ −1 yi = −1 (3)

which can be re-written as:

yi (w
T

xi + b) − 1 ≥ 0 yi ∈ {+1,−1}. (4)

The equalities from Eq. (4) hold for the vectors positioned on two parallel hyperplanes, with

the distance to the origin given as |1 − b| / ||w|| and |−1 − b| / ||w||, respectively. There are

no vectors between these two planes, and the distance between the separating hyperplane and

each of these planes is 1/ ||w||. Hence, the maximal theoretical margin possible to generate

by the decision hyperplane is

ϕ(w) =
2

||w||
. (5)

Since we intend to maximize the separating margin, the value of ||w|| =
√

wT w should be

minimized:

min
w,b

||w|| . (6)
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To simplify the calculations, it can be given as the quadratic term:

min
w,b

||w||2

2
. (7)

The optimization is performed with respect to the constraints in Eq. (4)—it becomes a

quadratic programming (QP) problem. This formulation of the problem is called the primal

form. The resulting hyperplane is exploited to classify the incoming data based on the decision

function

f (a) = sgn(wT
a + b), (8)

where a is a feature vector to be classified.

If we re-write Eqs. (4) and (7) to get the Lagrangian in its primal form, we have

L(w, b, α) =
||w||2

2
−

t
∑

i=1

αi yi (w
T

xi + b) +
t

∑

i=1

αi , (9)

where αi are the Lagrange multipliers. This transformation allows for representing the con-

straints given in Eq. (4) as the constraints on the Lagrange multipliers. In this formulation,

the data in both training and test sets will appear in the form of the dot product between the

vectors (Burges 1998).

Since retrieving the SVM hyperplane is a convex optimization problem, determining the

hyperplane is equivalent to finding a solution to the Karush–Kuhn–Tucker (KKT) condi-

tions (Fletcher 2013). The KKT conditions for Eq. (9) are:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂
∂w

L(w, b, α) = w −
t

∑

i=1

αi yi xi = 0

∂
∂b

L(w, b, α) = −
t

∑

i=1

αi yi = 0

(10)

such that

yi (w
T

xi + b) − 1 ≥ 0 i = 1, 2, . . . , t (11)

αi ≥ 0 ∀i (12)

αi (yi (w
T

xi + b) − 1) = 0 ∀i (13)

Incorporating the equation for w from Eq. (10) into Eq. (9)

w =
t

∑

i=1

αi yi xi (14)

and knowing that
t

∑

i=1

αi yi = 0, (15)

we have

LD(α) =
t

∑

i=1

αi −
1

2

t
∑

i=1

t
∑

j=1

αiα j yi y j x
T
i x j , (16)

where LD denotes the dual form of the Lagrangian. The dual problem may be solved by

maximizing LD with respect to α, subject to the constraints given in Eqs. (11)–(13) (this is

the Wolfe dual of the problem) (Burges 1998; Fletcher 2013). Only a small subset (containing
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s vectors) of the entire T (i.e., SVs) contributes to the position of the hyperplane. The Lagrange

multipliers αi corresponding to the SVs are greater than zero. Finally, the decision function

becomes:

f (a) = sgn

(

t
∑

i=1

αi yi x
T
i a + b

)

. (17)

In order to apply the above reasoning for non-separable cases, it is necessary to relax

the constraints given in Eqs. (2) and (3), and to introduce an additional cost of this opera-

tion (Cortes and Vapnik 1995):

w
T

xi + b ≥ 1 − ξi yi = +1 (18)

w
T

xi + b ≤ −1 + ξi yi = −1 (19)

ξi ≥ 0 ∀i (20)

where ξi denotes a positive slack variable. The objective function should be modified to take

into account the classification errors:

min
w,b,ξ

||w||2

2
+ C

t
∑

i=1

ξi (21)

such that

yi (w
T

xi + b) ≥ 1 − ξi i = 1, . . . , t (22)

ξi ≥ 0 i = 1, . . . , t (23)

where C is the parameter that controls the trade-off between the margin and the slack penalty

(the larger the value of C , the higher penalty to the errors). Considering this trade-off allows

for introducing the soft-margin SVMs. As in the separable case, Eq. (21) can be easily

transformed into its Wolfe’s dual form:

LD(α) =
t

∑

i=1

αi −
1

2

t
∑

i=1

t
∑

j=1

αiα j yi y j x
T
i x j . (24)

It is to be maximized, subject to

0 ≤ αi ≤ C and

t
∑

i=1

αi yi = 0. (25)

Finally, we have

w =
s

∑

i=1

αi yi xi . (26)

As in the separable case, we can retrieve the Lagrangian in its primal form:

L(w, b, α) =
||w||2

2
+ C

t
∑

i=1

ξi −
t

∑

i=1

αi

[

yi (w
T

xi + b) − 1 + ξi

]

−
t

∑

i=1

μiξi , (27)

where μi enforces the positivity of ξi . The KKT conditions can be retrieved for the non-

separable case following the reasoning presented for the separable one.
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2.2 Non-linear SVMs

Many real-life recognition problems are not linearly solvable and require a non-linear decision

function. The kernel trick was introduced to obtain a non-linear hyperplane in SVMs (Boser

et al. 1992). It consists in defining a kernel function [which must satisfy the conditions

presented by Mercer (1909)] that computes the inner product of two feature vectors in a

derived non-linear feature space:

K(a, a
′) = φ(a)T φ(a

′), (28)

where φ : R
D → F is a mapping of a vector a from the input into a non-linear (possibly

infinitely dimensional) feature space F, in which vectors are linearly separable, and K :
R

D × R
D → R. The kernel does not require calculating the φ mapping explicitly (note that

the kernel matrix which contains all of the kernel values computed between every pair of t

vectors, is of a t × t size). The non-linear decision function is

f (a) = sgn

(

t
∑

i=1

αi yiK(x
T
i a) + b

)

, (29)

where αi is a Lagrange multiplier (Tayal et al. 2014). To determine the SVM response in a

non-linear kernel space, it is not necessary to calculate the mapping φ of any vector given

the kernel function K.

An example of mapping a dataset from (a) a two-dimensional space into a (b) higher-

dimensional one is rendered in Fig. 1. In the original input space, feature vectors belonging

to two classes (visualized as red and blue dots) are not linearly separable. However, when

these vectors are mapped into a three-dimensional space, then it is possible to determine a

hyperplane (shown in yellow) which separates vectors, and it is used for classification.

Determining the SVM decision hyperplane is a constrained QP optimization problem—

see Eqs. (21) and (22). This QP problem can be solved in O(t3) time with O(t2)

memory, where t is the cardinality of T , using a standard QP solver (Zeng et al.

(b)(a)

x1

x2

Fig. 1 Example of determining the decision hyperplane for a non-linear case—a blue and red dots visualize

vectors belonging to two classes, b vectors are mapped into a higher-dimensional space, where they can be

separated using an SVM hyperplane (in yellow). (Color figure online)
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2008b). It quickly becomes infeasible for massively large, real-life datasets. Although there

exist techniques aimed at accelerating the SVM training which include—among others—

decomposition-based (Joachims 1999), parallel (Li et al. 2011; Ferragut and Laska 2012)

and approximation (Le et al. 2014) approaches, many of them introduce additional memory

burden during the optimization (Alamdar et al. 2016). Hence, algorithms for reducing the size

of SVM training sets are considered an immediate remedy to the problem of learning SVMs

from large datasets. Also, the SVM classification time is linearly dependent on the number

of SVs [see Eqs. (17) and (29)—only those vectors for which the Lagrange multipliers are

greater than zero contribute to the decision]. Therefore, the number of SVs should be kept

low to speed up the classification of incoming (unseen) vectors. The number of SVs indirectly

depends on the cardinality of a training set—the smaller the number of vectors in T , the less

SVs are determined in the training process. A more extensive background information on

SVMs, complemented with numerous examples and analogies which further illustrate the

concepts behind SVMs are explained in an excellent tutorial by Burges (1998).

3 Selecting SVM training sets

All algorithms for dealing with training SVMs from large datasets can be divided into two

main categories including techniques which (i) speed up the SVM training, and (ii) reduce

the size of training sets by selecting candidate vectors (i.e., those vectors which are likely to

be annotated as SVs). In the first case, existing techniques are applied to either reduce the

complexity of the underlying optimization problem, or to handle the optimization process

more efficiently. However, this approach still induces the problem of high memory com-

plexity of the SVM training process which is challenging and has to be endured in big data

problems (Guo and Boukir 2015; Wang and Xu 2004). The algorithms from the second cat-

egory select vectors from T to form significantly smaller training sets—in this review, we

focus on approaches for selecting SVM training sets from large datasets.

There are a number of various techniques to reduce the cardinality of a training set which

may be classified into several categories, based on the underpinning optimization strategy. A

high-level classification of the algorithms for selecting SVM training sets is given in Fig. 2.

Selecting SVM training sets

Data
geometry
analysis
methods

(Sect. 3.1)

Neighborhood
analysis
methods

(Sect. 3.2)

Evolutionary
methods

(Sect. 3.3)

Active
learning
methods

(Sect. 3.4)

Random
sampling
methods

(Sect. 3.5)

Clustering-
based

methods
(Sect. 3.1.1)

Non-
clustering
methods

(Sect. 3.1.2)

Fig. 2 General categories of approaches for selecting SVM training sets
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Fig. 3 Flowchart of a basic clustering-based method to select refined training sets. The dashed line annotates

the step which may be omitted in algorithms which analyze all clusters

This section gathers the algorithms which extract refined SVM training sets in order to

reduce the computational and storage burden of the training. We divide these techniques into

five main categories: (i) data geometry analysis algorithms (investigating the geometry of T

in search of candidate vectors that should be included into the refined sets T
′’s), (ii) neigh-

borhood analysis methods (exploiting the statistical properties of T and investigating the

local neighborhoods of T vectors), (iii) evolutionary techniques (evolving refined training

sets), (iv) active learning, and (v) random sampling techniques.

3.1 Data geometry analysis methods

The following section discusses approaches which exploit the information about the training

set structure to extract SV candidates (i.e., such vectors, which are likely to be selected as

SVs in the training process). These vectors are then used to form refined training sets of

significantly smaller sizes than the original dataset. All approaches can be divided into two

groups—the first encompasses clustering-based techniques, whereas the second contains the

remaining geometry-based algorithms.

3.1.1 Clustering-based methods

Clustering-based algorithms have been intensively studied for selecting refined training sets.

Lyhyaoui et al. (1999) indicate their theoretical advantages: (i) clustering-based techniques

can always eliminate the useless vectors from T , (ii) they are applicable to multi-class prob-

lems, (iii) their cost objectives may be freely established for a given problem. However,

these methods suffer from a difficult problem of determining a potentially large number of

parameters (the clustering parameters, and the number of vectors annotated as important for

each cluster are the most important parameters).

A flowchart visualizing a standard training set selection algorithm which utilizes clustering

is given in Fig. 3. After setting the algorithm parameters, vectors from T are clustered using

a given clustering technique2. Then, the clusters to be further analyzed are selected (this

step may be omitted for algorithms investigating all clusters, thus it is annotated with the

dashed line in the flowchart), and the SV candidates are finally included in a refined set. This

procedure is most often performed for each class in T independently.

Lyhyaoui et al. (1999) applied the frequency-sensitive competitive learning to cluster

training set vectors (Scheunders and Backer 1999), with various numbers of centroids for

each class. Once centroids are determined, they are further analyzed to extract the most

important (critical) centroids. First, each of them is visited and the nearest opposite-class

centroid is found. If two centroids (denoted as the centroids A and B) are the nearest to

one another in both senses (thus when the centroid A is the closest centroid for B and vice

versa), then they are put into the pool of critical centroids. Finally, the already selected

2 It was shown that the choice of the clustering technique does not influence the next T
′ selection steps

significantly (Lyhyaoui et al. 1999).
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critical centroids are utilized to classify the remaining ones using the 1-nearest neighbor

algorithm, and the wrongly classified centroids are considered important and annotated as

critical (they will most likely lay near the decision hyperplane). The authors developed four

different sample selection mechanisms to extract the final vectors which are to be included in

the refined training set. These approaches are based on: (i) analysis of the dispersion of the

vectors, (ii) the vector’s neighborhood analysis (i.e., the nearest opposite-class vector of the

one added to T
′ is added to T

′ as well), (iii) the combination of (i) and (ii), and (iv) analysis

of the relations between vectors and centroids. The authors concluded that applying different

selection algorithms does not drastically influence the classification score (however, the two-

class training set used in the experiments was very small).

The k-means clustering has been utilized by Barros de Almeida et al. (2000) in their refined

training set selection algorithm referred to as SVM-KM. In SVM-KM, k clusters (where k is

a user-defined input parameter of the algorithm) are formed for the entire training set (not for

vectors belonging to different classes independently). Then, the one-class clusters (i.e., those

containing vectors belonging to a single class) are disregarded and only their centroids survive

in a refined set, whereas all vectors from the heterogeneous clusters (containing vectors

from different classes) are appended to T
′. It is worth noting that the data distribution may

significantly affect the performance of SVM-KM (it is suitable for dense datasets and may

misbehave for the sparse ones). Also, the value of k should be set with care, since it can

easily jeopardize the algorithm behavior.

In the clustering-based SVMs (abbreviated as CB-SVMs), Yu et al. (2003) applied a

hierarchical micro-clustering (Zhang et al. 1996), which scans a training set in search of

valuable vectors. CB-SVM builds a micro-cluster tree (referred to as the clustering feature

[CF] tree) by adding the incoming T vectors to clusters. It does not allow for backtracking,

thus the data distribution may influence its capabilities, but the CF trees can still extract main

data distribution patterns. A clustering feature (for a given cluster ci ) is given as the following

triple:

CF = (ti , LS, SS), (30)

where ti denotes the number of vectors in this cluster, LS and SS are the linear and the square

sums of ti vectors in ci given as

LS =
ti

∑

j=i

x j (31)

and

SS =
ti

∑

j=i

x
2
j , (32)

respectively. A CF tree is a height-balanced tree characterized by two parameters: the branch-

ing factor (bCF), and the threshold (tCF). Each non-leaf node encompasses at most bCF entries

of the form (CFj, childj), where j = 1, 2, . . . , bCF, whereas the leaf nodes do not have chil-

dren. Thus, each non-leaf node may be interpreted as a cluster composed of the subclusters

represented by its children. The threshold tCF is the maximal cluster radius in any leaf node.

The CF trees are built following procedures resembling those applied in the B+− trees. A

noteworthy feature and the advantage of this clustering is a possibility of handling outliers

and noisy vectors—those leaf entries which contain significantly smaller number of vectors

than the other ones are considered as outliers.

In CB-SVM, the CF trees are constructed for both classes separately, and SVMs are trained

using centroids of the root entries (there is at least one entry in the root, each entry being a
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cluster, therefore there is at least one centroid) of both trees. If there are too few vectors in this

set, then the second level entries of the trees are included in a refined set. Then, the entries

positioned near the hyperplane (so-called the low margin clusters) are de-clustered, and the

child entries de-clustered from the parents are added to T
′ along with the non-de-clustered

parents. Another SVM is finally trained using the centroids of T
′ entries—this process is

continued until there are no entries to be de-clustered. Although the method appeared to be

well-scalable for large datasets, the authors pointed out that it is currently limited to linear

kernels since the hierarchical micro-clusters will not be isomorphic to high-dimensional

feature spaces. Also, the algorithm parameters (bCF and tCF) should be selected with care for

an analyzed dataset.

Koggalage and Halgamuge (2004) proposed a very interesting approach similar to SVM-

KM—first, the k-means clustering is applied to find the initial clusters, then the crisp clusters

are determined (i.e., those clusters containing one-class vectors), and finally vectors to be

rejected from T are determined. The authors showed that some vectors from the crisp clusters

may be annotated as SVs, thus they should not be automatically removed from refined sets.

Therefore, for each crisp cluster, there is a safety region defined which contains its crucial

vectors (positioned near the cluster border). The process of rejecting internal vectors from a

crisp cluster is visualized in Fig. 4. The width of the safety region (in yellow) is determined

based on the number of vectors in a cluster and the radius of the cluster, therefore it is variable

for different clusters.

Wang and Xu (2004) proposed a heuristic SVM (HSVM), in which the vector similarity

measure (sHSVM) is defined at first, and then vectors are grouped into kHSVM groups. The

similarity function is given as

sHSVM = f

(

1
∣

∣

∣

∣ai − a j

∣

∣

∣

∣

2

)

, (33)

where ai 	= a j , and f (x) = x—the larger the value of the similarity measure, the closer

(geometrically) the corresponding vectors are. For each group, the average vector is found

and used to remove other training vectors, if their sHSVM values (with respect to the average

vector) are larger than the assumed threshold. As in other methods which exploit some

pre-defined thresholds, this threshold must be selected very carefully (sensitivity to these

threshold values is a disadvantage of such techniques).

In the algorithm proposed by Cervantes et al. (2008), the concept of the minimum enclosing

ball (MEB) clustering has been introduced. The MEB of a given set SMEB is the smallest

ball enclosing all balls and vectors in SMEB. The ball is denoted as B(cB , rB), where cB and

rB are the center and the radius of B. Since finding an optimal ball for a given set is very

challenging, the authors proposed to use the (1 + ǫ)—approximation of MEBs. After the

Fig. 4 Removing the internal

vectors from a crisp cluster (a),

based on the safety region

(annotated with yellow) (b). The

removed vectors are grayed.

(Color figure online)

(a) (b)
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(b)(a)

Fig. 5 Creating the refined set using SR-DSA: a the entire T (two colors indicate two classes), b vectors are

grouped into clusters—the interior vectors and the exterior vectors are rejected (they are rendered in gray and

black, respectively). This figure is inspired by Wang and Shi (2008). (Color figure online)

MEB clustering, a refined set contains all the vectors from mixed-class clusters, along with

centroids of one-class clusters. After the SVM training, an additional de-clustering is applied

to recover other potentially valuable T vectors which lay near the decision hyperplane and

to append them to T
′.

A similar approach (named SebSVM) was proposed by Zeng et al. (2008). Here, the

convex hull vectors are selected to form refined training sets in the feature space. This is

performed by solving the MEB problem in the feature space: at first, data are mapped into a

higher-dimensional kernel space, and two MEBs are created (for both classes independently).

Based on those MEBs, the convex hull vectors from T are extracted. Similar to Koggalage

and Halgamuge (2004), the safety region is utilized in SebSVM to avoid removing useful

vectors from T
′.

Wang and Shi (2008) proposed an algorithm for reducing the size of training sets by data

structure analysis (abbreviated as SR-DSA). In their approach, the authors used the Ward-

linkage clustering (Ward 1963), which enables obtaining ellipsoidal clusters. The Ward’s

linkage for two clusters (c1 and c2) is given as

W (c1, c2) =
|c1| · |c2|
|c1| + |c2|

· ||µ1 − µ2||2 , (34)

where µ1 and µ2 are the average vectors. Initially, each vector is a separate cluster, and

these clusters are subsequently merged. The value of the Ward’s linkage increases once the

number of clusters is decreased during the clustering process. This may be visualized in the

merge distance curve which is usually used to find the knee point (utilized to determine the

desired number of clusters). After this procedure, a refined training set is elaborated—the

interior vectors from each cluster are removed along with those vectors which are distant

from other-class clusters based on the Mahalanobis metric. Each class is processed separately

using SR-DSA. A visualization of this process is shown in Fig. 5. The main disadvantage of

this method is the necessity of selecting its various parameters (the final number of clusters or

the number of internal vectors removed from each cluster being the most important). These

values should be investigated independently for each incoming training set.

An interesting technique which combines the k-means clustering with edge detection

within the entire training set has been proposed by Li et al. (2009). In this algorithm, the
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(a) (b) (c) (d)

Fig. 6 Example of the T vectors selection to the refined set: a one-class cluster of vectors, b the convex hull

determined for this cluster, c the concave hull determined for this cluster for a given value of k, d the vectors

which are rejected from T
′ are rendered in gray

training set is interpreted as a color image (there are two distinct colors for binary classification

denoting two classes). Relying on image processing techniques, a pixel’s neighborhood is

scanned to detect strong changes of brightness and color which may correspond to edges.

In the edge detection exploited by Li et al. (2009), vectors from T are analyzed—if at least

one neighboring vector is of a different class than the investigated one (a), then a survives in

T
′ (the neighboring vectors are rejected). This process is complemented with the k-means

clustering which aims at finding the centroids from T , which are also appended to the refined

training set.

Chau et al. (2013) proposed the convex-concave hull analysis algorithm to select T
′

(referred to as CCHSVM). The authors pointed out that in the linearly non-separable case,

convex hulls which encompass two classes in a training set will overlap thus it is necessary

to “shrink” convex hulls (CHs) to avoid the overlapping. In the proposed algorithm, a CH

generated for each class independently is not modified, however the concave hull is utilized

to extract vectors which are closest to the exterior boundary of the CH (all vectors lie on

the same side of the CH edge). Since the “closeness” to the CH may be varying across

different T vectors, the authors search for k nearest points for the edge defined using two

adjacent reference points on the CH. It is worth noting that various values of k may affect

the shape of the final convex-concave hull (Lopez-Chau et al. 2012). Also, the set of CH

points is a subset of the convex-concave hull which implies that the algorithm will perform

well in the linearly separable cases. The authors pointed out that the method will perform

well for uniformly distributed data. The distribution is usually not known beforehand, thus

they perform the T pre-processing in which T is partitioned using the grid-based clustering.

In the higher-dimensional cases, principal component analysis (PCA) is used to reduce the

number of dimensions. Then, the convex-concave analysis is applied to data partitions, and

the boundary convex-concave vectors are included in T
′. An example is presented in Fig. 6.

The analysis of convex hulls have been applied in numerous other algorithms for select-

ing refined training sets (also for e.g., artificial neural networks) (Wang et al. 2007). These

approaches include interesting analyses of CHs exploited for the online classifier train-

ing (Khosravani et al. 2013; Wang et al. 2013a). In these techniques, SVMs are updated

dynamically when new vectors arrive to the system (based on the skeleton samples—being

the vertices of convex hulls—extracted either offline or online, when new vectors appear).

The authors indicated that the algorithm may not be applicable in the case of noisy datasets,

and they suggest to incorporate de-noising methods before the offline selection of the T
′

vectors (removing noisy vectors in the online update step still requires investigation).

In a recent redundant data reduction algorithm, Shen et al. (2016) proposed to remove

unnecessary training set vectors via the analysis of cluster boundaries complemented with the

investigation of other inter-cluster relations. For each cluster (k-means clustering is exploited
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(b)(a)

Fig. 7 Removal of unnecessary training set vectors from a one-class cluster—b the rejected vectors are

annotated in gray

to cluster the entire T ), the distance density set is calculated (the distance density counts the

number of vectors which fall into a circle centered in the cluster centroid and having the

radius equal to the distance between the centroid and a given T vector). It is assumed that

vectors situated near the centroid are “dense”, whereas those positioned far from the centroid

are sparse. Finally, the Fisher’s discriminant analysis is utilized to find the boundary between

the dense and the sparse parts of each cluster (Makris et al. 2011)—only the sparse vectors

are included in T
′. A removal of the internal cluster vectors is shown in Fig. 7.

An additional technique introduced by Shen et al. (2016) concerns removing redundant

clusters. The initial clusters retrieved using k-means clustering are further divided into one-

class and heterogeneous clusters. The latter ones are then sub-clustered to distinguish one-

class inner clusters. The authors point out that SVs will be derived from the heterogeneous

clusters with a higher probability, and some T vectors can be safely deleted from one-

class clusters. Redundant one-class clusters are removed using the max-min cluster distance

algorithm, and the vectors belonging to these clusters are rejected from T
′.

Since clustering techniques may become quite time-consuming, there appeared approaches

which utilize various parallel architectures (e.g., graphics processing units) in order to speed

up the T
′ selection process (Yuan et al. 2015), and they were applied to real-life problems.

Another important issue of these methods which needs to be addressed is a proper selection

of their crucial parameters, which can easily affect refined training sets. Finally, in many

cases it is still necessary to analyze the entire T to extract useful information.

3.1.2 Non-clustering methods

Apart from clustering-based methods, there are a number of approaches which exploit the

geometrical information about a training set without grouping the data. Abe and Inoue (2001)

estimate which T vectors are positioned near the SVM decision boundary using a classifier

based on the Mahalanobis distance. This approach is especially suitable for polynomial kernel

functions, since the decision boundaries are expressed by polynomials when the Mahalanobis

distance (which is invariant for linear transformations of the input variables) is applied.

First, the centers and the covariance matrices are found for all T vectors (for both classes

independently). Then, for each vector, the relative difference of distances (rMD) is calculated.

For a positive-class vector, it becomes

rMD(a) =
MD−(a) − MD+(a)

MD+(a)
≤ ηMD, (35)
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where MD+(a) denotes the Mahalanobis distance between a and the average positive-class

vector, MD−(a) is the Mahalanobis distance between a and the average negative-class vec-

tor, and ηMD, where ηMD > 0, is the parameter controlling the “nearness” to the decision

boundary. If the value of rMD(a) is negative, then a is misclassified and it is most likely

positioned near the SVM decision hyperplane, thus should be included in a refined training

set. All T vectors are finally sorted according to their rMD values, and t ′MD ones with the

lowest values are selected to form T
′ (t ′MD/2 are therefore retrieved for each class to avoid

biasing T
′ with one-class vectors).

The lune-based β-skeleton algorithm for extracting useful T vectors was applied by Zhang

and King (2002). The β-skeleton is a parameterized family of neighborhood graphs—let Vβ

denote the set of points in R
D , δβ(a, a

′) be the distance between a and a
′, and Bβ(a, rβ) be

the circle centered in a with the radius rβ . The neighborhood N(a,a′)(β) is then defined for

any β, where 1 ≤ β ≤ ∞, as the intersection of two spheres:

N(a,a′)(β) = B1 ∩ B2, (36)

where

B1 = B((1 − β/2) · a + (β/2) · a
′, (β/2) · δβ(a, a

′)) (37)

and

B2 = B((1 − β/2) · a
′ + (β/2) · a, (β/2) · δβ(a, a

′)). (38)

The β-skeleton of Vβ is a neighborhood graph with the following set of edges:

〈a, a
′〉 ∈ E (39)

if and only if

N(a,a′) ∩ Vβ = ∅. (40)

It means that two points a and a
′ are connected with an edge if and only if there are no

points in the set Vβ \
{

a, a
′} which belong to the neighborhood N(a,a′)(β) [as defined

in Eq. (36)]. Zhang and King (2002) claim that various proximity graphs (e.g., Gabriel

graphs) provide geometrical information about a training set and may be effectively used

to find the decision boundary. The β-skeleton algorithm can be therefore applied to locate

potential SVs, and to reduce the size of the training set. It is worth mentioning that both

Gabriel and relative neighborhood graphs may be described using the β-skeleton algorithm

with an appropriate parameter setting (β = 1 and β = 2, respectively). Also, the authors

highlighted the monotonicity feature of this parameterized family of graphs (with respect

to the β parameter): Vβ1 ⊂ Vβ2 , if β1 > β2. Although different classes of graphs may be

obtained by updating the β parameter (e.g., for different β, 1 ≤ β ≤ 2, different nearest

neighbor rules will be generated), it is unclear how to tune β for a new dataset (the authors

exploited the trial-and-error techniques in their study). For more details on the β-skeleton

algorithms, see the paper by Kowaluk and Majewska (2015).

Angiulli and Astorino (2010) proposed an interesting technique which utilizes the fast

nearest neighbor condensation classification rule (FCNN) (Angiulli 2007). In their algorithm

(abbreviated as FCNN-SVM), SVMs are coupled with the FCNN—unlike clustering-based

methods, the vector selection criteria are guided by the decision boundary. The FCNN rules

start with an initial refined training set composed of the centroids generated for each class

independently. Then, for each vector a in T
′, a point belonging to the Voronoi cell (i.e., the

Voronoi cell of a is a set of T vectors that are positioned closer to a compared with any

other vector in the current T
′) of a, but annotated with an opposite-class label is included in a

refined set. The algorithm continues until there are no more vectors from T to be appended to
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T
′. Although the algorithm is quite simple, it proved to be efficient and retrieves high-quality

refined training sets.

3.2 Neighborhood analysis methods

A significant research effort has been put into proposing techniques which exploit statistical

properties of the training set vectors (or their neighborhoods) in search of high-quality refined

training sets. Shin and Cho (2002) proposed a k-nearest neighbors (k-NN) based pattern

selection algorithm which aims at selecting correctly-labeled patterns near the SVM decision

hyperplane. The authors introduced two notions: the proximity and correctness. Vectors that

are close to the boundary will likely have mixed-class neighbors, and their proximity may

be estimated using entropy of their k-nearest neighbors. The entropy calculated for a vector

a for its k-nearest neighbors is

E(a, k) = −
∑

i∈{C+,C−}
Pi · log Pi , (41)

where

Pi =
ki

k
(42)

and ki denotes the number of neighboring vectors belonging to the i-th class. Vectors with

positive proximity (E > 0) tend to lay near the hyperplane and are processed. Only the

correctly labeled vectors from the set extracted in the previous step are included in T
′. The

correctness is defined as the k-NN voting probability of the neighboring vectors. If this

probability is larger than a threshold, then the corresponding vector survives in a refined set.

The k-NN analysis may become quite computationally intensive. The same authors

improved this technique to speed up the computation (Shin and Cho 2003). The improved

algorithm is based on a simple observation, that the neighbors of a vector which is positioned

near the hyperplane are also situated in its vicinity. This observation has been used to reduce

the search space—a significant number of T vectors can be pruned once some of vectors

positioned near the hyperplane are found. The k value notably affects the performance of this

technique, therefore it should be carefully tuned (Shin and Cho 2007).

Guo et al. (2010) exploited ensemble classifiers in their training set selection algorithm.

Using a standard margin definition (Schapire et al. 1998) for the binary classification, the

margin (φM ) of a positive-class vector a is given as

φM (a) =
vC+ − vC−

vC+ + vC−
, (43)

where vC+ denotes the number of votes (of the base classifiers) for the true class C+, vC− is

the number of votes for the opposite class, and −1 ≤ φM (a) ≤ 1. If φM (a) is positive, then it

means that a has been correctly classified (it is annotated with an incorrect class otherwise).

Also, a large value of φM (a) indicates that the majority of the base classifiers have classified

this vector correctly, therefore it is most likely positioned in the center of the positive class

distribution (and perhaps surrounded by the same-class vectors). On the other hand, if the

value of φM (a) is large negative, then a is probably an outlier (or a noisy vector). Finally,

if φM (a) ≈ 0, then a is positioned near the decision boundary, since a similar number of

base classifiers classified this vector to two opposite classes. Guo et al. modified the original

margin concept and introduced a new one in which the information about the correct class

of a sample a is omitted:
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φ′
M (a) =

vC1 − vC2

vC1 + vC2

, (44)

where C1 is the more voted class (not necessarily the correct one). Therefore, 0 ≤ φ′
M (a) ≤ 1,

and the smaller values of φ′
M (a) indicate that the vector is close to the hyperplane. Based on

that, the authors build an ensemble classifier with all T vectors, calculate the margin of each

vector, sort them according to the margin values and select vectors with the smallest φ′
M (a)’s

as SV candidates to form a refined training set. The base classifiers were the classification

and regression trees (Loh 2011) (bagging was used to create an ensemble). This approach is

suitable also for imbalanced datasets.

A simple yet effective neighborhood analysis of each T vector was proposed by Wang

et al. (2005). For each training vector, the largest sphere which contains only vectors of the

same class is determined, and the number of vectors encompassed by this sphere is verified

(Na for each a). Then, all T vectors are sorted ascendingly according to the Na values—t ′/2

vectors with the lowest Na’s (for each class) are appended to a refined set, since vectors

surrounded by the same-class vectors will most likely not be SVs and can be safely removed

from T
′. The rejected T vectors are thus characterized by large Na values. This approach

slightly resembles the MEB-based techniques.

In a recent paper, Guo and Boukir (2015) extended their ensemble margin-based

algorithm—they pointed out that classic bagging trees are not effective in the case of large

training sets and the large dimensionality of the input data. They proposed to exploit more

powerful ensemble methods including random forests and a very small ensemble referred

to as the small votes instance selection (SVIS). In SVIS, the authors decreased the size of

the classifier committee. Ensemble classifiers were utilized in other algorithms to tackle

real-world problems, e.g., selecting refined training sets from biomedical data (Oh et al.

2011).

Li (2011) proposed a technique for selecting training sets for one-class SVMs, which can

be adapted for two-class SVMs. In this algorithm, vectors belonging to a single class cluster

are contained in a surface—this surface may consist of convex and concave shapes, and it

is so “tight” that it passes through all extreme datapoints of the cluster. An example of a

cluster is visualized in Fig. 8. Depending on the shape curvature, all neighboring vectors of

the extreme vectors will be positioned on the same side of the tangent plane (rendered as the

dotted line for the extreme points P1 and P2 in Fig. 8), or the majority of neighbors will be

positioned on the same side of this plane. The authors proposed an approximation algorithm

which analyzes the neighboring vectors of a given one (say a) in search of the normal vector

of the tangent plane at a. When all of the extreme vectors are found, they should survive in

a refined set.

Li and Maguire (2011) proposed a method for selecting critical patterns from the input

dataset which combines various techniques. First, the surface which passes through all

extreme points and encompassing one-class vectors is created, and then the hyperplane is

Fig. 8 One-class cluster

contained in a surface built with

convex and concave shapes (a),

and b two tangent planes at

points P1 and P2. The extreme

vectors are rendered in black

(a) (b)

P1

P2
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positioned at the tangent to this surface. The position of the vectors will depend on the curva-

ture of the surface (if it is convex, then all vectors will appear on the same size of the plane).

To deal with the overlapping patterns in the input space, the authors enhanced the algorithm

with a remedy which removes the class overlap in the set. This strategy is based on the Bayes

posterior probability of a vector a belonging to a class C, denoted as P(C, a). For two-class

sets, both P(C+, a) and P(C−, a) are estimated. If the larger probability is obtained for the

class which a does not belong to, then this vector is removed from the training set. Finally,

any duplicated patterns from T are removed from the dataset during the pre-processing. The

authors showed that their algorithm is competitive to four state-of-the-art techniques and is

applicable to other classifiers.

In a recent paper, Cervantes et al. (2015) incorporated an induction tree to reduce the size

of SVM training sets. The main idea behind the proposed technique is to train SVMs using

significantly smaller refined training sets, and then to label vectors from T as those which are

close or far from the decision hyperplane. A decision tree is utilized to identify vectors which

have similar characteristics to those annotated as SVs. The initial selection of a small subset

of T is accomplished with a very simple heuristics in which the level of dataset imbalance is

investigated. The authors classify the incoming dataset (based on two pre-defined thresholds,

τu = 0.1 and τb = 0.25, and the imbalance ratio I of the dataset, given as I = min{t+,t−}
t

,

where t+ and t− denote the numbers of vectors from each class in T ) to one out of the following

classes: (i) balanced, (ii) slightly imbalanced (if τb ≤ I ≤ 0.5), (iii) moderately imbalanced

(τu ≤ I < τb), or (iv) highly imbalanced (I < τu). If a dataset is balanced, then the initial

subset is retrieved using random sampling. Otherwise, if a dataset is slightly or moderately

imbalanced, the inverse probability proportional to the dataset cardinality is applied (e.g., if

80% of vectors come from the negative class, hence I = 0.2, then random sampling draws

80% of positive-class vectors). If a dataset is highly imbalanced, then all vectors from the

less numerous class survive in T
′. Based on the decision hyperplane obtained using T

′, a

decision tree is induced to model the distribution of SVs. This tree is used to retrieve those

vectors which were not annotated as SVs, but follow a similar distribution—they are included

in T
′.

He et al. (2011) introduced a neighborhood-based rough set model (FARNeM) to search

for boundary vectors in T . This model is used to divide the vectors into three regions: (i) the

positive region, (ii) the noisy region, and (iii) the boundary region. Additionally, all input

data features are partitioned into: (i) strongly relevant features, (ii) weakly relevant and

indispensable features, (iii) weakly relevant and redundant features, and (iv) irrelevant ones.

The authors find a feature space based on these feature groups, and then look for important

T vectors which should be added to T
′. The aim of the feature selection algorithm is to

retrieve the minimum number of attributes which characterize the input data as good as all

attributes, thus it incrementally increases the subset of attributes until the dependence is not

boosted. FARNeM proceeds with the analysis of training set vectors to distinguish between

SV candidates (those vectors positioned in the boundary region are probable SVs), useless

vectors and noisy ones based on the neighborhood rough set model. The authors use two

important thresholds which affect the performance of FARNeM—they should be tuned with

care since their improper selection can quite easily jeopardize the algorithm performance.

3.3 Evolutionary methods

Although evolutionary algorithms (EAs) have been shown very effective in solving a wide

range of pattern recognition and optimization tasks (Pietruszkiewicz and Imada 2013; Li et al.

2007; Wrona and Pawełczyk 2013; Acampora et al. 2015; Nalepa et al. 2015a), they have
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not been extensively explored to select refined SVM training sets so far (Kawulok 2007).

Nishida and Kurita (2008) proposed a hybrid algorithm (RANSAC–SVM) which couples

random sampling, consensus approach (Fischler and Bolles 1981) and a simple evolutionary

technique to retrieve T
′’s. In their approach, several refined training sets of a small size are

randomly drawn at first. Then—based on the classification scores of SVMs learned using

the corresponding refined sets—the best T
′ is determined (by means of the best consensus).

Additionally, the authors employed a simple GA with a multi-point crossover to further

improve the refined sets (pairs of these refined sets are crossed over to form child solutions

which inherit random training set vectors from both parents). The entire procedure (including

random selection of SVM training sets and their evolution) is repeated multiple times, hence

numerous potentially uncorrelated populations are processed.

In the genetic algorithm (GASVM) proposed by Kawulok and Nalepa (2012), a population

of individuals (chromosomes), representing refined training sets of a given size, evolves

in time. This evolution encompasses standard genetic operators—selection, crossover, and

mutation. The fitness of each individual is the area under receiver operating characteristic

curve (or the classification accuracy) retrieved for T . Although this algorithm appeared very

effective, and outperformed random sampling techniques, it was unclear how to select the

size of individuals (which could not be changed later). This issue was tackled in the adaptive

genetic algorithm (AGA) suggested by the same authors (Nalepa and Kawulok 2014a)—

the size of individuals, along with the population size and the selection scheme, have been

adapted on the fly to respond to the evolution progress as best as possible. This adaptation was

steered by the parameters set a priori. Hence, improperly tuned parameter values could easily

jeopardize the search (e.g., exploiting smaller refined sets and exploring larger ones could

have been not balanced). The dynamically adaptive genetic algorithm (DAGA) (Kawulok and

Nalepa 2014a) introduced the adaptation scheme which can be updated during the evolution,

based on the characteristics of best individuals (i.e., the expected ratio of SVs within the

refined sets). The expected ratio has to be determined beforehand, which is non-trivial.

Memetic algorithms (MA) combine EAs with refinement procedures to boost the solu-

tions already found. They can exploit the knowledge attained during the evolution or extracted

beforehand. Such techniques have been shown extremely effective in solving numerous chal-

lenging problems (Nalepa and Blocho 2016). Nalepa and Kawulok (2014b) proposed the first

MA (termed MASVM) for selecting refined SVM training sets. The pool of important vectors

(which were selected as SVs during the evolution) is maintained and used to educate the pop-

ulation, and to introduce super individuals—refined sets composed of SVs only. Hence, the

knowledge gained dynamically is exploited in MASVM. This algorithm was utilized in the

parameter-less SVMs proposed by Nalepa et al. (2015b). In the above-mentioned algorithms,

initial populations were sampled randomly from T .

In the adaptive MA (PCA2MA), Nalepa and Kawulok (2016a, b) introduced a pre-

processing step, in which the geometry of T is analyzed in search of potentially valuable

vectors (before the evolution). This set of candidate vectors is used not only to create the

initial population (it helps generate higher-quality refined sets which later undergo the evolu-

tion), but also to compensate children (if they contain less vectors than expected—in Fig. 9,

the process of generating a child for a pair of chromosomes (pa, pb), representing refined

sets, is presented), and to create new chromosomes during the execution (to diversify the

search). Also, the pool of SVs is used in PCA2MA. Hence, PCA2MA exploits the knowl-

edge attained during the evolution, and extracted beforehand. Moreover, the parameter-less

adaptation scheme was introduced, which does not require any parameters to be given a pri-

ori. The experimental study performed on various types of data revealed that EAs (especially
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Fig. 9 Creating a child in PCA2MA. This figure was inspired by Nalepa and Kawulok (2016a)

PCA2MA) outperform other state-of-the-art techniques, and refined sets obtained using these

algorithms allow for training well-performing SVMs (with smaller numbers of SVs).

Other works on EAs for this task have been reported recently. Fernandes et al. (2015)

applied a multi-objective evolutionary technique in order to evolve balanced refined train-

ing sets extracted from imbalanced datasets. The objectives were to elaborate diverse and

well-performing classifiers, and to combine them into the classifier ensemble. The experi-

ments performed for several benchmark sets showed that the evolutionary approach is able to

outperform other state-of-the-art techniques for dealing with large and imbalanced datasets.

Pighetti et al. (2015) enhanced a genetic evolution with the locality sensitive hashing (to

find the nearest vector in T for any generated vector during the optimization) (Gorisse et al.

2010), and used it for tackling multi-class classification problems (one-versus-all strategy was

exploited). Although the approach is promising, it is unclear when to stop the optimization

for multi-class tasks (the authors terminated the evolution once 60 vectors from each category

have been retrieved).

Verbiest et al. (2016) recently investigated the performance of different evolutionary tech-

niques for selection of SVM training sets: (i) a standard genetic algorithm, (ii) the adaptive

genetic algorithm, which dynamically updates the crossover threshold [only notably different

parents can be crossed over (Eshelman 1991)], and (iii) the steady state genetic algorithm

[two parents are selected to generate offspring (Cano et al. 2003)]. Interestingly, the fitness

involved not only the classification accuracy of the SVM classifier, but also the reduction

ratio, indicating how much the input T has been shrunk. These wrapper techniques were ini-

tially used for the k-NN classification, and the extensive experimental study clearly proved

that they can be easily tailored for SVMs as well.

In their recent paper, Kawulok and Nalepa (2015) showed that evolving both training

vectors and labels can be effectively used to handle learning SVMs from weakly-labeled

training sets. In their memetic approach, the best individual in a population is an expert,

and it is used in the tuition operation. The training set is relabeled if necessary, and the

other individuals are refined (the vectors which changed the label during the tuition are

replaced). Albeit the algorithm performed very well for mislabeled datasets, its performance

deteriorated for correctly labeled T ’s—this issue requires further investigation.

An interesting alternating genetic algorithm (abbreviated as ALGA) for optimizing the

SVM model alongside SVM training sets has been proposed by Kawulok et al. (2017). The

authors observed that different SVM models (i.e., kernel functions and their hyper-parameter
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values) may be optimal for different training sets. In ALGA, two independent populations

(one representing refined training sets, and the other the SVM models) are alternately evolved

to solve two optimization problems having a common fitness function (classification accuracy

over the validation set obtained using an SVM trained with the best refined training set and

kernel function). The alternating process continues as long as at least one of these two

subsequent optimization phases manages to improve the average population fitness. The

experiments performed for both artificially generated and benchmark datasets revealed that

ALGA can effectively select an SVM training set without the necessity to tune the SVM

hyper-parameters beforehand. Although the authors focused on the radial-basis function

(RBF) kernel, this method can be easily tailored to any other kernel function. An interesting

research direction would be to enhance ALGA with an additional step of selecting features

for high-dimensional datasets.

3.4 Active learning methods

In active learning models, vectors are initially not labeled, and the goal of an active learner is

to infer a predictor of labels from the input data. It is accomplished in an interactive manner, in

which the learner may request a label of a particular vector (this operation is associated with

an appropriate cost). Hence, active learning may be interpreted as the process of obtaining

labels for unlabeled data, and it can be applied for the entirely unlabeled datasets, as well as

for those sets which encompass vectors with missing labels.

An active learning technique for selecting refined sets was proposed by Schohn and Cohn

(2000)—they utilized a computationally efficient heuristics to label vectors lying near the

SVM decision hyperplane. The authors exploit the selective sampling approach (being a form

of active learning), in which learners are presented with a large unlabeled dataset, and are

given the opportunity of labeling these vectors themselves (labeling of each vector “costs”

some artificial fee). The learners attempt to minimize the error on the data which will appear

in the system in the future. In the heuristic algorithm suggested by Schohn and Cohn (2000),

one active learning criterion is to search for vectors which are orthogonal to the space spanned

by the current refined training set. Additionally, the information about the already known data

dimensions is boosted by narrowing the existing margin—only those vectors which are close

to the decision hyperplane are effectively retrieved.

SVMs enhanced with active learning algorithms have been successfully applied in many

real-life applications (Tong and Koller 2002). Tong and Chang (2001) exploited such tech-

niques in their system to conduct effective relevance feedback3 for image retrieval, and

proposed the pool-based active learning approach. A pool contains unlabeled T vectors

which are analyzed and appended to T
′ if necessary. The classifier is trained using a labeled

set (if it is the first feedback round, then the user is asked to label a number of randomly drawn

vectors; otherwise, the user labels some pool images which are the closest to the decision

boundary).

3.5 Random sampling methods

In random sampling techniques for selecting refined SVM training sets, the T vectors are

drawn randomly, and—based on additional heuristics—are appended to T
′’s or not. The

simplicity of such methods makes them straightforward to implement and becomes their

biggest advantage in practical scenarios. Also, they appear sufficient in a number of real-

3 This process interactively extracts the desired content for a user based on the user feedback—the user decides

whether the presented data are relevant or not.
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life circumstances (when the size of the desired refined sets can be estimated), and they

are not dependent on the cardinality of T . However, they can easily misbehave for very

large and noisy datasets, since removing mislabeled vectors from T
′’s (affecting the SVM

performance) is often quite time-consuming (Nalepa and Kawulok 2016a).

A simple approach to reduce t is to sample t ′ vectors from T randomly (Balcázar et al.

2001). In this sampling algorithm, a random subset of T is drawn according to the weights

assigned to the training set vectors4 (the higher the weight, the larger the probability of

including the corresponding vector in T
′). Then, an SVM classifier is trained using this

subset, and T is analyzed to verify which vectors were correctly classified using the resulting

decision hyperplane. The weights of those vectors which were misclassified are doubled so

that they are more likely to be selected and included in T
′ in the next sampling round. If the

number of rounds is sufficiently large, then the important vectors (hopefully including SVs)

will have higher weights than the other vectors, and a refined set will be composed of these

SVs. The “optimal” size of T
′ is not known beforehand, thus the number of sampled vectors

should be determined carefully (usually in a time-consuming trial-and-error fashion). This

becomes a significant drawback of this algorithm especially in the case of massively large

datasets. Also, random sampling approaches may ignore important (and useful) relations

which occur within the dataset—if these training set features were exploited during the

execution, the convergence time of such techniques could be greatly reduced (e.g., only the

vectors lying near the boundary of one-class vector groups could be sampled because they

would likely influence the position of the SVM hyperplane).

3.6 Summary of the SVM training set reduction methods

Table 3 summarizes the algorithms for reducing the size of the SVM training sets. They

have been split into several categories, based on the optimization strategies. Additionally, we

report the most important characteristics of the approaches discussed at length in the previous

sections. These features include:

– Type—indicates whether the method is one-pass or iterative. In the iterative approaches,

the initial refined training set is gradually improved in order to include better vectors

from T . Such methods encompass algorithms which (i) keep enhancing the refined sets

of a given (constant) size, and those which (ii) decrease or (iii) increase refined sets to

boost their quality.

– Source—being the underlying source of information concerning a training set. The

knowledge extracted from this source is then used for generating refined sets during the

optimization process. We distinguish five possible sources of information which can be

utilized for this purpose—they are summarized in Table 1. Note that there exist methods

which exploit several sources of information.

– Randomized—shows whether the algorithm is randomized or deterministic.

– Dependent on t—shows whether the algorithm is dependent on the cardinality of T . If so,

it may require analyzing the entire training set which is often not possible in massively

large real-life datasets. Hence, the techniques which are independent from t should be

preferred in practical applications.

– Data—indicates which types of datasets were used to validate the corresponding algo-

rithm (A—artificially generated, B—benchmark, R—real-life datasets).

– Maximum t—indicates (roughly) the maximum size of the dataset for which the method

was tested in the referenced paper. As mentioned in Sect. 1, the term large dataset is

4 All T vectors have the same weight at the beginning of the algorithm execution.
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Table 1 Sources of information used for generating SVM refined training sets

Source Description

Local The local neighborhood of a training vector is analyzed, and based on the outcome of this

analysis, this vector may be classified as important (i.e., likely to be selected as a SV), or

useless. The latter vectors are usually not appended to the refined sets

Global The global layout and characteristics of a training set are investigated in search of important

vectors which should be included in the refined set

Wrapper In this approach, the SVM classifier is trained using a retrieved refined set (or sets, in the case

of population-based algorithms), and the quality of this refined set is quantified using the

classification performance of the learned SVM—see Sect. 3.7 for details (commonly, all

vectors from T , or a subset of T vectors are classified to verify the SVM performance—in

the latter case, wrapper techniques may be independent from the cardinality of the entire

training set). The classifier is often treated as a “black box” in these wrapper techniques

SVM As in wrapper techniques, the SVM classifier is learned using the refined training set at first.

However, the T vectors are assessed based on the specific features of the trained SVM

(e.g., the vectors selected as SVs in the training process are considered important)

Theory The theory behind the SVM classifier or the desired training data characteristics are used to

estimate the importance of a given training vector. Contrary to the “SVM” information

source, the classifier is not trained before the training set vectors can be assessed in this case

quite ambiguous in the literature (the cardinality of large sets may vary from hundreds

to millions of T vectors).

3.7 Assessing SVM training set selection algorithms

Assessing the quality of emerging SVM training set selection algorithms is a difficult and

multi-fold task. These techniques can be investigated both quantitatively and qualitatively

(e.g., by visualizing the extracted refined sets together with SVs and verifying whether they

form any specific geometrical patterns). In this section, we discuss the quantitative measures

which are used to assess new and existing training set selection algorithms alongside the

standard experimental setup and datasets (together with their characteristics) that are usually

adopted in the experiments. Finally, we present several practical applications in which various

algorithms for selecting refined SVM training sets have been utilized.

3.7.1 Quantitative measures

The following quantitative measures have been widely adopted in the literature to assess the

performance of new training set selection techniques—for each measure we indicate whether

its value is to be maximized (↑) or minimized (↓):

– Classification performance of an SVM trained using a refined set (↑) The performance

of classifiers (including SVMs) is assessed based on ratios derived from the number of

(a) correctly classified positive-class vectors—true positives (TP), (b) correctly classi-

fied negative-class vectors—true negatives (TN), (c) incorrectly classified negative-class

vectors—false positives (FP), and (d) incorrectly classified positive-class vectors—false

negatives (FN) obtained for a test set which was not used during the training (see Table 2).

Utilizing the unseen dataset allows for verifying the generalization capabilities of a clas-

sifier.
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Table 2 Predicted versus real

conditions—bold text shows the

erroneous classification

Predicted

Positive Negative

Real Positive True positive False negative

Negative False positive True negative

The derived ratios include, among others, the true positive rate:

TPR =
TP

TP + FN
(45)

and the false positive rate:

FPR =
FP

FP + TN.
(46)

TPR and FPR are often presented in a form of receiver operating characteristic (ROC)

curves (Fawcett 2006). Each point in this curve is the performance of an SVM for a given

decision threshold (Yu et al. 2015). Calculating the area under this curve (AUC) reduces

a ROC curve into a single scalar value representing the classifier performance (the higher

the AUC values, the better, and 0 ≤ AUC ≤ 1). The area under the ROC curve and the

accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
(47)

are the most widely used measures exploited to quantify the performance of training set

selection algorithms (the classification performance of an SVM trained using a refined

set should be maximized). Other common measures include precision, recall and the

F-measure (Khosravani et al. 2013).

– Size of the refined training set (↓) The main objective of training set selection algorithms

is to minimize the cardinality of the training set (ideally without decaying the SVM

classification performance). Hence, the number of vectors in the refined sets elaborated

using such approaches is almost always investigated. To make this measure easier to

interpret for datasets of different sizes, it is very often presented as the reduction rate

(R):

R =
t

t ′
, (48)

where t ′ is the cardinality of the refined training set, and t is the size of the original

dataset. This reduction rate should be maximized.

– The number of support vectors (↓) As already mentioned, the number of SVs influences

(linearly) the SVM classification time. Therefore, it should be minimized to speed up the

operation of a trained classifier.

– The percentage of vectors in a refined training set selected as support vectors (↑ Deter-

mining the desired cardinality of refined sets is often a critical step in training set selection

algorithms. Such refined sets should be small and should include important vectors which

are likely to be selected as SVs during the SVM training. In several works, the percent-

age of vectors in refined training sets selected as SVs has been investigated (Nalepa and

Kawulok 2016a; Verbiest et al. 2016). This percentage should be maximized to keep the

number of “useless” vectors in a refined set as small as possible. However, this measure

can easily become misleading—selecting all training set vectors as SVs can be a sign of

overfitting and lack of generalization capabilities.
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– Training set selection, SVM training and classification times (↓) In all state-of-the-art

approaches, the execution time of a training set selection algorithm should be minimized.

Also, the SVM training and classification times are to be minimized (these times are

correlated with the size of a refined training set and the number of determined SVs).

– Combined quality measure (↑) Although the above-mentioned measures are usually

investigated separately, this approach becomes infeasible in several practical scenarios,

e.g., in real-time systems in which a trained SVM should work extremely fast even

if it delivers slightly worse results (i.e., minimizing the number of SVs may be more

important than maximizing the classification accuracy). In such cases, the problem of

selecting SVM training sets can be considered as a two- (or multi-) objective optimization

problem: the first objective is to maximize the classification accuracy of an SVM trained

with a refined set, and the second is to minimize the number of SVs. Nalepa (2016)

transformed these two objectives into a single quality function

Q(AUC, s) = q ·
AUC

AUCB
+ (1 − q) ·

sB

s
, (49)

where AUCB denotes the best (the largest) AUC obtained for the test set (note that AUC

can be replaced by any other classification performance measure in this formula), sB

is the best (the lowest) number of determined SVs across the investigated training set

selection algorithms, and q denotes the importance of the first objective (0 < q ≤ 1).

The largest Q value is retrieved for the best training set selection algorithm.

3.7.2 Standard experimental setup

In a standard experimental setup, each new training set selection algorithm is compared

with (i) a number of existing selection techniques, and (ii) SVMs trained using the entire

training set (it may be impossible for extremely large datasets). Randomized approaches (see

Table 3) are often executed multiple times (usually at least 30×) and then the quantitative

results are averaged. To deeply investigate the generalization abilities of the algorithms, the

experiments are almost always performed following the k-fold cross-validation strategy (a

dataset is divided into a training and a test set k times without any overlaps—a training set

includes (k − 1) data chunks, whereas a test set only one chunk; then, the results obtained

for each fold are averaged). The experiments are divided into two groups:

– Sensitivity analysis The impact of the most important components of a new algorithm

on its overall performance is verified in the sensitivity analysis. Usually, one (or more)

components are enabled (the other components are disabled), and the experiments are

repeated for each configuration.

– Comparison with other training set selection algorithms and SVMs trained using the

entire set The comparison with the state of the art is always crucial for new training set

selection algorithms. Also, they are commonly compared qualitatively and quantitatively

(using the measures discussed in the previous section) with SVMs trained using the entire

set—without any training set selection applied (however, it may be impossible due to the

cardinality of this set) and other techniques from the literature (very often from different

categories).

Since the number of algorithms that are being compared is usually large and each of them

can perform differently for different datasets, executing appropriate (non-parametric) statis-

tical tests to investigate the statistical importance of the obtained results became a standard
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procedure in the machine learning field. A standard null hypothesis saying that applying

the algorithm A leads to obtaining the results of the same quality as those elaborated by

the algorithm B is often verified with the two-tailed Wilcoxon signed-rank tests (Woolson

2007) (Shin and Cho (2007) exploited the McNemar’s test for this purpose). In experiments

encompassing multiple datasets, the Friedman test is executed to check which algorithm

outperforms other techniques taking into account all investigated datasets (Friedman 1937).

3.7.3 Datasets and practical applications

The effectiveness of emerging training set selection algorithms is commonly tested using

three kinds of datasets:

– Artificially generated datasets Vectors in artificial datasets are usually generated to follow

a known distribution (e.g., the Gaussian distribution). Therefore, the underlying data

characteristics are known (which is not always achievable in the case of benchmark

and real-life sets). Additionally, artificially generated sets are often straight-forward to

visualize. Such datasets are used to understand the behavior of new training set selection

algorithms (e.g., whether the vectors in the refined sets are positioned near the decision

hyperplane or whether there are any vectors that could be removed from the refined sets

as they are not selected as SVs). Several artificially generated datasets are available at

http://sun.aei.polsl.pl/~jnalepa/SVM/ (see example datasets in Fig. 10—white and black

pixels visualize vectors from the positive T+ and negative T− classes; training set vectors

are grouped into clusters in the α versions of these 2D sets).

– Benchmark datasets Such datasets (of different characteristics) are exploited to compare

the performance of training set selection algorithms (benchmark sets were used in more

than 70% of papers presented in this review). These datasets can be downloaded from

the following repositories:

– UC Irvine (UCI) machine learning repository https://archive.ics.uci.edu/ml/index.

php5.

– Knowledge Extraction based on Evolutionary Learning (KEEL) repository: http://

www.keel.es/.

– LibSVM repository: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

In Table 4, we gather the characteristics of ten most frequently used (in the analyzed

papers) benchmark sets alongside the repository name (the same dataset can be often

downloaded from more than one repository). For multi-class sets (e.g., Yeast), pairwise

coupling is performed—the multi-class classification problem is decomposed into two-

class problems and the majority voting principle is used (a number of binary SVMs vote

for the final class label for an incoming vector). Although the sizes of these benchmark

datasets are not very large, they are widely used in the literature to compare training set

selection algorithms (also thanks to a well-defined experimental protocol which is often

presented at a repository website—it makes the comparisons much easier).

– Practical applications and real-life datasets Although the amount of generated data

is steadily growing nowadays and the size of training sets became a real obstacle in

exploiting SVMs in practice, only less than 45% of all investigated training set selection

5 All repositories and datasets discussed in this section were accessed on July 7th, 2017.
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2D–randomα 2D–chessboardα

2D–chessboardβ—a part of this dataset is zoomed for clarity

Fig. 10 Examples of artificially generated 2D datasets

Table 4 Summary of the most frequently used benchmark datasets

Dataset t #features Types of features #classes Repository

Adult 15,082 14 Categorical, integer 2 UCI

Breast 277 9 Categorical, integer, real 2 KEEL

Bupa 345 6 Categorical, integer, real 2 KEEL

German 1000 20 Categorical, integer 2 UCI

Ionosphere 351 34 Integer, real 2 UCI

Iris 150 4 Real 2 UCI

Mushroom 8124 22 Categorical 2 UCI

Sonar 208 60 Categorical, integer, real 2 KEEL

Wisconsin 683 9 Integer 2 KEEL

Yeast 1484 8 Real 10 UCI

algorithms were tested using real-life datasets.6 The most interesting practical scenarios

in which training set selection algorithms have been tested and utilized include:

6 Numerous benchmark datasets are derived for practical problems, however their cardinalities are often much

smaller compared with real-life scenarios.
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– Hand-written digits classification In several works (Shin and Cho 2003, 2007;

Nishida and Kurita 2008), the authors tackled the multi-class hand-written digits clas-

sification problem and exploited the MNIST dataset (http://yann.lecun.com/exdb/

mnist/). They applied SVM training set selection algorithms to retrieve useful data

from 6×105 training images (hand-written digits belonging to 10 classes, see Fig. 11).

Important applications of the automated analysis of the digitalized hand-written text

include bank check processing, postal address identification, analysis of historical

documents or biometric authentication.

– Skin detection and segmentation Detecting pixels representing human skin in color

images (which is a preliminary step of the skin region segmentation process whose

aim is to determine the boundaries of skin regions) is a difficult and important pattern

recognition task. Its applications include content filtering, hand and face detection

and tracking, human-computer interaction and many more (Kawulok et al. 2014).

Kawulok and Nalepa (2012) generated the Skin dataset of skin and non-skin pixels

(in the YCbCr color space; 4 × 106 pixels in total)—they exploited images from

the ECU face and skin detection database elaborated by Phung et al. (2005) (see

example images in Fig. 12—note that skin pixels expose different color and intensity

characteristics), and used this set to test their several SVM training set selection algo-

rithms (Nalepa and Kawulok 2014a, b, 2016a; Kawulok and Nalepa 2014a; Nalepa

2016).

– Hand pose estimation Kawulok and Nalepa (2014b) applied SVMs to recognize hand

poses based on the shape context descriptors (Belongie et al. 2002). In their approach,

vectors of differences between two hand shapes are classified to determine whether

they represent the same pose (hence, the class decision is indirect). The authors

showed that training sets can become very large even for a relatively small number

of gestures (i.e., for n gestures, n!
2·(n−2)! feature vectors are obtained). To make SVMs

applicable in this scenario, a genetic technique was utilized for selecting refined SVM

training sets (Kawulok and Nalepa 2012).

– Face detection Kawulok (2007) and Wang et al. (2013a) verified their SVM training

set selection algorithms in the face detection problem—Wang et al. (2013a) exploited

a dataset with almost 3500 images, whereas Kawulok (2007) used 1000 images

from the famous Feret database presented by Phillips et al. (1998). Face detection

is a pattern recognition task aimed at determining whether or not an input image

contains a human face. Face detection algorithms are being exploited in surveillance

systems, human–computer interaction and entertainment applications, human gait

characterization, gender classification and many more (Paul and Haque 2013).

– Detection of deceptive facial expressions Facial image analysis is an active topic—

new research directions focus on facial dynamics recognition and understanding for

deception detection, behavioral analysis and diagnosis of psychological disorders.

Kawulok et al. (2016) used fast smile intensity detectors to elaborate textural facial

features that are fed into the SVM classification pipeline to distinguish between posed

and spontaneous expressions in video sequences from the UvA-NEMO database

containing 1240 sequences, including 643 posed and 597 spontaneous smiles (Dibek-

lioğlu et al. 2012)—see examples in Fig. 13. Since these features are extracted for

each frame (also those which are neutral, without any features exposing the smile

characteristics), SVM training sets may become very large and often contain “use-

less” vectors. To deal with these issues, the authors utilized their memetic training

set selection algorithm (Nalepa and Kawulok 2016a).
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Fig. 11 Example MNIST (hand-written digits) images

Fig. 12 Examples of images used for generating the Skin dataset

– Image retrieval Tong and Chang (2001) showed that their SVM active learning train-

ing set selection algorithm can be successfully applied for image retrieval. It selects

the most informative images to effectively query a user and quickly learn the deci-

sion hyperplane which should separate unlabeled T images to satisfy the user’s query.

With the use of real-life datasets (encompassing up to 2000 images collected from

the Internet), the authors proved their technique to be outperforming other state-of-

the-art image retrieval approaches. Such image retrieval techniques are commonly

applied in the textiles industry, nudity-detection filtering engines, picture and art

archives, and even medical diagnosis (Trojacanec et al. 2009).

– Biomedical applications Selecting appropriate training sets is an important problem

in biomedical applications since the data quality and volume are big issues in this

field. The following points summarize the most interesting biomedical applications

in which SVM training set selection algorithms have been tested and utilized.

• RNA classification SVMs have been successfully applied to detect non-coding

RNAs (ncRNAs) in sequenced genomes (Uzilov et al. 2006). However, RNA

datasets are very large which affects the SVM training. Cervantes et al. (2008)

exploited their clustering-based training set selection algorithm for two RNA

datasets (the first one included almost 5 × 105 vectors with 8 features, and the

second—2×103 vectors with 84 features) and showed that is it quite competitive
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(a)

Frame no.: 8 17 22 74 188

(b)

Frame no.: 22 32 120 157 271

Fig. 13 Examples of a posed and b spontaneous smiles (selected frames). This figure is inspired by Kawulok

et al. (2016)

with the state of the art for such large-scale data. Wang et al. (2013a) tested their

training set selection algorithm on an interesting problem of deciding whether the

incoming vector represents RNA of cod fish (the entire training set encompassed

more than 3 × 105 vectors with 8 features).

• Diseases classification (e.g., leukemia, diabetes, Parkinson’s disease, hepatitis)

There are a bunch of approaches that have been tested on various disease classi-

fication tasks. In a standard medical image analysis scenario, the cardinality of

a training set is not very large, but such datasets are highly imbalanced (usually,

there are much more healthy examples compared with the pathological ones).

Therefore, applying an appropriate approach for selecting desired training sets

is inevitable. Oh et al. (2011) investigated their SVM training set selection using

such imbalanced sets for various diseases (leukemia, diabetes, Parkinson’s dis-

ease, hepatitis, breast cancer and cardiac diseases). These datasets included up

to 800 vectors (Diabetes dataset), and the number of features was up to almost

7200 in the Leukemia dataset.

– Network intrusion detection Yu et al. (2003) focused on an important network intru-

sion detection problem. Its aim is to build a classifier which is able to distinguish

between “bad” connections (intrusions and/or attacks) and normal connections. To

test their approaches, the authors exploited a dataset containing a variety of intru-

sions simulated in a military network environment (42 features, 4×106 vectors). This

dataset is available at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, and

it was used as a benchmark at the Third International Knowledge Discovery and

Data Mining Tools Competition, which was held in conjunction with The Fifth

International Conference on Knowledge Discovery and Data Mining (KDD-99).

Interestingly, the test data does not follow the same probability distribution as the

training data (it includes 14 specific attack types that are not present in T in which
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24 training attack types are given). Yu et al. (2003) showed that their clustering-

based training set selection technique can easily outperform random sampling in this

scenario.

– Text classification Text classification, being the problem of determining to which topic

a given text document belongs (it may be in one, multiple or no category because

of the overlaps across these categories), is an important research topic which has

been accelerated by the rapid growth of online information. Its applications include

spam filtering, language identification, e-mail routing, readability assessment and

more. Schohn and Cohn (2000) and Tong and Koller (2002) tackled this problem

to verify the capabilities of their active-learning SVM approaches. They exploited

the Reuters-21578 dataset (http://www.daviddlewis.com/resources/testcollections/

reuters21578/) in the ModApte data split configuration (there are several pre-defined

training-test splits provided by the authors of this dataset) with almost 1.3 × 104

articles (about 104 features each) and considered 10 most frequently occurring cat-

egories. Another commonly used text-classification dataset is Newsweeder (Lang

1995), also investigated in these papers.

– Credit screening Lyhyaoui et al. (1999) tested their SVM training set selection using a

dataset of 690 examples (15 features, 2 classes) reflecting customer creditworthiness.

Although this dataset is known to be noisy (Quinlan 1999), the authors were able

to surpass 90% of the classification accuracy with the use of their clustering-based

technique.

4 Conclusions and outlook

The amount of data produced every day grows tremendously in most real-life domains, includ-

ing medical imaging, genomics, text categorization, computational biology, and many others.

Although it appears beneficial at the first glance (more data could mean more possibilities

of extracting and revealing useful underlying knowledge), handling massively large datasets

became a challenging issue and attracts attention of researchers from multiple fields, espe-

cially in the era of big data. This big data revolution affected many research fields, including

statistics, machine learning, parallel computing, and computer systems in general (Haykin

et al. 2016). Albeit SVMs have proved extremely effective in solving a variety of pattern

recognition tasks, their main drawback lies in huge time and memory complexities, depend-

ing on the training set size cardinality. This is a severe shortcoming (it may be even impossible

to train the classifier using a dataset encompassing a very large number of vectors), and it

may prevent users from using SVMs in real-life scenarios which often require processing

massively large datasets. Finally, the classification time grows linearly with the number of

SVs, which indirectly depends on the training set size (as already mentioned, the number of

SVs is notably smaller for reduced sets, hence the classification is much faster).

In this review, we analyzed the current advances in selecting the SVM training data from

large datasets. We divided all the methods into several classes, comprising algorithms utilizing

similar approaches (e.g., for extracting information about SV candidates) in their core, as well

as exposing similar characteristics. We believe that this taxonomy can be effectively used

for emerging techniques, and will help highlight and understand their potential strengths and

weaknesses. We presented the main sources of information concerning training set vectors,

which are commonly used to assess the importance of these vectors (only important vectors

should be assembled into refined sets, because they are likely to be selected as SVs). As
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presented in Sect. 3.6, the number of algorithms for selection of refined sets is quite large,

but their underpinning strategies for extracting such information can be classified into just five

categories. Although some methods combine different information sources (see Table 1), they

are in the minority, and this approach has not been intensively investigated in the literature

so far.

Training SVMs from large datasets remains an open research problem. A plethora of meth-

ods for tackling the SVM training from such datasets are an excellent point of departure for

further research. We believe that emerging metaheuristics (especially population-based ones),

combined with refinement procedures should be intensively investigated towards parameter-

less SVMs. Such engines would be extremely useful, since determining appropriate parameter

values of an algorithm at hand is very time-consuming for massive sets, especially if the trial-

and-error approach is exploited. It will be beneficial to construct hybrid algorithms, which

couple methods for selecting refined training sets, and for enhancing the SVM training. It has

not been explored in the literature—we believe that it could become an immediate answer

to some of the big data problems, where the data veracity, velocity, volume, and variety play

the pivotal role and should be treated comprehensively.

An important research direction encompasses creating algorithms, which utilize various

information sources in search of important training set vectors. We believe that such tech-

niques (ideally independent from the cardinality of T ) will be the main stream of development

soon, since they allow for extracting various bits of information about the dataset, and for

combining them into the solid knowledge about the T vectors. On the other hand, incorporat-

ing those methods which benefit from the same source of information into hybrid approaches

will most likely not result in boosting the quality of the refined sets. Due to the wide avail-

ability of a variety of parallel architectures, it will be beneficial to develop algorithms which

analyze datasets in the complementary ways in parallel. Then, the results could be merged in

the final decision engine, used for assessing the T vectors. Finally, algorithms which target

learning SVMs from imbalanced and weakly-labeled datasets are becoming crucial due to

the nature of the available data (Sáez et al. 2016).

Finally, the research summarized in this survey needs to be confronted with deep

learning—a very powerful classification tool for a variety of pattern recognition tasks (LeCun

et al. 2016). However, it has also been criticized for being difficult to tune and easy to fool,

domain-agnostic, and hard to interpret (Nguyen et al. 2015). A very interesting research direc-

tion includes coupling deep convolutional neural networks (CNNs) with SVMs (alongside

training set selection algorithms) in a comprehensive classification engine. Convolutional

layers of CNNs are in fact feature extractors—features automatically elaborated in such

layers could be classified using SVMs. This would allow for omitting a tedious process of

preparing hand-engineered features (which is particularly important in the case of image and

video data).
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