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Abstract

Recognizing human action in non-instrumented video
is a challenging task not only because of the variability
produced by general scene factors like illumination, back-
ground, occlusion or intra-class variability, but also be-
cause of subtle behavioral patterns among interacting peo-
ple or between people and objects in images. To improve
recognition, a system may need to use not only low-level
spatio-temporal video correlations but also relational de-
scriptors between people and objects in the scene. In this
paper we present contextual scene descriptors and Bayesian
multiple kernel learning methods for recognizing human ac-
tion in complex non-instrumented video. Our contribution
is threefold: (1) we introduce bag-of-detector scene de-
scriptors that encode presence/absence and structural rela-
tions between object parts; (2) we derive a novel Bayesian
classification method based on Gaussian processes with
multiple kernel covariance functions (MKGPC), in order to
automatically select and weight multiple features, both low-
level and high-level, out of a large collection, in a princi-
pled way, and (3) perform large scale evaluation using a va-
riety of features on the KTH and a recently introduced, chal-
lenging, Hollywood movie dataset. On the KTH dataset, we
obtain 94.1% accuracy, the best result reported to date. On
the Hollywood dataset we obtain promising results in sev-
eral action classes using fewer descriptors and about 9.1%
improvement in a previous benchmark test.1

1. Introduction

We study the problem of action recognition with empha-
sis on human actions in complex environments, as experi-
enced in movies or alternative sources of un-instrumented
data like personal videos on the web. Recognizing hu-
man action is difficult because humans move fast, have
complex structure and clothing, and their appearance is af-
fected by scene factors like occlusion or illumination. The
field of action recognition has seen lots of progress re-

1All authors contributed equally to this research.

cently [19, 10, 5, 2, 13] through a synergy of new datasets,
the design of low-level feature descriptors and the use of
(kernel-based) machine learning methods. It has thus be-
come possible to tackle difficult problems like the recogni-
tion of human motion in movies, e.g. [19]. Despite impor-
tant advances, the performance of current systems in com-
plicated settings remains relatively low. It is not clear, to
date, whether the current level of performance is due to: (a)
an intrinsic lack of discriminative power of existing video
descriptors, (b) a lack of training data, or (c) a deficiency
of learning, e.g. the inability to select optimal feature com-
binations. This is by no means straightforward, as explicit
enumeration (or kernel selection) in the feature power set
becomes infeasible for models with more than several di-
mensions. Each shortcoming in (a)–(c) suggests potentially

Figure 1. Illustration of multiple detected objects (car and person,
in red) and their parts (in blue) on a sequence from the Hollywood
dataset [19]. We aim to complement existing low-level video fea-
tures with high-level contextual scene descriptors built of object
detectors. By detecting both a car and a person in its proximity, the
contextual recognition of an action like ‘Person enters car’ can be
improved. A second focus of our work is the learning of large in-
homogeneous descriptor ensembles, both low-level and high-level.

different paths towards a solution: (a) the construction of
complementary descriptors that account not only for low-
level spatio-temporal video correlations, but also for higher-
level relations among people, their parts, or the parts of
other objects, (b) the need to acquire more data, and (c) bet-
ter methods to learn feature/kernel combinations and any
other hyperparameters of the system in a principled way.
Progress along each direction influences others, and it re-
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mains to be seen how much weight each component will
ultimately have in a successful system.

In this paper we focus on two of the three directions just
discussed: (a) the design of contextual scene descriptors,
and (c) the design of more powerful classifiers. Specifi-
cally, we introduce bag-of-detector scene descriptors that
encode presence/absence and structural relations between
object parts. This aims to make recognition more reliable as
actions like: ‘person getting out of car’, ‘person drinking’,
or ‘person sitting’, should benefit from both the detection
of a person and the object involved in an action—e.g. a car,
a mug, a chair or a sofa—and from the knowledge of their
relative spatial configurations.2 While the use of context is
not foreign to vision [21, 23, 31], its implications for action
recognition are comparatively less explored [23, 34, 9, 26].

Our second contribution is the design of a novel
Bayesian classification method based on Gaussian pro-
cesses with multiple kernel covariance functions. This
allows the principled fusion of multiple low-level and
high-level kernels, out of a large collection, by means of
Bayesian approximations and hyperparameter selection cri-
teria based on marginal likelihood maximization. (To our
knowledge no Gaussian process multiple kernel classifica-
tion method is available at the moment either in computer
vision or in machine learning.) Finally, we perform large
scale evaluation on a large set of state-of-the art features and
kernels on both KTH [28] and a recently introduced, com-
plex Hollywood movie dataset [19]. We show that Gaussian
process multiple kernel learning and contextual scene de-
scriptors complement ongoing work towards understanding
the importance of different feature types and the design of
more accurate action recognizers.

1.1. Related work

As this research relates to feature design, kernel learn-
ing methods as well as object and action recognition, our
literature review is necessarily sparse. Space-time interest
points [18] use extended Harris operators to detect struc-
tures with significant local variation in spatio-temporal vol-
umes. This sparse detector is robust against scale variations,
different motion speeds and cluttered backgrounds. Com-
bined with a bag-of-words descriptor and a discriminative
classifier (e.g. an SVM), it offers a promising architecture
for action recognition [28]. Good local descriptors need to
be sufficiently discriminative to separate different classes
but invariant to intra-class variations. Histogram represen-
tations possess several such properties being robust to spa-
tial and appearance variations or illumination changes.

Dollár et al [4] model neighborhoods of interest points
as cuboids and construct histograms based on normalized
pixel intensity, brightness gradient and windowed optic

2Formulating object and action recognition in one common, jointly
consistent framework remains an interesting direction for future work.

flow. Laptev et al [19] use spatio-temporal grids extracted
at multiple scales to compute histogram of oriented gra-
dient (HoG) [3] and optic flow (HoF) within each volu-
metric (spatio-temporal) cell. They report state-of the art
results on the KTH dataset, introduce a new, significantly
more difficult movie dataset, and study the impact of differ-
ent descriptors for classification performance. Scovanner
et al [29] propose a 3D-SIFT descriptor, where gradients
are computed at random locations in a cuboid and orienta-
tion histograms are built for each. This is different from
HoG, in that gradients are computed in polar coordinates
and histogrammed using meridians and parallels. This in-
duces progressively smaller bins at poles. Kläser et al [16]
refine the representation by quantizing the gradient orienta-
tion according to facets of regular polyhedrons. They im-
prove recognition accuracy on the KTH dataset [28] using
an SVM classifier with χ2 kernel, tuned using discrete hy-
perparameter search. Fei-Fei Li et al [24, 27] propose a
generative action recognition model using (unsupervised)
LDA/pLSA latent topic models and features in [4] as well
as correlograms. An interesting aspect of the system is that
the number of action classes is determined automatically.

The work just described has made substantial progress
on action recognition by focusing on low-level spatio-
temporal features. In this paper we derive complementary
descriptors based on quantizing responses from object de-
tectors (bag of detectors) of the human body as well as
cars or chairs. To the best of our knowledge generic bag-
of-detector descriptors have not been proposed for action
recognition. An interesting step in a similar direction is
the recent work of [15] who segment hands and objects and
fuse their correlations over time using a CRF. Applications
of CRF models in conjunction with bag-of words descrip-
tors for action recognition previously appeared in [30, 32].
Other interesting models that exploit object context for vi-
sual action analysis can be found in [23, 34, 9, 26, 22].

The second component of our contribution regards flex-
ible classifier design. Of importance is the capacity to gen-
eralize and the flexibility to train using a large number of
possibly (but not necessarily) relevant features. We will
use both similarity measures e.g. Gaussian, histogram inter-
section, and feature descriptors like HoG or HoF with the
goal of relevance determination for optimal design. Kernel
methods are promising in this context, but in their standard
form a kernel has to be pre-specified. This implicitly in-
duces an input similarity measure and its choice makes a
significant difference in the performance of the classifier.
Generalizations to learning the weighting of a linear com-
bination of kernels exist [1] and have been demonstrated
to give promising results for object recognition [17] (notice
that no such methods have been proposed for action recog-
nition). A shortcoming of kernel methods is their lack of
uncertainty estimates and the absence of an efficient hyper-
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parameter learning procedure.3 In turn, classifiers based on
Gaussian processes are Bayesian methods that are more ro-
bust to overfitting, offer estimates of uncertainty (in partic-
ular, a probability distribution for the class label), and con-
sistent hyperparameter learning by optimizing the marginal
likelihood. There are a number of successful applications
of Gaussian process regression in vision [12], but to our
knowledge no full Gaussian Process classification method
has been employed so far (in particular [12] used regression
in order to successfully predict continuous values in the unit
interval, for object categorization). In contrast, we follow a
more integrated, consistent Gaussian process classification
approach, and use the cumulative logistic function as like-
lihood in order to squash the latent function and obtain a
meaningful distribution for the class labels. Besides, and
perhaps most importantly, we develop a novel multiple ker-
nel learning scheme in the framework of Gaussian process
classification.

2. Multiple Kernel Gaussian Process Classifier
(MKGPC)

For binary classification, we work with a set of inputs
X = [x1,x2, . . . ,xN ]� and corresponding outputs y =
[y1, y2, · · · , yN ]�, where N is the number of training sam-
ples and yi ∈ {−1, 1} the class label. Here X stores the
inputs and y the class labels rowwise. The goal is to in-
fer the class label of given inputs. We focus on the case
where the covariance function of Gaussian Process is a lin-
ear combination of covariances, each with different kernel
hyper-parameters, and we derive methods to learn both the
weighting of different covariances and the hyperparameters
of each individual kernel. We refer to this model as theMul-
tiple Kernel Gaussian Process Classifier (MKGPC).

Gaussian process classification (GPC) [25] is a dis-
criminative model where the class membership probability
p(y|x) is Bernouilli distributed. This is achieved by squash-
ing an unconstrained latent function f(x) to map its values
to the unit interval by a sigmoid function, e.g. the logistic or
the cumulative Gaussian. Without loss of generality, in this
paper we use the cumulative Gaussian function

Φ(t) =

∫ t

−∞

N(τ |0, 1)dτ (1)

Given the latent function, the class labels are assumed to be
Bernoulli distributed and independent random variables, so
the joint likelihood factors as

p(y|f) =

N∏
i=1

p(yi|fi) =

N∏
i=1

Φ(yifi) (2)

3Grid search cross validation works well in a few dimensions but does
not scale to problems with tens or hundreds of dimensions that result when
many kernels are combined—in this case both the weighting and the indi-
vidual hyperparameters have to be estimated.

where f = [f(x1), f(x2), . . . , f(xN )]� is a vector. A
Gaussian process is a collection of random variables, any
finite number of which have joint Gaussian distribution.
GPC assumes that the latent function f(x) is a zero mean
Gaussian process with positive definite covariance func-
tion k(xi,xj ;θ) which encodes correlations between input
pairs, θ are hyperparameters of the covariance. Applying
Bayes’ rule, we obtain the posterior over latent functions f

p(f |X,y,θ) =
p(y|f)p(f |X,θ)

p(y|X,θ)
=
N (f |0,K)

p(y|X,θ)

N∏
i=1

Φ(yifi)

(3)
Prediction requires two calculations: (1) the distribution of
the latent variable for a given input

p(f∗|x∗,X,y,θ) =

∫
p(f∗|f ,x∗,X,θ)p(f |X,y,θ)df

(4)
and (2) a probability distribution for the class label using
the latent function distribution in (1)

p(y∗|x∗,X,y,θ) =

∫
p(y∗|f∗)p(f∗|x∗,X,y,θ)df∗ (5)

The posterior of the latent function is not Gaussian, due to
the non-Gaussian nature of the likelihood (2). This makes
the integrals (4) and (5) analytically intractable. A palette of
integration methods including analytic approximations, e.g.
Laplace or expectation propagation, or Monte Carlo sam-
pling are available. For the MKGPC model, we use Laplace
approximation due to its conceptual simplicity and analytic
tractability.

2.1. Laplace Approximation

Laplace approximation uses a Gaussian approximation
q(f |x,y,θ), derived from a second order Taylor expansion
around the maximum of the posterior p(f |x,y,θ) in the in-
tegral (4), as follows

q(f |x,y,θ) = N (f |̂f , (K−1 + W)−1) (6)

where W = −∂2log p(y|f)
∂f∂f�

|
f=bf

, and

f̂ = argmaxf{p(f |X,y,θ) = p(y|f)p(f |X,θ)} (7)

Notice that the p(y|X,θ) is independent of f , so we only
need to consider the un-normalized posterior when maxi-
mizing f (7). In our case, the likelihood (2) and the prior
are log concave w.r.t. f , so (7) has a global optimum. Given
the factorial structure of the likelihood, the HessianW is di-
agonal. Using (6), we can compute (4), as well as the mean
and the variance of f∗ analytically [25]. Based on this, we
compute an approximation to the marginal likelihood

log p(y|X,θ) = log

∫
p(y|f)p(f |X,θ)df ≈ (8)

≈ −
1

2
f̂K−1f̂ + log p(y|̂f)−

1

2
log |B|
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where |B| = |IN +W
1

2 KW
1

2 | and IN is the N ×N iden-
tity matrix. The marginal likelihood (8) gives the proba-
bility of the data under the given model (set of parameters,
hyperparameteres, etc.) [25] and can be used to estimate the
hyperparameters θ of the model consistently.

2.2. Multiple Kernel Covariance Function

The covariance function can be any positive definite ker-
nel. Here we search for a linear combination of the form

km(xi,xj ;α,θ) =
T∑

t=1

exp(αt)k(xt
i,x

t
j ; γ

t) (9)

where θ = (α,γ) are hyperparameters, exp(αt) is the
weighting parameter which controls the contribution of
each kernel, x = [x1, . . . ,xT ], xt = [xt

1, . . . , x
t
Nt

] is the
t-th group features of x, N = N1 + . . . + NT and T is the
number of feature groups. Notice that k(xt

i,x
t
j ; γ

t) can be
any positive definite kernel function, such as a Gaussian ker-
nel, a polynomial, a (pyramid) histogram intersection ker-
nel, etc. We learn multiple kernel hyperparameters αt and
γt by optimizing the approximated marginal likelihood (8)
using an alternation scheme: we fix one block of param-
eters and optimize the other block, then swap the blocks,
sequentially. A technical detail is the calculation of partial
derivatives of (8) w.r.t. hyperparameters. The covariance
matrixK is a function of hyperparameters, but f̂ andW are
also implicitly a function of θ, since as θ changes, the opti-
mum of the posterior f̂ and the negative Hessian W change
as well. The derivation is obtained using the chain rule, one
component being the partial derivative of the multiple ker-
nel function w.r.t. hyperparameters

∂km

∂αt
= exp(αt)k(xt

i,x
t
j ; γ

t) (10)

∂km

∂γt
i

= exp(αt)
∂k(xt

i,x
t
j ; γ)

∂γt
i

(11)

For optimization, we use the Polack-Ribiere variation of
conjugate gradient with line search based on quadratic and
cubic polynomial approximations. We use a slope ratio
method to estimate the initial step size and a Wolfe-Powell
stopping criteria [8] (see also fig. 2).

3. Image and Video Descriptors

In this section we describe the features used in ex-
periments. We employ a variety of descriptors, both
new, designed for higher level contextual scene and object
modeling, e.g. bag-of-detectors, and mid/low-level, spatio-
temporal gradient and optic flow histograms.

Bag of Detectors: We experiment with several ways to en-
code contextual scene information, based on object and part
detections. For this purpose we use a state-of the art detec-
tor [7] tuned to identify people, both full and upper-body, as
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Figure 2. The progress of our conjugate gradient optimizer for
a 2-kernel learning problem on the Hollywood-1 dataset. Left:
marginal likelihood as function of iteration; Right: kernel weights
α

1 and α
2 as function of iteration. Notice rapid convergence on

this dataset.

well as chairs and cars. Detectors for other objects relevant
to contextual classification, e.g. telephone, sofa, can also be
used. The detector is based on a star model with seven parts
(the bounding box of detected objects is also provided) and
each part is modeled using HoG descriptors. On top of this,
we build 3 histogram descriptors, all normalized over se-
quences, that encode the presence of various objects in the
scene as well as statistics of their spatial configurations: Ob-
jPres, ObjCount, and ObjDist. ObjPres is a 4d descriptor
that accumulates the presence/absence of each object type
in the video. ObjCount is a 4d descriptor that counts the
number of objects appearing in each image, for each cate-
gory. ObjDist measures pair-wise distances between parts
of the Person detector, accumulated for all people in the
scene, normalized at frame level, and also at sequence level.
Since there are 7 parts, the descriptor has dimension 21 (7
choose 2).

Spatio-Temporal Gradient and Flow Features: We work
with spatial-temporal interest points [18]—image locations
with large spatial and temporal gradients. For scale invari-
ance, the spatial-temporal extent of each detected event is
also estimated. Instead of performing scale selection [18],
interest points are extracted densely at multiple scales [19].
The motion and appearance of a space-time volume around
the detected interest point at each appropriate scale is char-
acterized in terms of features extracted on a grid of cuboids
centered at the detector. HoG features (4d gradient orien-
tations per cell) and HoF features are extracted for each
image or image pair and assembled according to the de-
sired temporal quantization level. In particular, the set of
frames corresponding to the estimated scale of the interest
point is split into 3, 2, and 1 (no split) sets. The HoGHoF
in corresponding cells for each image or pair is then vec-
tor quantized over the assumed time window and normal-
ized. HoG windows are typically square pixel patches of
size 20, 40, or 80 pixels and the temporal frame windows
are typically 10–20 frames long, depending on the spatio-
temporal scale returned by the interest-point detector. We
work with the following spatial-temporal descriptors (tem-
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poral histograms with 1, 2, and 3 bins, i.e. t1, t2, t3): hog1x1
(t1, t2, t3 = 4, 8, 12d), hog3x1 (12, 24, 36d), hog2x2 (16,
32, 48d), hog2x1 (8, 16, 24d), hog4x1 (16, 32, 48d), hog3x3
(36, 72, 108d). 4 In all cases, a bag-of-words representation
is generated from a codebook obtained by clustering the de-
scriptors in the training set using k-means (we used 4000
entries).

3D gradient space-time descriptor: Similarly to [4, 18,
29], each support region in the neighborhood of interest
point detectors is divided into cells using a regular grid
and HoG [3] features are computed within each cell. The
cuboid cells are further divided into S3 subblocks. For each,
a corresponding mean gradient is computed using integral
videos. 3D orientation quantization is performed by replac-
ing the octagon used to estimate 2D gradients in SIFT [20]
with a regular polyhedron. Histograms from a support re-
gion are concatenated into a single feature vector to describe
the spatial-temporal neighborhood. The spatial-temporal
support is set to 8 and 6, respectively (this corresponds to
image patches of size 20, 40, or 80 pixels and temporal win-
dows 10–20 frames long, depending on the scale returned
by the interest-point detector). We divide the support region
into 4x4x3 cells and use an icosahedron to quantize the 3D
gradient orientation to obtain a 4x4x3x20=960-d descriptor.

4. Experiments

As described in the previous section, most features (ex-
cept for the bag of detectors) are extracted at spatial and
temporal frames where the interest point detector [19] fires.
A variety of descriptors, both bag-of-detectors and spatio-
temporal features are extracted. For multiclass problems,
we learn MKL classifiers for each 1-vs-all problems and use
a probabilistic voting scheme in order to predict the class
output. Bag-of-detector descriptors with dimension 4, 4, 21
are extracted. Spatio-temporal features hof3x3t2, hog1x1,
hog3x1, hog2x2, hog2x1, hog4x1, hog3x3 all with t1, t2,
t3, as well as 3D gradient and bag of detectors and features
from [4], are extracted as described in §3.

KTH Dataset [28]: We compare our performance on this
benchmark with the state-of-the-art.5 The KTH dataset [28]
contains six types of human actions: walking, jogging, run-
ning, boxing, handwaving, and handclapping. The actions
are performed by 25 people, each several times in different
scenarios: outdoors, outdoors with scale variation, outdoors

4We use the publicly available implementation of [19] for interest point
detection. Note that the only descriptor of [19] that is publicly available
at the moment is hoghof3x3t2 (the spatio-temporal grid is hard-coded in
the software). All the other spatio-temporal descriptors have been imple-
mented by us.

5Note that we cannot compare against [14, 11] because their exper-
imental setup was different (either trained on more data or splitted the
problem into simpler tasks). Similarly, we can’t compare against [6] as
that evaluation was additionally supported by segmentation masks.

Figure 3. Illustration of the type of backgrounds, people and mo-
tions present in the KTH dataset. We also show responses of a
person detector (object and parts in red and blue, respectively) on
the KTH (descriptors based on these featurs were not selected by
our kernel learning method, see table 1–in contrast these descrip-
tors were found useful in the Hollywood movie dataset, see fig. 5.
Top: boxing, handclapping, handwaving; Bottom: jogging, run-
ning, walking.

with different clothes, and indoors. The background is ho-
mogeneous in most sequences. There are 2391 sequences
in total. We follow the experimental setup of [28] and split
the dataset into training/validation set (8+8 people) and test
set (9 people).

A comparison of our methods with the state of the art
algorithm is given in table 2. The relative weights of the
two selected kernels (HoGHoF and 3D Gradient) are shown
in table 1. The confusion matrix of the classifier is also
given in fig. 4. In this experiment hoghof3x3t2, 3D gradi-
ent features and bag of detectors are used as pool of fea-
tures/kernels. Notice that we outperform the state of the
art result in [19]. Our classifier tends to be superior in
all motions except Running, where it achieves performance
slightly inferior to [19]’s 80% accuracy (both classifiers
seem to mainly confuse running and jogging, which is not
entirely surprising given their visual similarity).

Hollywood-1 Movie Dataset[19]: This film dataset con-
tains eight different action classes: answering the phone,
getting out of the car, hand shaking, hugging, kissing, sit-
ting down, sitting up, and standing up. These actions are
semi-automatically collected from 32 Hollywood movies,
where the training set contains video sequences from 12
movies and the testing set are sequences from other 20
different movies. In our experimental setup, we used the
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Action Category HoGHoF 3D gradient

Boxing 0.53 0.47
Clapping 0.41 0.59
Waving 0.51 0.49
Jogging 0.43 0.57
Running 0.54 0.46
Walking 0.52 0.48

Table 1. Weighting of combining different features using MKGPC
for the KTH dataset. We only show features with non-negligible
weights. All the other features are weighted less than 10

−5 during
the multiple kernel learning and therefore turned-off. We suspect
that the downgrade of bag-of-detector features is due to the inac-
curate localization of limbs by our current detector [7]. This is a
reliable, state-of-the-art human detector, but its parts do not neces-
sarily correspond to human body parts.

Methods Recognition accuracy

Schuldt et al [28] 71.7%
Niebles et al [24] 83.3%
Wong et al [33] 86.7%

Savarese et al [27] 86.8%
Kläser et al [16] 91.4%
Laptev et al [19] 91.8%
Ours (MKGPC) 94.1%

Table 2. Comparison of our method with the different state-of-the-
art results on the KTH dataset.
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Figure 4. Confusion matrix for the KTH action dataset, obtained
for a model where hoghof3x3t2 and 3D gradient features were au-
tomatically selected out of a larger set (see text).

clean training set labels (231 sequences) and clean testing
set labels (217 sequences), which were manually labeled
as ground truth. The dataset is huge, so to extract spatio-
temporal HoGHoF we subsample the extracted descriptors
to select a subset of 100,000 for clustering in order to obtain
the visual vocabulary. The codebook size is 4000. Bag of
words detectors are computed by only running the detectors
in frames where at least one spatio-temporal interest point

is detected. Samples from the dataset are shown in fig. 5
and results obtained using various descriptors are reported
in table 3. Notice that we work with a significantly less ex-
tensive set of features than [19] and we obtain better perfor-
mance in 5 out of 8 classes, with significant improvement
for the action ‘SitUp’.

Table 3 compares the average precision of our experi-
ments with the results that were shown in [19]. The first
and second columns are per-class average precision by us-
ing standard bag-of-features with HoG or HoF respectively,
as reported in [19]. The third column reports the classifi-
cation result obtained with the best single feature. We also
show the accuracy of a random classifier (chance).

Table 4 compares again the average precision of our ex-
periments with the results that were shown in [19]. No-
tice that those results were obtained by using the test set
to drive a greedy selection process [19]. We have imple-
mented one possible approximation and find the combina-
tion of kernels based on a greedy approach. Starting with
an empty set, we initiate a forward selection scheme with
kernel additions and removals, each evaluated, using the
test error, on possible regularization parameters that con-
sist of a kernel parameter γ and a regularization parameter
C: {2−4, 2−3, . . . , 29, 210} × {22, 21, . . . , 213, 214} until a
maximum is reached. This range turned to be sufficient for
our problem. Notice that this is not a standard experiment,
as also the authors pointed out to us [19]. It was just in-
tended (by both [19] and us) in order to study the intrinsic
power of different features. Under this experimental setting,
we gain about 9.1% over reports in [19].
Hollywood-2 Movie Dataset [22]: This dataset is a re-
cently enlarged version of Hollywood-1 with four new
added actions: DriveCar, Eat, FightPerson and Run. Twelve
action classes are extracted from 69 Hollywood movies,
where the total length of action samples is about 600k
frames. Training and test sets consist of 823 and 884 se-
quences, respectively, with no sharing of samples from the
same movie. For preliminary experiments (as [22] is re-
leased and published at about the same time as this work),
we extracted four types of features: HoGHoF, ObjPres, Ob-
jCount and ObjDist as wel as spatio-temporal features. Our
results are compared to [22]’s in table 5, where due to space
limitations, for each action class, the feature with the high-
est weight in the kernel combination is shown.

5. Conclusions

We have presented descriptors and learning methods for
action recognition. We contribute in three areas: (1) the
design of descriptors based on bags of detectors, in order
to encode contextual relations between people and objects
in the scene; (2) a Gaussian process classifier with multi-
ple kernel covariance function (MKGPC) that allows the
principled learning of all parameters and hyperparameters
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Figure 5. Illustration of scenes and detected objects (red) and parts (blue) from the Hollywood dataset. An instance from each of the
action classes is shown. Top: StandUp, SitDown, GetOutCar, AnswerPhone; Bottom: Kiss, SitUp, HandShake, HugPerson. Notice that
the detector is not always reliable, e.g. only one person is detected in the top-right image (‘Answer phone’ action). However, since our
descriptors are based on normalized temporal histograms, it is often enough if sufficiently good responses are obtained over a subset of the
frames.

Action category HoG [19] HoF [19] Our best channel Chance

AnswerPhone 13.4% 24.6% 24.1% (ObjDist) 10.6%
GetOutCar 21.9% 14.9% 24.9% (ObjPres) 6.0%
HandShake 18.6% 12.1% 26.8% (ObjDist) 8.8%
HugPerson 29.1% 17.4% 20.2% (hog2x1t2) 10.1%

Kiss 52.0% 36.5% 47.3% (hog2x2t3) 23.5%
SitDown 29.1% 20.7% 37.2% (hog2x2t1) 13.8%
SitUp 6.5% 5.7% 25.7% (hog4x1t3) 4.6%

StandUp 45.4% 40.0% 50.8% (HoGHoF) 22.6%
Table 3. Comparison of per-class average precision on different features (Hollywood-1). The best channel means the feature giving the best
performance. Our results were obtained using standard model learning/fitting procedures to learn the hyperparameters that only operated
with the training set (no information from the test set was used, in any form).

Action category Baseline [19] Ours

Answerphone 32.1% (hof o2x2t1, hof3x1t3) 43.4% (ObjCount, hog4x1t3, ObjPres, ObjDist)
GetOutCar 41.5% (hof o2x2t1, hog3x1t1) 46.8% (ObjPres, HoGHoF, hog4x1t1)
HandShake 32.3% (hog3x1t1, hog o2x2t3) 44.1% (ObjDist, ObjCount)
HugPerson 40.6% (hog1t2, hog o2x2t2, hog3x1t2) 46.9% (HoGHoF)

Kiss 53.3% (hog1t1, hof1t1, hof o2x2t1) 57.3% (HoGHoF, hog1x1t1, hog2x2t3)
SitDown 38.6% (hog1t2, hog1t3) 46.2% (HoGHoF, hog3x3t1, hog1x1t1)
SitUp 18.2%(hog o2x2t1, hog o2x2t2, hog3x1t2) 38.4% (hog4x1t3, hog3x1t1)

StandUp 50.5%(hog1t1, hof1t2) 57.1% (HoGHoF, ObjDist)
Mean 38.4% 47.5%

Table 4. Comparison of feature separation power (Hollywood-1). We implement a similar greedy selection as generally described in [19]
on our feature set (see text). Notice that this is not a standard experiment because the test error is used to choose the combination of kernels.
It only shows the potential of various features.

of the model using Bayesian marginal likelihood maximiza-
tion procedures, and (3) a large scale study of a number of
state-of-the art descriptors on the KTH and the Hollywood
movie datasets. We show that the combination of descrip-
tors achieves results superior to the state-of-art methods in
two challenging datasets. A conclusion of our study is that
combining contextual object detectors and multiple kernel
selection techniques can be promising for the design of a

reliable action recognition systems.

Future work: We work on scaling MKGPC to large mul-
ticlass problems and on the design of contextual scene de-
scriptors that integrate robust, probabilistic object tracking,
as well as an extended set of object detectors. Good mar-
gins for improving the performance of the current systems
and for enhancing the diversity of existing datasets remain.
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Action Category Best channel [22] Our best channel

AnswerPhone 10.7% (SIFTHoGHoF) 15.57%(Hog3x3t1)
DriveCar 75.0% (SIFTHoGHoF) 87.01% (HoGHoF)

Eat 28.6% (SIFTHoGHoF) 50.93% (hog3x3t2)
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SitDown 31.6% (HoGHoF) 41.61% (HoGHoF)
SitUp 14.2% (SIFT) 7.19% (Hog1x1t3)

StandUp 35.0% (HoGHoF) 48.61% (HoGHoF)
Mean 35.1% 42.12%

Table 5. Comparison of per-class average precision on different
features (Hollywood-2), with the feature having the highest weight
in the kernel combination shown. The results are obtained using
standard model fitting procedures in order to learn the hyperpa-
rameters. We only operate on the training set; no information from
the test set was used, in any form.
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