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Summary

We consider the problem of estimating the parameters in a pairwise graphical model in which the 
distribution of each node, conditioned on the others, may have a different exponential family form. 
We identify restrictions on the parameter space required for the existence of a well-defined joint 
density, and establish the consistency of the neighbourhood selection approach for graph 
reconstruction in high dimensions when the true underlying graph is sparse. Motivated by our 
theoretical results, we investigate the selection of edges between nodes whose conditional 
distributions take different parametric forms, and show that efficiency can be gained if edge 
estimates obtained from the regressions of particular nodes are used to reconstruct the graph. 
These results are illustrated with examples of Gaussian, Bernoulli, Poisson and exponential 
distributions. Our theoretical findings are corroborated by evidence from simulation studies.
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1. Introduction

In this paper, we consider the task of learning the structure of an undirected graphical model 
that encodes pairwise conditional dependence relationships among random variables. 
Specifically, suppose that we have p random variables represented as nodes of the graph G = 
(V, E) with vertex set V = {1, …, p} and edge set E ⊆ V × V. An edge in the graph indicates 
a pair of random variables that are conditionally dependent given all the other variables. The 
problem of reconstructing the graph from a set of n observations has attracted much interest 
in recent years, especially when p > n and p(p − 1)/2 edges must be estimated from n 
observations.

Many authors have studied the estimation of high-dimensional undirected graphical models 
in the setting where the distribution of each node, conditioned on all the other nodes, has the 
same parametric form. In particular, Gaussian graphical models have been studied 
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extensively (see, e.g., Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007; Friedman et al., 
2008; Rothman et al., 2008;Wainwright & Jordan, 2008; Peng et al., 2009; Ravikumar et al., 
2011) and generalized to account for nonnormality and outliers (see, e.g., Miyamura & 
Kano, 2006; Finegold & Drton, 2011; Vogel & Fried, 2011; Sun & Li, 2012). Other authors 
have considered the setting in which all node-conditional distributions are Bernoulli (Lee et 
al., 2007; Höfling & Tibshirani, 2009; Ravikumar et al., 2010), multinomial (Jalali et al., 
2011), Poisson (Allen & Liu, 2012), or any univariate distribution in the exponential family 
(Yang et al., 2012). An extended version of Yang et al. (2012) is available as an unpublished 
technical report.

In this paper, we seek to estimate a graphical model in which the variables are of different 
types. Here, the type of a node refers to the parametric form of its distribution, conditioned 
on all the other nodes. For instance, the variables might include DNA nucleotides, taking 
binary values, and gene expression levels measured using RNA sequencing, taking 
nonnegative integer values. We could model the first set of nodes as Bernoulli, which means 
that each of their distributions, conditional on the other nodes, is Bernoulli; similarly, we 
could model the second set as Poisson. We assume that the type of each node is known a 
priori, and refer to this set-up as a mixed graphical model.

In the low-dimensional setting, Lauritzen (1996) studied a special case of the mixed 
graphical model, known as the conditional Gaussian model, in which each node is either 
Gaussian or Bernoulli. More recent work has focused on the high-dimensional setting. Lee 
& Hastie (2015) proposed two algorithms for reconstructing conditional Gaussian models 
using a group lasso penalty. In a 2013 unpublished technical report (arXiv:1304.2810), J. 
Cheng, E. Levina and J. Zhu modified this approach by using a weighted ℓ1 penalty.

A related line of research considers semiparametric or nonparametric approaches to 
estimating conditional dependence relationships (Liu et al., 2009; Xue & Zou, 2012; 
Fellinghauer et al., 2013; Voorman et al., 2014); of these methods, that of Fellinghauer et al. 
(2013) is specifically proposed for mixed graphical models. However, despite their 
flexibility, these nonparametric methods are often less efficient than their parametric 
counterparts, if the type of each node is known.

In this paper, we propose an estimator and develop theory for the parametric mixed 
graphical model, under a much more general setting than existing approaches (e.g., Lee & 
Hastie, 2015). We allow the conditional distribution of each node to belong to the 
exponential family. Unlike Yang et al. (2012), nodes may be of different types. For instance, 
within a single graph, some nodes may be Bernoulli, some Poisson, and some exponential.

In parallel efforts, Yang et al. (2014) recently presented general results on strong 
compatibility for mixed graphical models for which the node-conditional distributions 
belong to the exponential family and the graph contains only two types of nodes. We instead 
consider the setting where the graph can contain more than two types of nodes, and provide 
specific requirements for strong compatibility for some common distributions.
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2. A model for mixed data

2·1. Conditionally specified models for mixed data

We consider the pairwise graphical model (Wainwright et al., 2007), which takes the form

(1)

where x = (x1, …, xp)T and fts = 0 for {t, s} ∉ E. Here, fs(xs) is the node potential function 
and fst(xs, xt) is the edge potential function. We further simplify the pairwise interactions by 
assuming that fst(xs, xt) = θstxsxt = θtsxsxt, so that we can write the parameters associated 
with edges in a symmetric square matrix Θ = (θst)p×p in which the diagonal elements equal 
zero. The joint density can then be written as

(2)

where A(Θ, α) is the log-partition function, a function of Θ and α. Here α is a K × p matrix, 
where K is some known integer, of parameters involved in the node potential functions; that 
is, fs(xs) involves αs, the sth column of α. For {s, t} ∉ E, the edge potentials satisfy θst = θts 

= 0. We define the neighbours of the sth node by N(xs) = {t : θst = θts ≠ 0}.

In principle, given a parametric form for the joint density (2), we can estimate the 
conditional dependence relationships among the p variables, and hence the edges in the 
graph. But this approach requires calculation of the log-partition function A(Θ, α), which is 
often intractable. To overcome this difficulty, we instead use the framework of conditionally 
specified models (Besag, 1974): we specify the distribution of each node conditional on the 
others, and then combine the p conditional distributions to form a single graphical model. 
This approach has been widely used in estimating high-dimensional graphical models where 
all nodes are of the same type (Meinshausen & Bühlmann, 2006; Ravikumar et al., 2010; 
Allen & Liu, 2012; Yang et al., 2012). However, as we will discuss in § 2·2, a conditionally 
specified model may not correspond to a valid joint distribution.

Define x−s = (x1, …, xs−1, xs+1, …, xp)T. We consider conditional densities of the form

(3)

where ηs = ηs(Θs, x−s, αs) is a function of αs, x−s and Θs, with Θs being the sth column of Θ 

without the diagonal element. Suppose that , 
where each αks is a parameter, which could be zero, and Bks(xs) is a known function for k = 
3, …, K. Under this assumption, (3) belongs to the exponential family.
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The assumed form of fs(xs) is quite general. We now consider some special cases of (3) 
corresponding to commonly used distributions in the exponential family, for which fs(xs) 
takes a very simple form. In the following examples, we assume that ηs(Θs, x−s, αs) = α1s + 
∑t : t ≠ s θtsxt.

Example 1—The conditional density is Gaussian and α2s = −1:

(4)

where  and .

Example 2—The conditional density is Bernoulli and, instead of coding xs as {0, 1}, we 
code xs as {−1, 1}; this yields the conditional density

(5)

where fs(xs) = α1sxs and Ds(ηs) = log{exp(ηs) + exp(−ηs)}.

Example 3—The conditional density is Poisson:

(6)

where fs(xs) = α1sxs − log(xs!) and Ds(ηs) = exp(ηs).

Example 4—The conditional density is exponential:

(7)

where fs(xs) = α1sxs and Ds(ηs) = −log(−ηs).

These four examples have been studied in the context of conditionally specified graphical 
models in which all nodes are of the same type (Besag, 1974; Meinshausen & Bühlmann, 
2006; Ravikumar et al., 2010; Allen & Liu, 2012; Yang et al., 2012).

In what follows, we will consider the conditionally specified mixed graphical model, with 
conditional distributions given by (3), in which each node can be of a different type. This 
class of mixed graphical models is not closed under marginalization; for instance, given a 
graph composed of Gaussian and Bernoulli nodes, integrating out the Bernoulli nodes leads 
to a conditional density that is a mixture of Gaussians, which does not belong to the 
exponential family.

Chen et al. Page 4

Biometrika. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2·2. Compatibility of conditionally specified models

Under what circumstances does the conditionally specified model with node-conditional 
distributions given in (3) correspond to a well-defined joint distribution? We first adapt and 
restate a definition from Wang & Ip (2008), which applies to any conditional density.

Definition 1—A nonnegative function g is capable of generating a conditional density 
function p (y | x) if

Two conditional densities are said to be compatible if there exists a function g that is capable 
of generating both conditional densities. When g is a density, the conditional densities are 
said to be strongly compatible.

The following proposition relates Definition 1 to the conditional density in (3). Its proof, as 
well as the proofs of other statements in this paper, is given in the Supplementary Material.

Proposition 1—Let x = (x1, …, xp)T be a random vector. Suppose that for each xs, the 
conditional density takes the form (3). If θst = θts, then the conditional densities are 
compatible. Furthermore, any function g that is capable of generating the conditional 
densities is of the form

(8)

Under the conditions of Proposition 1, if we further assume that g in (8) is integrable, then 
by Definition 1 the conditional densities of the form (3) are strongly compatible. Proposition 
1 indicates that, provided (2) is a valid joint distribution, we can arrive at it via the 
conditional densities in (3). This justifies the conditionally specified modelling approach 
taken in this paper. Proposition 1 is closely related to § 4.3 in Besag (1974) and Proposition 
1 of Yang et al. (2012), with small modifications. More general theory is developed in Wang 
& Ip (2008).

We now return to the four examples (4)–(7). Lemma 1 summarizes the conditions under 
which a conditionally specified model with nondegenerate conditional distributions of the 
form (4)–(7) leads to a valid joint distribution.

Lemma 1—If θst = θts, then the subset of conditions with a dagger (†) in Table 1 is 
necessary and sufficient for the conditional densities in (4)–(7) to be compatible. Moreover, 
the complete set of conditions in Table 1 is necessary and sufficient for the conditional 
densities in (4)–(7) to be strongly compatible.
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To simplify the presentation of the conditions for the Gaussian nodes, in Table 1 it is 
assumed that J is the index set of the Gaussian nodes. Without loss of generality, we further 
assume that the nodes are ordered such that J = {1, …, m}, and define

(9)

Table 1 displays the set of restrictions on the parameter space that must hold in order for the 
conditional densities in (4)–(7) to be compatible or strongly compatible. The diagonal 
entries of this table were previously studied in Besag (1974). In general, strong compatibility 
imposes more restrictions on the parameter space than does compatibility. For instance, 
compatibility does not place any restrictions on the edges between two Poisson nodes, but 
for strong compatibility the edge potentials must be negative. Compatibility and strong 
compatibility even restrict the relationships that can be modelled using the conditional 
densities (4)–(7); for instance, no edges are possible between Gaussian and exponential 
nodes, or between Gaussian and Poisson nodes.

To summarize, given conditional densities of the form (4)–(7), existence of a joint density 
imposes substantial constraints on the parameter space, and thus limits the flexibility of the 
corresponding graph. However, we will see in § 5 that it is possible to consistently estimate 
the structure of a graph even when the requirements for compatibility or strong compatibility 
are violated, i.e., even in the absence of a joint density.

While Table 1 examines only conditionally specified models composed of the conditional 
densities in (4)–(7), the estimator proposed in § 3 and the theory developed in § § 4 and 5 
apply to other types of conditional densities of the form (3).

3. Estimation via neighbourhood selection

3·1. Estimation

We now present a neighbourhood selection approach for recovering the structure of a mixed 
graphical model, by maximizing penalized conditional likelihoods node by node. A similar 
approach has been studied when all nodes in the graph are of the same type (Meinshausen & 
Bühlmann, 2006; Ravikumar et al., 2010; Allen & Liu, 2012, Yang et al., 2012).

Recall from § 2·1 that . We now simplify the 
problem by assuming that the αks are known, and possibly zero, for k ≥ 2. Let X denote an n 
× p data matrix, with the i th row given by x(i). From now on, we will use an asterisk to 

indicate the true parameter values. We estimate  and , the parameters for the sth node, 
as
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(10)

where ; recall that the conditional density 

 was defined in (3). Finally, we define the estimated neighbourhood of xs to be 
N̂(xs) = {t : θ̂ts ≠ 0}, where Θŝ solves (10) and θ̂ts is the element corresponding to an edge 
with the tth node.

In practice, to avoid a situation where variables of different types are on different scales, we 
may wish to modify (10) in order to allow a different weight for the ℓ1 penalty on each 
coefficient. We define a weight vector w equal to the empirical standard errors of the 
corresponding variables: w =(σ̂

1, …, σ̂s−1, σ̂s+1, …, σ̂p)T. Then (10) can be replaced with

(11)

The analysis in § § 4 and 5 uses (10) for simplicity, but could be generalized to (11) with 
additional bookkeeping. Both (10) and (11) can be easily solved (see, e.g., Friedman et al., 
2010).

In the joint density (2), the parameter matrix Θ is symmetric, i.e., θst = θts, but the 
neighbourhood selection method does not guarantee symmetric estimates; for instance, it 
could happen that θ̂st = 0 but θt̂s = ≠ 0. Our analysis in § 4·2 shows that we can exploit the 
asymmetry in θ̂st and θ̂ts when xs and xt are of different types in order to obtain more 
efficient edge estimates.

3·2. Tuning

In order to select the value of the tuning parameter λn in (10), we use the Bayesian 
information criterion (Zou et al., 2007; Peng et al., 2009; Voorman et al., 2014), which takes 
the form

where ‖Θ̂
s‖0 is the number of nonzero elements in Θŝ for a given value of λn. We allow a 

different value of λn for each node type. For instance, to select λn for the Poisson nodes, we 
choose the value of λn such that BICs(λn), summed over the Poisson nodes, is minimized. 
We evaluate the performance of this method for tuning parameter selection in § 6·3.

4. Recovery with strongly compatible conditional distributions

4·1. Neighbourhood recovery

In this subsection we show that if the conditional distributions in (3) are strongly 
compatible, as they will be under the conditions discussed in § 2·2, then under some 
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additional assumptions, the true neighbourhood of each node is consistently selected using 
the neighbourhood selection approach proposed in § 3·1. Here we rely heavily on results 
from Yang et al. (2012), who consider a related problem in which all nodes are of the same 
type.

In the following discussion, we assume p > n for simplicity. For any s, let Δs denote the set 

of indices for elements of  that correspond to non-neighbours of the sth node, and 

let  be the negative Hessian of ℓs(Θs, α1s; X) with respect to 

, evaluated at the true values of the parameters. Below we suppress the subscript s 
for simplicity, and we remind the reader that all quantities are related to the conditional 
density of the sth node. We express Q* in blocks as

Assumption 1—There exists a positive number a such that

Assumption 1 limits the association between neighbours and non-neighbours of the sth 
node: if the association is too high, then it is not possible to select the correct 
neighbourhood. This type of assumption is standard for variable selection consistency of ℓ1-
penalized estimators (see, e.g., Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006; 
Wainwright, 2009; Ravikumar et al., 2010, 2011; Yang et al., 2012; Lee et al., 2013).

Assumption 2—There exists Λ1 > 0 such that the smallest eigenvalue of 

, is greater than or equal to Λ1. Also, there exists Λ2 < ∞ such that the 

largest eigenvalue of , is less than or equal 

to Λ2, where .

The lower bound in Assumption 2 is needed to prevent singularity among the true 
neighbours, which would prevent neighbourhood recovery. The bound on the largest 
eigenvalue of the sample covariance matrix is needed to prevent a situation where most of 
the variance in the data is due to a single feature. Similar assumptions were made in 
Meinshausen & Bühlmann (2006), Zhao & Yu (2006), Wainwright (2009), Ravikumar et al. 
(2010) and Yang et al. (2012).

Assumption 3—The log-partition function D(·) of the conditional density p(xs | x−s) is 
third-order differentiable, and there exist κ2 and κ3 such that |D″(y)| ≤ κ2 and |D‴(y)| ≤ κ3 

for y ∈ {y : y ∈ , |y| ≤ Mδ1 log p}, where  is the support of D(·).
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Remark 1: The two quantities κ2 and κ3 in Assumption 3 are functions of p. The quantity 
δ1 is a constant to be chosen in Proposition 2. The constant M is a sufficiently large constant 
that plays a role in Assumption 6.

Assumption 3 controls the smoothness of the log-partition function D(·) for conditional 
densities of the form (3). Recall from § 2·1 that the log-partition function of the node xs is 
D(ηs), where ηs equals α1s + ∑t ≠ s θtsxt. To apply Assumption 3 to D(ηs), we will need to 
bound ∑t ≠ s θtsxt, so that |ηs| ≤ Mδ1 log(p).

In order to obtain such a bound, we need another assumption.

Assumption 4—For t = 1, …, p:

i. |E(xt)| ≤ κm;

ii. ;

iii.

.

Assumption 4 controls the moments of each node, as well as the local smoothness of the log-
partition function A in (2). Given Assumption 4, the following propositions on the marginal 
behaviour of random variables hold; see Propositions 3 and 4 in Yang et al. (2012).

Proposition 2—Define the event

Then, assuming p > n, pr(ξ1) ≥ 1 − c1 p−δ1+2 where c1 = exp(κm + κh/2).

Proposition 3—Define the event

where δ2 ≥ 1. If δ2 ≤ min(2κυ/3, κh + κυ) and , then 

 where .

We now present three additional assumptions that relate to the node-wise regression in (10).

Assumption 5—The minimum of the edge potentials related to node xs, mint∈N(xs)|θts|, is 
larger than 10(d + 1)1/2λn/Λ1, where d is the number of neighbours of xs.

Assumption 6—The tuning parameter λn is in the range
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(12)

Remark 2: Of the three quantities in the upper bound for λn,  is 
usually the smallest because of the log p in the denominator.

Assumption 7—The sample size n is no smaller than ; also, the range of 
feasible λn in Assumption 6 is nonempty, i.e.,

(13)

Assumptions 5, 6 and 7 specify the minimum edge potential, the range of the tuning 
parameter and the minimum sample size required for Theorem 1 to hold, i.e., for our 
neighbourhood selection approach (10) to achieve model selection consistency. Similar 
assumptions are made in related work (e.g., Yang et al., 2012).

Remark 3: Suppose that n = Ω{(d + 1)2 log3+ε(p)} for ε > 0, λn = c{log(p)/n}1/2 for some 
constant c, and κ2 and κ3 are O(1). Then Assumptions 6 and 7 are satisfied asymptotically 
as n and p tend to infinity. Similar rates appear in Meinshausen & Bühlmann (2006), 
Ravikumar et al. (2010) and Yang et al. (2012).

Theorem 1—Suppose that the joint density (2) exists and that Assumptions 1–7 hold for 

the sth node. Then, with probability at least , 
for some constants c1, c2, c3, δ2 ≤ min(2κυ/3, κh + κυ) and δ3 = 1/(κ2δ2), the estimator from 
(10) recovers the true neighbourhood of xs exactly, so that N(̂xs) = N(xs).

Theorem 1 shows that the probability of successful recovery converges to unity 
exponentially fast with the sample size n. We note that the number of neighbours d appears 
in Assumptions 5–7. As d increases, the minimum edge potential for each neighbour 
increases, the upper range for λn decreases, and the required sample size increases. 
Therefore, we need the true graph G to be sparse, d = o(n), in order for Theorem 1 to be 
meaningful.

The quantities δ2κ2 and δ1κ3 appear in the upper bound for λn, in (12), and the minimum 
sample size, (13). The fact that κ2 and δ2 appear together in a product implies that we can 
relax the restriction on δ2 if κ2 is small. The same applies to δ1 and κ3.
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For certain types of nodes, Theorem 1 holds with a less stringent set of assumptions. For a 
Gaussian node, the second- and higher-order derivatives of D(·) are always bounded, i.e., κ2 

= 1 and κ3 = 0. This has profound effects on the theory, as illustrated in Corollary 1.

Corollary 1—Suppose that the joint density (2) exists and that Assumptions 1–5 hold for a 
Gaussian node xs. If

then with probability at least , for some constants c2, c3, δ2 

≤ min(2κυ/3, κh + κυ) and δ3 = δ2, the estimator from (10) recovers the true neighbourhood 
of xs exactly, so that N ̂ (xs) = N(xs).

4·2. Combining neighbourhoods to estimate the edge set

The neighbourhood selection approach may give asymmetric estimates, in the sense that t ∈ 
N̂(xs) but s ∉ N ̂(xt). To deal with this discrepancy, two strategies for estimating a single 
edge set were proposed by Meinshausen & Bühlmann (2006) and adapted in other work:

When the sth and tth nodes are of the same type, there is no clear reason to prefer the edge 
estimate from N̂ (xs) over the one from N̂ (xt), and so the choice between the intersection 
rule, Êand, and the union rule, Êor, is not crucial (Meinshausen & Bühlmann, 2006).

When the sth and tth nodes are of different types, however, the choice of neighbourhood 
matters. We now take a closer look at this situation with examples of Gaussian, Bernoulli, 
exponential and Poisson nodes as in (4)–(7). The quantities c1, c2 and c3 in Theorem 1 are 
the same regardless of the node type, while the values of κ2 and κ3 depend on the type of 
node being regressed on the others in (10). We fix B1 = κ3δ1 for Bernoulli, Poisson and 
exponential nodes. For a Gaussian node, this quantity will always equal zero, since 

 and hence D‴(ηs) = 0 = κ3. Furthermore, we fix B2 = 1/δ3 = δ2κ2 

for all four types of nodes. With B1 and B2 fixed, the minimum sample size and the feasible 
range of the tuning parameter for Bernoulli, Poisson and exponential nodes are exactly the 
same, as these quantities involve only B1 and B2. In particular, from Assumption 6, the 

range of feasible λn is , and from 
Assumption 7, the minimum sample size is 

. These bounds are more restrictive than 
the corresponding bounds for Gaussian nodes in Corollary 1. We now derive a lower bound 
on the probability of successful neighbourhood recovery for each node type.

Chen et al. Page 11

Biometrika. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Example 5—If xs is a Gaussian node, then the log-partition function is 

. It follows that D″ (ηs) = 1 = κ2. Thus δ2 = B2. By Corollary 1, a 
lower bound for the probability of successful neighbourhood recovery is

Example 6—If xs is a Bernoulli node, then the log-partition function is D(ηs) = 
log{exp(−ηs) + exp(ηs)}, so that |D″(ηs)| ≤ 1 and |D‴(ηs)| ≤ 2. Consequently, δ2 = B2 and 
δ1 = B1/κ3 = B1/2. By Theorem 1, a lower bound for the probability of successful 
neighbourhood recovery is

(14)

Example 7—If xs is a Poisson node, then the log-partition function is D(ηs) = exp(ηs), so 
D″(ηs) = D‴(ηs) = exp(ηs). To bound D″(ηs) and D‴(ηs), we need to bound exp(ηs). 
Recall from Table 1 that strong compatibility requires that θtsxt ≤ 0 when xt is Gaussian, 
Poisson or exponential. Therefore, an upper bound for exp(ηs) is

(15)

with I being the set of Bernoulli nodes. Therefore κ2 = κ3 = bP, and so δ2 = B2/bP and δ1 = 
B1/bP. By Theorem 1, a lower bound on the probability of successful neighbourhood 
recovery is

(16)

Example 8—If xs is an exponential node, then the log-partition function is D(ηs) = 

−log(−ηs), so  and . Furthermore,

(17)

with I being the set of Bernoulli nodes. In (17), the first inequality follows from the 
requirement for compatibility from Table 1 that θtsxt ≤ 0 when xt is Gaussian, Poisson or 
exponential; the second inequality follows from the fact that Bernoulli nodes are coded as +1 
and −1; and the third inequality follows from the Bernoulli-exponential entry in Table 1. 
Therefore,
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(18)

As a result, |D″(ηs)| and |D‴(ηs)| are bounded by  and , respectively. For 

fixed B1 and B2, we have  and . By Theorem 1, a lower bound for the 
probability of successful neighbourhood recovery is

(19)

Examples 5–8 reveal that the neighbourhood of a Gaussian node is easier to recover than the 
neighbourhoods of the other three types of nodes: the former requires a smaller minimum 
sample size when p is large, allows for a wider range of feasible tuning parameters, and has 
in general a higher probability of success. As a result, the neighbourhood of the Gaussian 
node should be used when estimating an edge between a Gaussian node and a non-Gaussian 
node.

Which neighbourhood should we use to estimate an edge between two non-Gaussian nodes? 
There are no clear winners: while (14) can be evaluated given knowledge of c1, c2 and c3, 
(16) and (19) also require knowledge of the unknown quantities bE and bP, which are 
functions of unknown quantities Θs and α1s in (15) and (18). One possibility is to substitute 
a consistent estimator for these parameters (see, e.g., Bunea, 2008; van de Geer, 2008) to 
obtain a consistent estimator for bP or bE. This leads to the following lemma.

LEMMA 2—Suppose that Θs̃ and α̃
1s are consistent estimators of the true parameters in the 

conditional densities (6) and (7). Let I be the index set of the Bernoulli nodes.

i. If xs is a Poisson node and b̃P = exp(α̃
1s + ∑t∈I |θ̃ts|), then

(20)

is a consistent estimator of a lower bound for pr{N̂(xs) = N(xs)}.

ii. If xs is an exponential node and bẼ = |α1s| − ∑t∈I |θ̃ts|, then

(21)

is a consistent estimator of a lower bound for pr{N̂(xs) = N(xs)}.

Therefore, by substituting consistent estimators of Θs and α1s into (15) or (18), we can 
reconstruct an edge by choosing the estimate with the highest probability of correct recovery 
according to (14), (20) and (21). The rules are summarized in Table 2. The results in this 
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section illustrate a worst-case scenario for recovery of each neighbourhood, in that Theorem 
1 provides a lower bound for the probability of successful neighbourhood recovery.

5. Recovery in partially specified models

In § 4, we showed that the neighbourhood selection approach of § 3·1 can recover the true 
graph when each node’s conditional distribution is of the form (3), provided that the 
conditions for strong compatibility are satisfied. In this section, we consider a partially 
specified model in which some of the nodes are assumed to have conditional distributions of 
the form (3), and we make no assumption on the conditional distributions of the remaining 
nodes. We will show that in this setting, neighbourhoods of the nodes with conditional 
distributions of the form (3) can still be recovered.

Here the neighbourhood of xs is defined based on its conditional density, (3), as N0(xs) = {t : 
θts ≠ 0}. Assumption 4 in § 4·1 is inappropriate since we no longer assume that all p nodes 
have conditional densities of the form (3), and consequently we are not assuming a 
particular form for the joint density. Therefore, we make the following assumption to replace 
Propositions 2 and 3.

Assumption 8

Let (i) pr(ξ1) ≥ 1 − c1p−δ1+2; (ii) .

Theorem 2

Suppose that the sth node has conditional density (3) and that Assumptions 1–3 and 5–8 

hold. Then, with probability at least , for some 
constants c1, c2, c3 and δ3 = 1/(κ2δ2), the estimator from (10) recovers the true 
neighbourhood of xs exactly, so that N ̂(xs) = N0(xs).

The proof of Theorem 2 is similar to that of Theorem 1, and is thus omitted. Theorem 2 
indicates that our neighbourhood selection approach can recover the neighbourhood of any 
node for which the conditional density is of the form (3), provided that Assumption 8 holds. 
This means that in order to recover an edge between two nodes using our neighbourhood 
selection approach, it suffices for one of the two nodes to have conditional density of the 
form (3). Consequently, we can model relationships that are far more flexible than those 
outlined in Table 1, such as an edge between a Poisson node and a node that takes values on 
the whole real line.

Although Theorem 2 allows us to go beyond some of the restrictions in Table 1, it is still 
restricted in that it only guarantees recovery of an edge between two nodes for which at least 
one of the node-conditional densities is exactly of the form (3). In future work, we could 
generalize Theorem 2 to the case where (3) is simply an approximation to the true node-
conditional distribution.
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6. Numerical studies

6·1. Data generation

We consider mixed graphical models with two types of nodes and m = p/2 nodes per type, 
for Gaussian-Bernoulli and Poisson-Bernoulli models. We order the nodes so that the 
Gaussian or Poisson nodes precede the Bernoulli nodes.

For both models, we construct a graph in which the j th node (j = 1, …, m) is connected with 
the adjacent nodes of the same type, as well as the (m + j)th node of the other type, as shown 
in Fig. 1. This encodes the edge set E. For (i, j) ∈ E and i < j, we generate the edge potentials 
θij and θji as

(22)

We set θij = θji = 0 if (i, j) ∉ E. Additional steps to ensure strong compatibility of the 
conditional distributions are discussed in the Supplementary Material. The values of a and b 
in (22), as well as the parameters of fs(xs) in the conditional density (3), are specified in § § 
6·2–6·4.

To sample from the joint density p(x) in (2) without calculating the log-partition function A, 
we employ a Gibbs sampler as in Lee & Hastie (2015). Briefly, we iterate through the nodes 
and sample from each node’s conditional distribution. To ensure independence, after a burn-
in period of 3000 iterations, we select samples from the chain which are 500 iterations apart 
from each other.

6·2. Probability of successful neighbourhood recovery

In § 4·1 we saw that the probability of successful neighbourhood recovery for 
neighbourhood selection converges to unity exponentially fast with the sample size, and in § 
4·2 we saw that the estimates from the Gaussian nodes are superior to those from the 
Bernoulli nodes, in the sense that a smaller sample size is needed in order to achieve a given 
probability of successful recovery. We now verify these findings empirically. Here, 
successful neighbourhood recovery is defined to mean that the estimated and true edge sets 
of a graph or a subgraph are identical.

We set a = b = 0·3 in (22) so that Assumption 5 is satisfied, and generate one Gaussian-
Bernoulli graph for each of p = 60, 120 and 240. We set α1s = 0 and α2s = −1 in (4) for 
Gaussian nodes, and set α1s = 0 in (5) for Bernoulli nodes. For each graph, 100 independent 
datasets are drawn from the Gibbs sampler. We perform neighbourhood selection using the 
estimator from (11), with the tuning parameter λn set to be a constant c times {log(p)/n}1/2, 
so that it is on the scale required by Assumption 6, as illustrated in Remark 3.

In order to achieve successful neighbourhood recovery as the sample size increases, the 
value of c must be in a range matching the requirement of Assumption 6. We explored a 
range of values of c, and in Fig. 2 we show the probability of successful neighbourhood 
recovery for c = 2·6. For ease of viewing, we display separate empirical probability curves 
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for the Gaussian-Gaussian, Bernoulli-Bernoulli and Bernoulli-Gaussian subgraphs. Figs. 
2(a) and (b) show estimates obtained by regressing the Gaussian nodes onto the others, 
while panels (c) and (d) are the estimates from regressing the Bernoulli nodes onto the 
others. We see that the probability of successful recovery increases to unity once the scaled 
sample size exceeds the threshold required in Assumption 7 and Corollary 1. Furthermore, 
Figs. 2(b) and (c) agree with the conclusions of § 4·2: neighbourhood recovery using 
regression of a Gaussian node onto the others requires fewer samples than does recovery 
using regression of a Bernoulli node onto the others.

6·3. Comparison with competing approaches

In this section, we compare the proposed method with alternative approaches on a Gaussian-
Bernoulli graph. We limit the number of nodes to p = 40 in order to facilitate comparison 
with the computationally intensive approach of Lee & Hastie (2015). We generate 100 
random graphs with a = 0·3 and b = 0·6 in (22), and we set α1s = 0 and α2s = −1 in (4) for 
Gaussian nodes and α1s = 0 in (5) for Bernoulli nodes. Twenty independent samples of n = 
200 observations are generated from each graph. We evaluate the performance of each 
approach by computing the number of correctly estimated edges as a function of the number 
of estimated edges in the graph. Results are averaged over 20 datasets from each of 100 
random graphs, for a total of 2000 simulated datasets.

Seven approaches are compared in this study: (i) our proposed method for neighbourhood 
selection in the mixed graphical model; (ii) penalized maximum likelihood estimation in the 
mixed graphical model (Lee et al., 2013); (iii) weighted ℓ1-penalized regression in the mixed 
graphical model, as proposed by Cheng et al. in their unpublished technical report (arXiv:
1304.2810); (iv) graphical random forests (Fellinghauer et al., 2013); (v) neighbourhood 
selection in the Gaussian graphical model (Meinshausen & Bühlmann, 2006), where we use 
an ℓ1-penalized linear regression to estimate the neighbourhoods of all nodes; (vi) the 
graphical lasso (Friedman et al., 2008), which treats all features as Gaussian; and (vii) 
neighbourhood selection in the Ising model (Ravikumar et al., 2010), where we use ℓ1-
penalized logistic regression on all nodes after dichotomizing the Gaussian nodes by their 
means. The first four methods are designed for mixed graphical models, with the methods of 
Lee & Hastie (2015) and Cheng et al. proposed specifically for Gaussian-Bernoulli 
networks. In contrast, the last three methods ignore the presence of mixed node types. For 
methods based on neighbourhood selection, we use the union rule of Meinshausen & 
Bühlmann (2006) to reconstruct the edge set from the estimated neighbourhoods, with one 
exception: to estimate the Gaussian-Bernoulli edges for our proposed method, we use the 
estimates from the Gaussian nodes, as suggested by the theory developed in § 4·2.

Owing to its high computational cost, th emethod of Lee & Hastie (2015) is run on 250 
datasets from 50 graphs rather than 2000 datasets from 100 graphs.

Figure 3(a) displays results for Bernoulli-Bernoulli and Gaussian-Gaussian edges, while Fig. 
3(b) displays results for edges between Gaussian and Bernoulli nodes.

The curves in Fig. 3 correspond to the estimated graphs as the tuning parameter for each 
method is varied. Recall from § 3·2 that our proposed method involves a tuning parameter 
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 for the ℓ1-penalized linear regressions of the Gaussian nodes onto the others, as well as a 

tuning parameter  for the ℓ1-penalized logistic regressions of the Bernoulli nodes onto the 
others. The triangle in each panel of Fig. 3 shows the average performance of our proposed 

method with the tuning parameters  and  selected using BIC summed over the 
Bernoulli and Gaussian nodes, respectively, as described in § 3·2. This choice yields good 
precision (52%) and recall (95%) for edge recovery in the graph. To obtain the curves in Fig. 

3, we set  and varied the value of .

In general, our proposed method outperforms the competitors, which is expected since it 
assumes the correct model. Although the approaches of Lee & Hastie (2015) and Cheng et 
al. are intended for a Gaussian-Bernoulli graph, they attempt to capture more complicated 
relationships than in (2), and so they perform worse than our method. On the other hand, the 
graphical random forest of Fellinghauer et al. (2013) performs reasonably well, despite the 
fact that it is a nonparametric approach. Neighbourhood selection in the Gaussian graphical 
model performs closest to the proposed method in terms of edge selection. The Ising model 
suffers substantially due to dichotomization of the Gaussian variables. The graphical lasso 
algorithm experiences serious violations to its multivariate Gaussian assumption, leading to 
poor performance.

6·4. Application of selection rules to mixed graphical models

In § 6·3, in keeping with the results of § 4·2, we always used the estimates from the 
Gaussian nodes in estimating an edge between a Bernoulli node and a Gaussian node. Here 
we consider a mixed graphical model of Poisson and Bernoulli nodes. In this case, the 
selection rules in § 4·2 are more complex, and whether it is better to use a Poisson node or a 
Bernoulli node to estimate a Bernoulli-Poisson edge depends on the true parameter values in 
Table 2.

We generate a graph with p = 80 nodes as follows: we take a = 0·8 and b = 1 in (22), α1s = 
−3 for s = 1, …, 20 and α1s = 0 for s = 21, …, 40 for the Poisson nodes, and α1s = 0 for the 
Bernoulli nodes. This guarantees that bP in (15) is smaller than 1 for the first half of the 
Poisson nodes, and is larger than 2 for the second half, due to the structure of the graph in 
Fig. 1. In order to estimate a Bernoulli-Poisson edge, we will use the estimates from the 
Poisson nodes if bP < 1 and the estimates from the Bernoulli nodes if bP > 2, according to 
the selection rules in Table 2.

We compare the performances of: our proposed approach using the selection rules in Table 
2, with the true or estimated parameters; our proposed approach using the union and 
intersection rules presented in § 4·2; and the graphical random forest method of Fellinghauer 
et al. (2013). To prevent overshrinkage of the parameters for estimation of bP in (15), we set 
λn in (10) to equal 0·5 times the value from the Bayesian information criterion for each node 
type. We present only the results for Poisson-Bernoulli edges, as the selection rules in § 4·2 
apply to edges between nodes of different types.

The results are shown in Fig. 4, averaged over 20 samples from each of 25 random graphs. 
The selection rules proposed in § 4·2 clearly outperform the commonly used union and 
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intersection rules. The curve for the selection rule from § 4·2 using the estimated parameter 
values is almost identical to the curve using the true parameter values, which indicates that 
in this case the quantity bP is accurately estimated for each node. The graphical random 
forest approach of Fellinghauer et al. (2013) slightly outperforms our proposed method 
when few edges are estimated, but performs worse when the estimated graph includes more 
edges. This may indicate that as the graph becomes less sparse, the nonparametric graphical 
random forest approach suffers from insufficient sample size.

7. Discussion

In § 2·2 we saw that a stringent set of restrictions is required for compatibility or strong 
compatibility of the node-conditional distributions given in (4)–(7). These restrictions limit 
the theoretical flexibility of the conditionally specified mixed graphical model, especially 
when modelling unbounded variables. It is possible that by truncating unbounded variables, 
we may be able to circumvent some of these restrictions. Furthermore, the model (2) 
assumes pairwise interactions in the form of xsxt, which can be seen as a second-order 
approximation of the true edge potentials in (1). We can relax this assumption by fitting 
nonlinear edge potentials using semiparametric penalized regressions, as in Voorman et al. 
(2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The graph used to generate the data in § § 6·2–6·4, consisting of m = p/2 Gaussian or 
Poisson nodes, shown as circles, and m = p/2 Bernoulli nodes, shown as rectangles.
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Fig. 2. 
Probability of successful neighbourhood recovery plotted as a function of scaled sample size 
n/{3 log(p)}, for the set-up of § 6·2. The curves are empirical probabilities of successful 
neighbourhood recovery for graphs with 60 ( ), 120 ( ) or 240 nodes ( ), averaged 
over 100 independent datasets. The tuning parameter is set to 2·6{log(p)/n}1/2. The title 
above each panel indicates the subgraph for which the recovery probability is displayed, and 
the first word in the title indicates the node type that was regressed in order to obtain the 
subgraph estimate. For instance, panel (b) displays probability curves for edges between 
Gaussian and Bernoulli nodes that are estimated from the ℓ1-penalized linear regression of 
Gaussian nodes; panel (c) displays the same quantity, but estimated via an ℓ1-penalized 
logistic regression of the Bernoulli nodes.
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Fig. 3. 
Simulation results for the Gaussian-Bernoulli graph, as described in § 6·3. The number of 
correctly estimated edges is displayed as a function of the number of estimated edges, for a 
range of tuning parameter values in a graph with p = 40 and n = 200: (a) edges between 
nodes of the same type, Bernoulli-Bernoulli or Gaussian-Gaussian; (b) edges between 
Gaussian and Bernoulli nodes. In each panel the different curves represent the methods of 
the present paper (solid), Lee & Hastie (2015) (short-dashed), Cheng et al. (long-dashed), 
Fellinghauer et al. (2013) (dot-dashed), neighbourhood selection in the Gaussian graphical 
model (grey long-dashed), neighbourhood selection in the Ising model (grey short-dashed), 
and the graphical lasso (grey dot-dashed). The black triangle shows the average performance 
of our proposed method with tuning parameter selected by the Bayesian information 
criterion (see § 3·2).
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Fig. 4. 
Summary of the simulation results for the Poisson-Bernoulli graph, as described in § 6·4. 
The number of correctly estimated edges is displayed as a function of the number of 
estimated edges, for a range of tuning parameter values in a graph with p = 80 nodes from n 
= 200 observations. The different curves represent the selection rule from § 4·2 with the true 
parameters (grey solid), the selection rule from § 4·2 with estimated parameters (short-
dashed), the union rule (dot-dashed), the intersection rule (dotted), and the graphical random 
forest method of Fellinghauer et al. (2013) (long-dashed).
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Table 1

Restrictions on the parameter space required for compatibility or strong compatibility of the conditional 
densities in (4)–(7)

Gaussian Poisson Exponential Bernoulli

Gaussian ΘJJ ≺ 0 θts = 0 θts = 0† θts ∈ ℝ†

Poisson θts ≤ 0 θts ≤ 0† θts ∈ ℝ†

Exponential θts ≤ 0†

Bernoulli θts ∈ ℝ†

Each column specifies the type of the sth node, and each row specifies the type of the tth node; conditions marked with a dagger, †, are necessary 
and sufficient for the conditional densities in (4)–(7) to be compatible, and the complete set of conditions is necessary and sufficient for the 
conditional densities to be strongly compatible. For compatibility to hold for a Gaussian node xs, α2s < 0 is also required. Here ΘJJ is as defined in 

(9), and I denotes the set of Bernoulli nodes.
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Table 2

Neighbourhood to use in estimating an edge between two non-Gaussian nodes of different types; when the 
conditions in this table are not met, there is no clear preference in terms of which neighbourhood to use

Pair of nodes Selection rule

Poisson & exponential

Choose Poisson if  and . Choose exponential if

   and .

Poisson & Bernoulli Choose Poisson if b̃P < 1. Choose Bernoulli if b̃P > 2.

Exponential & Bernoulli Choose exponential if b̃E ≥ 1. Choose Bernoulli if b̃E < 1.
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