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The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do

not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to

show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very

rare alleles on trait variance.We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq

data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to

rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal

rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants

make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human

evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature.

[Supplemental material is available for this article.]

The role that rare variants play in shaping complex traits has been

hotly debated (Pritchard 2001; Reich and Lander 2001; Pritchard

and Cox 2002; Schork et al. 2009). Although studies of complex

phenotypes have often suggested that most genetic variance is at-

tributable to common variants of weak effect (Yang et al. 2010;

Lohmueller et al. 2013; Gaugler et al. 2014; Igartua et al. 2015), re-

centwork has implicated rare variants as a non-negligible source of

variance for traits such as height (Yang et al. 2015) and prostate

cancer (Mancuso et al. 2015). With many large-scale sequencing

studies underway in an effort to discover the heritable basis of

complex traits, it is imperative that geneticists be able to robustly

identify association signals in this deluge of noisy data (Maher

et al. 2012).

Unfortunately, statistical power to detect rare causal variants

with single-marker tests of association is very low. Several rare var-

iant association tests (RVATs) have therefore been developed that

pool variants to boost performance (Morgenthaler and Thilly

2007; Li and Leal 2008; Madsen and Browning 2009; Hoffmann

et al. 2010; Morris and Zeggini 2010; Neale et al. 2011; Wu et al.

2011; Lee et al. 2012a,b). However, few of these studies explicitly

modeled the evolutionary forces that shape patterns of genetic var-

iation when assessing statistical performance (King et al. 2010;

Price et al. 2010; Thornton et al. 2013; Zuk et al. 2014; Uricchio

et al. 2015). Natural selection is particularly relevant to rare variant

associations, because rare variants can only explain a large portion

of population variance if they have much larger effect sizes than

common variants, which is most easily explained by the action

of purifying selection (Eyre-Walker 2010).

Indeed, it is nowwell appreciated that natural selection (Eyre-

Walker et al. 2006; Boyko et al. 2008; Lohmueller et al. 2011) and

demographic forces (Auton et al. 2009; Gravel et al. 2011; Bhaskar

et al. 2015) strongly impact patterns of human genetic variation

genome-wide. It has also been shown that genetic architecture

(Gazave et al. 2013; Simons et al. 2014), the performance of sin-

gle-marker tests of association (Lohmueller 2014a,b), and selection

scans (Teshima et al. 2006) are also sensitive to nonequilibrium

evolutionary forces. However, these studies have focused on step-

wise population growth (rather than state-of-the-art models of ex-

plosive growth) (Lohmueller 2014a,b), investigated simplified

selection models (rather than models inferred from human

polymorphism data) (Simons et al. 2014), or have only indirectly

considered the impact on complex traits (Gazave et al. 2013).

Some debate over the parameterization of complex trait models

has resulted in a range of conclusions about the impact of evolu-

tionary events on trait variance and the relative importance of

rare alleles to complex traits (Lohmueller 2014b; Simons et al.

2014); and although recent work has argued that demogra-

phic events have had little effect on deleterious load in humans

(Simons et al. 2014; Do et al. 2015), it is less clear howdemography

affects the genetic variance of traits under selection. Although

deleterious load is of population-genetic interest, genetic archi-

tecture is more relevant to association studies, because power is

6Present address: Department of Biology, Stanford University,
Stanford, CA 94305, USA
Corresponding authors: uricchio@stanford.edu, ryan.hernandez@
ucsf.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.202440.115.
Freely available online through the Genome Research Open Access option.

© 2016 Uricchio et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution-NonCommercial 4.0 Interna-
tional), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Research

26:863–873 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/16; www.genome.org Genome Research 863
www.genome.org

mailto:uricchio@stanford.edu
mailto:uricchio@stanford.edu
mailto:ryan.hernandez@ucsf.edu
mailto:ryan.hernandez@ucsf.edu
mailto:ryan.hernandez@ucsf.edu
mailto:ryan.hernandez@ucsf.edu
http://www.genome.org/cgi/doi/10.1101/gr.202440.115
http://www.genome.org/cgi/doi/10.1101/gr.202440.115
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


dependent on the joint distribution of effect sizes and allele fre-

quencies and not only the mean burden of deleterious alleles.

Here, we propose a novel model of complex traits that unifies

previously studied models (Eyre-Walker 2010; Lohmueller 2014b;

Simons et al. 2014) into a single framework. We use simulation

and numerical algorithms to investigate a wide variety of human

demographic and selection parameters for European and African

populations and study the role of rare variants in complex

phenotypes. We then use simulations and human RNA-seq data

to ask whether the changes in genetic architecture driven by hu-

man selection and demography have implications for the statisti-

cal discovery of causal rare variants and consider the ramifications

of our findings for studies of genetic architecture in human

populations.

Results

An evolutionary model of complex phenotypes

We develop a phenotype model that explicitly captures the rela-

tionship between selection strength and effect size by unifying

the models proposed in Eyre-Walker (2010) and Simons et al.

(2014) (Methods). The parameters of our model capture both plei-

otropy (through r) and the functional relationship between selec-

tion and effect size (through t and d). Variant alleles with fitness

consequence s will have effect size zs as follows:

zs =
d|s|t with probability r

d|sr |
t otherwise

{

(1)

The d and t parameters were proposed by Eyre-Walker (2010) and

allow the marginal distribution of effects to differ from the mar-

ginal distribution of selection coefficients. The r parameter is a

generalization of the p parameter proposed by Simons et al.

(2014) and allows for the introduction of pleiotropy without al-

tering the overall marginal distribution of effects. With probabil-

ity r, the effect size zs of a site with selection coefficient s is

chosen to be d|s|t. Otherwise, zs is determined by a random sam-

ple (sr) from the marginal distribution of selection coefficients. d

is −1 or 1 with equal probability, allowing for trait-increasing and

decreasing alleles.

From an evolutionary perspective, this model captures the

idea that phenotypes under direct selection will have a tight corre-

lation between selection strength and the absolute value of effect

size (i.e., high r and high modularity of the causal genetic varia-

tion), but the marginal distribution of effects may grow faster or

slower than the distribution of selection coefficients (i.e., t can

be a value greater than or less than 1). Due to pleiotropic effects,

some sites may have large selection coefficients but small effects

on the phenotype (i.e., decreasing r allows increased emphasis

on pleiotropy). Both trait-increasing and trait-decreasing alleles

are equally deleterious and equally probable, as might be expected

for traits under stabilizing selection. A pictorial representation of

the model is given in Supplemental Figure S1 (for further details,

see Methods).

Selection and demography impact the genetic architecture

of complex traits

Recent studies of deleterious alleles and complex demography

have often focused primarily on genetic load rather than genetic

architecture. In order to gain intuition about how the parameters

of our model and evolutionary events impact time-dependent ge-

netic architecture, we first studied our phenotype model under

simplified conditions. We let t = 1 and specify two categories of

selected sites: one strong (s = −10−2, 2Ns = −146) and one weak

(s = −2× 10−4, 2Ns = −2.92). Because this model has two selec-

tion coefficients, it will also have only two effect sizes, as mediated

by the parameter r. It has been shown that deleterious allele load

is not sensitive to demography under this model (Simons et al.

2014), but our interest is in understanding the implications for

trait architecture.

We start by calculating the site frequency spectrum (SFS) as a

function of time using a rescaling-based numerical solver (for a

brief discussion of rescaling, see Hoggart et al. 2007) and stochastic

simulations (Hernandez 2008). In a model of European demo-

graphic history (Methods; Gravel et al. 2011), our numerical cal-

culations predict that the proportion of variable sites that are

singletons (denoted c) is strongly impacted by demographic

events (Fig. 1A, solid lines), and that the nonequilibrium predic-

tions made under the model are in agreement with results from

stochastic forward simulations (Fig. 1A, points). As expected, ex-

pansion events increase c, whereas contractions decrease c.

In Figure 1B, we plot the proportion of the trait’s genetic

variance that is explained by singletons,Vc/V1, which is ameasure

of the genetic architecture of the trait (V1 is

the variance explained by all alleles under

frequency 1, and hence represents the total

genetic variance in the trait). We find that

Vc/V1 is strongly impacted by demographic

events and the relationship between selec-

tion and effect sizes. Expansions increase

the role of rare variants in the trait, whereas

contractions have the opposite effect. Sus-

tained exponential growth results in a

drastic increase in the role of rare alleles.

Note that this time-dependent behavior

for exponential expansion is qualitatively

different from the stepwise ancestral ex-

pansion event at time 0, which results in

an abrupt increase in the proportion of

trait variance explained by rare alleles and

a fast relaxation to a new equilibrium. Im-

portantly, when r = 1 and causal loci are

completely modular, sustained exponential

Figure 1. Time-dependence of singleton variants under a European growth model (Gravel et al.
2011). (A) The proportion of variable sites that are singletons (c). (B) The proportion of the genetic
variance in a complex trait that is due to singletons. A sample of n = 500 chromosomes was used for
each panel. The solid, dashed, and dotted lines show the results of our numerical algorithm, whereas
the points are the results of stochastic forward simulations. Each point represents themean across 100
simulations. The demographicmodel consists of an expansion event at time 0, successive bottlenecks
at times 0.27 and 0.34, and sustained exponential growth after the last bottleneck (see Methods,
“Calculating the impact of demographic events on genetic architecture” for completemodel details).
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growth increases the proportion of variance explained by rare

alleles from ≈10% to nearly 100%, but this proportion rapidly

drops off as r decreases.

We extended this analysis by simulating genotypes and

phenotypes under a wide range of human-relevant parametric

models (Methods). Briefly, we simulated a demographic mod-

el of Europeans and Africans (Gravel et al. 2011) while vary-

ing the rate of exponential growth and the distribution of

selection coefficients. We focus on two categories of selection:

one strong (E[2Ns] ≈ −450) based on estimates from coding

regions in Boyko et al. (2008) (Fig. 2A,B); and one weak

(E[2NS] ≈ −8) based on conserved noncoding regions in

Torgerson et al. (2009) (Fig. 2C,D), which represent plausible ex-

tremes for the strength of selection acting on human genomic

elements. Given the mean strength of selection, we then shift

the variance of the distribution of selection coefficients (s) across

a broad range.

In Figure 2, we show that for all models and populations

considered, increasing the growth rate increases the proportion

of the genetic variance that is driven by singletons, Vc/V1. This

suggests that a population’s demographic history is a major deter-

minant of the genetic architecture of complex traits.

Architecture of complex traits in human populations

Because the rate of growth and the distribution of selection coeffi-

cients can have major impacts on the genetic architecture of com-

plex traits, we focus in on parameters inferred from human data.

In particular, the distribution of selection coefficients will follow

the parameters estimated from nonsynonymous sites (Boyko

et al. 2008) and twomodels of humanhistory: the “growth”model

of Gravel et al. (2011) and the “explosive growth” model of

Tennessen et al. (2012). In Figure 3, we plot Vx/V1, the cumulative

proportion of the genetic variance due to variants under allele fre-

quency x as a function of x for several values of r and t in a sample

of 5× 103 individuals. We find that a substantial proportion of

the genetic variance is attributable to rare variants only when

the selection strength is very tightly correlated with the absolute

value of effect size (i.e., r ≈ 1). This generalizes the results of

Simons et al. (2014) to a distribution of selection coefficients rele-

vant to human coding variation. When r ≈ 1, rare alleles have

much larger effect sizes than common alleles because the most

deleterious alleles have very low frequencies. Explosive growth

further increases the role of rare alleles for large r, because the in-

creased population size results in an increased influx of new dele-

terious alleles. In addition, deleterious

alleles that segregated at higher frequency

before the growth event adjust their fre-

quencies downward because of the effective

increase in population scaled selection

coefficient.

Interestingly, among rare variants, the

preponderance of variance is determined

by singleton variants and not variants at

more intermediate frequencies in the sam-

ple (Fig. 3; Supplemental Fig. S2). This result

holds across all values of r when t = 1 for

both demographic models, but is more ex-

treme in the explosive growth model. A dif-

ferent picture emerges when we plot Vx/V1

using the log10(x) effect size model of Wu

et al. (2011) (originally used to evaluate the

power of SKAT). Under this model, much

more of the variance is attributable to vari-

ants at intermediate rare frequencies. We

are not able to recapitulate the shape of

Vx/V1 we see with theWu et al. model using

our evolutionary approach, but we do see

rare variants playing less of a role

in genetic architecture when t decreases to

0.5 (Fig. 3C,D). Nonetheless, for all values

of t investigated, as well as the log10(x)mod-

el, explosive growth results in a larger frac-

tion of variance being explained by

singletons than under the growth model.

The power of conventional RVATs

decreases when variance explained by rare

variants increases

We investigated the power of rare variant as-

sociation methods as a function of

the proportion of variance explained by

rare variants by altering the parameters r

and t in our simulations of complex

Figure 2. The fraction of the genetic variance that is contributed by singletons, Vc/V1, in a sample
of n = 103 chromosomes as a function of growth rate (g) and standard deviation in selection strength
(s) in models of both African (A,C) and European (B,D) demographic history. The mean selection
strength was fixed at 2Ns = −450 (A,B) and 2Ns = −8 (C,D), with r = 0.99 and t = 1.0. The smaller
panels plot two cross sections of each heat map to show changes in Vc/V1.
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phenotypes (Fig. 4; Supplemental Fig. S3). We examined multiple

RVATs and found that power for each test is highly dependent on

the phenotype model (Supplemental Fig. S4). We found that the

SKAT framework was consistently among the most powerful, and

hence focus our analysis on SKAT-O (Methods).

We find that power is substantially lower when effects

are drawn from our model as opposed to effects given by the

Wu et al. (2011) model of log10(x). This result holds for all

model parameters and both demographic

models that we considered. We also find

that power is always substantially higher un-

der the growth model than the explosive

growth model. Under the explosive growth

model, a larger proportion of the genetic

variance is due to very rare variants (as op-

posed to more intermediate frequency rare

variants).

Since RVATs are tuned to detect contri-

butions from rare variants, we might expect

power to increase as r increases, and rare var-

iants drive a larger fraction of the variance in

the trait. Surprisingly, we find the opposite.

In Figure 4 and Supplemental Figures S3

and S4, we show that power decreases as r in-

creases. This effect is most dramatic under

the explosive growth model (blue lines/

bars) and when t = 1.0. When t decreases

to 0.5 (Fig. 4D–F), intermediate frequency

rare variants play a larger role and the reduc-

tion in power is less pronounced.

We replicate the same general trends

under an African demographic model (Supplemental Fig. S3), but

power is higher than under the European demographic model

(up to 50% under some conditions) (Supplemental Fig. S5). This

may reflect both increased trait variance per gene and differences

in genetic architecture due to demography, and suggests that the

overemphasis on European populations in sequencing studies

(Rosenberg et al. 2010; Bustamante et al. 2011) may slow the dis-

covery of causal loci.

Figure 3. The cumulative proportion of the genetic variance, Vx/V1, explained by variants under
allele frequency x for the European “growth” (A,C) and “explosive growth” (B,D) models of human
history under two different values of t for a sample of n = 104 chromosomes.

Figure 4. The power of SKAT-O in Europeans as a function of the variance explained (ve) by a gene on a phenotype in a sample of size n = 104 chro-
mosomes under various effect size models. The explosive growth model (B,E) of Tennessen et al. (2012) is shown in shades of blue, and the growth model
(A,D) of Gravel et al. (2011) is shown in shades of red. The dashed lines show the power when the effect sizes are taken to be proportional to log10(x) for
alleles at frequency x, whereas the solid lines (A,B,D,E) and bars (C,F ) show results from our phenotypemodel. Panel C aggregates data from A and B for ve =
0.01, while panel F aggregates data from D and E for ve = 0.01.
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Shifting weight onto rare alleles boosts power but also false

positive rates

SKAT-Oprovidesuserswitha flexibleweightdistributionoverallele

frequencies. The default distribution is a b-distribution with shape

parameters 1 and 25, which gradually putsmoreweight on rarer al-

leles. Because populations that have undergone rapid population

growth have increased trait variance contributed by very rare vari-

ants, the testmay perform better whenweight is further shifted to-

ward rare alleles. We re-ran SKAT-O with the rare-shifted weight

distribution recommended in Wu et al. (2011) when only very

rare variants play a role in the phenotype (b[0.5,0.5]). The rare-

shifted weights resulted in substantial increases in power (Fig. 5;

Supplemental Fig. S6), although power was often lower under our

evolutionary model than under the log10(x) model (Fig. 5A,D,

dashed lines). We found that power was still sensitive to demogra-

phy (Fig. 5B,E; Supplemental Fig. S6B,E),with the explosive growth

model exhibiting lower power than the growth model.

Unfortunately, this increase in power is costly. We permuted

the phenotypes for the same simulations and ran SKAT-O on

the permuted data set to obtain an empirical P-value distribution.

We observe amuch larger than expected fraction of P-values under

2.5× 10−6 (Fig. 5C,F), and the rate is generally much higher under

the explosive growthmodel andwhen the coupling between selec-

tion strength and effect size is highest (i.e., r is large). Assuming a

trait has 20 causal genes and that the test is applied to all≏2× 104

genes in the genome, even if power is at the optimistically high

level of 50%, false discovery rates would exceed 90% for large

values of r in populations with explosive recent growth.

Spurious positive results in human RNA-seq data

We found that shifting weights in SKAT-O toward rare variants in-

creases the false-positive rate, thereby constraining our ability

to perform genome-wide tests. However, hypothesis-driven stud-

ies that use fewer tests by focusing on a subset of putatively causal

loci may benefit from the test’s increased power while only mod-

estly increasing the false discovery rate. We hypothesized that

rare exonic variants of large effect in transcription factors under

selection may impact the expression of downstream target genes.

We tested this hypothesis for the transcription factor STAT1,

which was inferred by Arbiza et al. (2013) to be among the tran-

scription factors with the largest fraction of base pairs under selec-

tion in the human genome. We obtained a list of putative target

genes for STAT1 (Bhinge et al. 2007) and cross-referenced it for

genes that are expressed in the GEUVADIS project RNA-seq data

set (Lappalainen et al. 2013), for a total of 211 target genes.

We ran a test of association between variation in STAT1 exons

and expression level for each of these downstream genes using

SKAT-O.Unadjusted P-values fromSKAT-O suggest that expression

patterns for at least one of these genes is partially driven by rare var-

iants in STAT1, and shiftingweight onto rare variants increases the

number of significant positive tests from 1 to 2 (Fig. 6).

Furthermore, eight genes had P-values under 10−2, although only

two are expected for this sample size under the null. However,

when we permuted the phenotype residuals of the samples and

re-ran the test, we discovered that these signals are all likely to be

false positives and the test is anti-conservative for these pheno-

types. Note, we do not mean to suggest that we can exclude a role

for rare coding alleles in STAT1 on expression patterns for any of

these 200 genes, as our sample size is quite small and we have al-

ready argued that our power should be modest in many scenarios.

However, our results demonstrate that we havemuch less power to

reject the null than the SKAT-OP-value distributionwould suggest.

Discussion

A great deal of research interest has focused on the problem of

“missing heritability,” which refers to the discrepancy between

variance explained by genome-wide significant associated variants

and estimates of the narrow-sense heritability of common, genet-

ically complex phenotypes. Although there are many possible

Figure 5. The power and false positive rate (FPR) of SKAT-O in Europeans with the weights of SKAT-O adjusted to b[0.5,0.5], in a sample size of n = 104

chromosomes. The explosive growthmodel of Tennessen et al. (2012) is shown in shades of blue, and the growth model of Gravel et al. (2011) is shown in
shades of red. The dashed lines show the power when the effect sizes are taken to be proportional to log10(x) for alleles at frequency x, whereas the solid
lines (A,D) and bars (B,E) show results from our phenotype model. Each solid line in A and D corresponds to a different value of r, using the same color
scheme as in the other panels. (B,E) Aggregate data from A and D, but specifically for variance explained (ve) equal to 0.01. In C and F, we plot the FPR
divided by 2.5× 10−6 (a), which represents the fold increase in FPR.
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explanations for this discrepancy, one of the most popular is that

rare variantsmaymake up the difference. This hypothesis has been

used as motivation for a number of sequencing studies of large co-

horts. As sequencing technology has progressed to the point at

which very rare (and potentially novel) variants are routinely de-

tected in large samples, there has been a corresponding push to

develop statistical tools to detect causal rare variants.

Large genotype and DNA sequence data sets have also pro-

vided insights into human demography (Schaffner et al. 2005;

Gutenkunst et al. 2009; Gravel et al. 2011; Keinan and Clark

2012; Nelson et al. 2012; Tennessen et al. 2012; Bhaskar et al.

2015) and selection on human functional elements (Keightley

and Eyre-Walker 2007; Boyko et al. 2008; Torgerson et al. 2009).

These studies have generally agreed that patterns of human poly-

morphism provide strong evidence for the recent expansion of

human populations and the action of selection on functional

sites. Moreover, the joint distribution of effect sizes and allele

frequencies for traits under selection is likely to be strongly im-

pacted by these evolutionary forces (Lohmueller 2014b; Simons

et al. 2014), and rare alleles can only contribute substantially to

complex trait variance when selection acts on causal variation

(Pritchard 2001), both of which suggest that human evolutionary

models should guide efforts to design and test RVATs.

Although it is clear that RVATs can be very powerful for de-

tecting associations under some phenotype models, it is not clear

whether previously investigated phenotype models are biolo-

gically or evolutionarily plausible. Most studies of RVATs have

applied phenotypemodels thatmap allele frequencies to effect siz-

es via simple functions, such as the log10(x) (where x is allele fre-

quency) function in Wu et al. (2011), without directly modeling

the action of selection or taking advantage of recent estimates of

the strength of selection on human functional elements. We de-

veloped a flexible, selection-based phenotype model that captures

pleiotropy/modularity (through r) and fitness functions of vary-

ing shape (through t). We then applied our phenotype model in

concert with human evolutionary models to demonstrate that a

wide range of possible joint distributions of effect size and allele

frequency exist that are not consistent with the log10(x) model.

Importantly, when the genetic variation for the trait of interest

is largely modular (i.e., r ≈ 1) and the effect on fitness is directly

proportional to the effect size magnitude (t = 1), we found that

a very large proportion of the variance in the trait is contributed

by very rare (e.g., singleton) alleles. When the causal genetic vari-

ation for the trait is somewhat pleiotropic ( r , 0.9), the genetic

variance explained by rare alleles drops off

very quickly. This is in sharp contrast to

the log10(x) model, in which most pheno-

typic variance is contributed by intermedi-

ate-frequency rare alleles.

We also considered the impact of vary-

ing t on genetic architecture. When t = 0.5

and very deleterious alleles have smaller

effect sizes relative to weakly deleterious al-

leles (as compared to t = 1), we observe

that less trait variance is driven by very rare

alleles relative to intermediate frequency

rare alleles. However, when t = 0.5, we also

observe a very sharp drop in variance ex-

plained by rare alleles as a function of in-

creasing pleiotropy (i.e., variance explained

by rare alleles is only appreciable when

r ≈ 0.99 or higher, and the causal variation

is almost entirely modular). Demography also has a profound im-

pact on genetic architecture. We compared a “growth” model

(Gravel et al. 2011) to an “explosive” growth model (Tennessen

et al. 2012). Although explosive growth only slightly alters the to-

tal contribution of alleles under 1% in frequency to the trait, it

greatly increases the proportion of trait variance that is explained

by singleton alleles, potentially altering the performance of statis-

tical tests that pool putatively causal rare variants.

Our results have surprising consequences for association

tests.We found that RVAT power decreases as a function of increas-

ing r values, meaning that statistical performance is worst when

rare alleles make the largest contributions to trait variance. This

is unexpected because RVATs are tuned to test for the contribution

of rare alleles to trait variance, so onemight expect (and hope) that

RVATs will perform best when the rare allele signal (i.e., percent

variance explained) is largest. Although surprising, our results

can be understood by jointly considering the impact of evolution-

ary parameters on genetic architecture.When r is large and rare al-

lele contributions are provided primarily by extremely rare alleles

(e.g., singleton alleles), there is less information in the data about

the relationship between phenotype and genotype than when in-

termediate-frequency rare alleles drive the signal. When popula-

tions grow rapidly, we found that the genetic variance explained

by extremely rare alleles increases, andwe observe a corresponding

decrease in RVAT power.

We note that our results contrast those of Moutsianas et al.

(2015), who used the Eyre-Walker (2010) model and found higher

power for RVATs when rare alleles explain a large fraction of trait

variance. However, we also note that their study predominantly

focused on amodel of binary traits that have unidirectional effects,

whereas we have focused on a model of quantitative traits under

stabilizing selection with bidirectional effects. In our view, it is

not yet clear which of these models is most relevant for complex

traits. One view is that risk-increasing alleles should be under

stronger selection than protective alleles, and hence, effect sizes

for disease-risk should be pointed in the same direction. An oppos-

ing view is that disease etiology is the result of processes playing

out on the molecular scale, and hence, it is possible that both up

or down dysregulation of molecular products could result in in-

creased disease risk. In this scenario, two alleles might both raise

disease risk on average but have opposing effects on the molecular

product, and hence, their aggregate impact on disease risk would

bemasked in individuals carrying both alleles, even under additive

trait models.

Figure 6. Scatter plots of unadjusted SKAT-O P-values against permutation-based P-values for tests
of association between coding variation in STAT1 and RNA expression levels of STAT1 target genes.
Each point represents a single target gene. (A) P-values for the default parameterization of SKAT-O. (B)
P-values for the test with more weight shifted onto rare variants.
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Although it is too early to assert that ourmodel will be a good

fit to human complex trait data, it is clear that any phenotype

model that will be consistent with evolutionary theory and

propose a non-negligible role for rare alleles must directly incorpo-

rate the impact of evolutionary forces such as demography and se-

lection. Our model is very flexible and can accommodate any

standard population genetic model of selection, demography,

recombination, or mutation while using only two additional pa-

rameters to generate phenotypes and accommodates pleiotropy

and fitness functions of variable shape. In general, generative evo-

lutionary models such as ours should be preferred over arbitrary

mapping functions in the assessment of association tests, because

evolutionary models provide a mechanism for the increased role

of rare variants in complex traits. Simple functions that map allele

frequencies to effect sizes do not have this feature, and therefore

may be inconsistent with evolutionary theory and mechanistic

models of genetic architecture and make overly strong assump-

tions about the relationship between effect sizes and allele

frequencies.

Still, it is important to consider the plausibility of our model

in light of current knowledge of complex trait architecture. First,

we note that many common alleles with detectable (albeit small)

effects on trait variance have been discovered. However, except

in a few cases, such variants explain a very small fraction of pheno-

typic variance. The extensive missing heritability that has not

been explained by weak-effect common variants could potentially

be explained by rare variants with r and t near one. Further, a wide

range of other parameterizations exist that are consistent with a

non-negligible role for both rare and common alleles. If, for exam-

ple, 0.9 , r , 1 and t ≈ 0.5 for some phenotypes of interest, then

common trait-associated alleles that have been discovered so far

are likely to represent instances of highly pleiotropic sites, where

the overall strength of selection is relaxed due to the compensatory

effects of these sites on multiple phenotypes. Sites with increased

phenotypic modularity are more likely to have large effects and

be at low frequency, increasing the difficulty of detecting them.

Moreover, recent work suggests some role for selection in shaping

complex traits. Park et al. (2011) found a modest correlation be-

tween allele frequency and effect size for common, trait-associated

variants, consistent with selection acting on trait-altering varia-

tion.Maher et al. (2012) found that trait-associated alleles are in re-

gions of stronger selection than average sites in the genome, and in

a model-based analysis of the role selection in shaping trait-alter-

ing variation for prostate cancer, Mancuso et al. (2015) estimated

that t = 0.42 under the model of Eyre-Walker (2010). More work

is required to estimate the amount of pleiotropic selection on

trait-altering variation before we can assert that rare alleles may

play a substantial role in shaping trait variation for many impor-

tant human phenotypes.

Genome-wide rare variant association studies (RVAS) have of-

ten been used in an attempt to bound the variance explained by

rare alleles for complex traits (Lohmueller et al. 2013; Holmen

et al. 2014; Igartua et al. 2015). In this study design, researchers

scan the genome (or exome) for rare causal alleles with one or

more RVATs and report that rare alleles are unlikely to be a driver

of variance in the trait if no signal (or very few signals) are found.

Although such study designs are sound if RVAT power is robust to

the uncertainty in evolutionary parameters, we have shown that

power is highly dependent on both evolutionary parameters and

pleiotropy. Becausewe donot know these parameters with certain-

ty for any phenotypes, it may be too early to exclude a role for rare

variants in complex traits on the basis of genome-wide RVAS.

Given that natural selection and demography both alter ge-

netic architecture, simple modifications to existing tests might

boost their performance. In the case of SKAT-O, the obvious first

step is to modify the b-distribution that serves as a prior over the

effect sizes at each allele frequency.We demonstrated that shifting

weight onto rarer alleles does increase power in our selection-based

phenotype model, but also results in a highly elevated false-posi-

tive rate. In principle, the best weight distribution to use would

correspond exactly to the joint distribution of effect sizes and allele

frequencies that is generated by the evolutionary forces acting

on the causal variation. However, because we do not know these

evolutionary parameters exactly for any phenotypes, more work

must be done to infer trait architecture as in Mancuso et al.

(2015) before this approach can become a reality.

Model-based studies of the joint effects of selection and

demography on genetic and phenotypic diversity have already

provided some important insights into the impact of evolutionary

forces on human variation (Gazave et al. 2013; Thornton et al.

2013; Lohmueller 2014b; Simons et al. 2014; Balick et al. 2015;

Do et al. 2015; Zivković et al. 2015). Our results show that this lit-

erature must be taken into account when assessing association

tests, because studies of selection and demography have strong im-

plications for the joint distribution of allele frequencies and effect

sizes of human traits under selection. Moreover, current associa-

tion methods are underpowered to test for the contribution of

rare variants to complex traits under a wide range of evolutionary

model parameters. Fortunately, population-geneticmodels such as

ours make strong predictions about observables, including the re-

lationship between allele frequency and effect size and the distri-

bution of phenotypes. In future studies, it will be advantageous

to exploit these signals to compare various models of heritability

and put firmer bounds on the proportion of the genetic variance

that is determined by rare variants.

Methods

Model

Here, we will describe the models Eyre-Walker (2010) and Simons

et al. (2014), motivate the modifications we have made, and dis-

cuss the ramifications of our model for RVATs.

The model of Eyre-Walker (2010) computes effect sizes as

z = d|s|t(1+ e). d is −1 or 1 with equal probability, thereby allow-

ing for both trait-increasing and trait-decreasing mutations. t is

an exponent that transforms the distribution of selection coeffi-

cients to allow flexibility with respect to the distribution of pheno-

typic effects. The central idea is that effect sizes may not have

the same marginal distribution as selection coefficients, but sites

with larger effects on fitnesswill also have larger effects on the phe-

notype. As t decreases, common alleles play a larger role in the

phenotype because the effect sizes of weakly deleterious alleles in-

crease relative to strongly deleterious alleles. e is a random normal

variable with mean zero and variance s2 that we do not include

because it has no impact on genetic architecture (Eyre-Walker

2010).

In our study, we are concerned with how the joint distribu-

tion of effect sizes and allele frequencies impacts statistical power

for discovering causal loci. It is plausible that power will depend

on both the marginal distribution of effects and the relationship

between effects and allele frequencies, so it is desirable to have a

mechanism to hold the marginal distribution of effects constant

in order to focus on the relationship between allele frequency

and effects. In Simons et al. (2014), the authors proposed a model
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with two selection coefficients, one strong and one weak, that has

this property. With probability r, a mutation has effect size pro-

portional to its selection coefficient, and with probability 1− r,

it has an effect size randomly sampled from the marginal distribu-

tion of selection coefficients (and then scaled by a proportionality

constant). Here, we extend this model by (1) including arbitrary

distributions of selection coefficients, such as a G-distribution of

selection coefficients that was inferred for human coding regions

(Boyko et al. 2008); and (2) including both the t and d parameters

from the model of Eyre-Walker (2010).

Thus, our model for effect sizes zs for a site with selection co-

efficient s can be summarized with equation 1 (main text). When

r = 1, we obtain exactly the model of Eyre-Walker (2010). When

t = 1, we obtain the model of Simons et al. (2014), but with arbi-

trary distributions of selection coefficients and the additional pos-

sibility for causal sites to be either trait increasing or decreasing.

As in the original Eyre-Walker (2010) model, we have as-

sumed that trait-increasing and trait-decreasing alleles are equally

likely to occur and are equally deleterious. Note that this assump-

tion has no impact on the results pertaining to genetic architec-

ture, because the architecture depends only on the mean squared

effect sizes as a function of frequency. Moreover, this is a natural

assumption in the case of a phenotype under stabilizing selection.

Both trait-increasing and trait-decreasing alleles are more likely to

decrease the fitness of an individual than increase fitness under

mild assumptions about the shape of the trait distribution (name-

ly, that it is roughly centered at its optimum value, and the pheno-

type values are roughly symmetric around the optimum).

Three-population forward simulations of human selection

and demography

Weused sfs_coder to perform forward simulations of human selec-

tion and demography (Uricchio et al. 2015). sfs_coder is a Python-

based front-end to the forward simulation software SFS_CODE

(Hernandez 2008) that includes several models of human demog-

raphy and selection. The demographic models we simulated are

those of Gravel et al. (2011) and Tennessen et al. (2012). Briefly,

Gravel et al. (2011) includes three populations, namely the

African, European, and Asian continental groups. The European

and Asian populations are formed by a series of bottlenecks as

the human populationmoved out of Africa, and themodel also in-

cludes recent exponential growth in the European and Asian con-

tinental groups. Migration between all pairs of populations is

also included in the model. The model of Tennessen et al. (2012)

includes all of the above features, but also adds a second (more

recent) phase of explosive exponential growth in the European

continental group and includes recent exponential growth in

the African continental group. Note that Tennessen et al. (2012)

only inferred parameters of recent growth for Africans and

Europeans, but we also simulate the Asian continental group as

was inferred in Gravel et al. (2011) and as previously described

in Uricchio et al. (2015). We refer to the model of Gravel et al.

(2011) as the “growth” model, and the model of Tennessen et al.

(2012) as “explosive growth.”We chose these twomodels because

they both represent plausible demographic histories of human

continental groups inferred from human sequence data and

have identical parameters up until the very recent past, but pro-

pose dramatically different rates of recent expansion in Europeans

and Africans, and hence, generate different patterns of variation

in samples. In particular, the explosive growth of the model of

Tennessen et al. (2012) results in a SFS that is skewed further to-

ward rare variants in very large samples.

Weused recently inferred selectionmodels (Boyko et al. 2008;

Torgerson et al. 2009), both of which are G-distributions of selec-

tion coefficients. For simulated coding regions, only nonsynony-

mous sites are under selection.

For the simulations that we used to calculate genetic architec-

ture in Figure 2, we did not include migration, such that we could

focusmore directly on the role of exponential growth. To examine

the effect of the growth rate, we increased the growth rate from

the baseline inferred rate in Gravel et al. (2011) in both

Europeans and Africans at time tsuper = 0.39, which was the time

of super exponential growth inferred in Tennessen et al. (2012).

Hence, the parameters investigated include plausible extremes

that are relevant to these continental level population groups.

For simulations that we used to make power calculations, we

included 20 unlinked genes. Each gene was 1.65× 103 base pairs

long, which is the mean length of a gene in RefSeq. Although

each gene is unlinked, recombination was included within each

gene. Assuming a per-base recombination rate of 4Nr = 10−3 and

that the typical gene is composed of exons and introns spanning

an average of 5.115× 104 bp, we set the per-base as follows:

rr = 4Nr =
5.115× 104

× 10−3

1.65× 103
= 0.031.

Although this does not maintain the intron/exon structure of a

gene, average linkage disequilibrium across the entire gene should

be maintained.

For our power calculations, we performed 5× 103 simulations

under each demographic model and sampled 5× 103 individuals

from the African and European populations, as noted in the text

(as described above, each simulation includes 20 simulated genes).

The number of simulations was chosen in order to obtain suffi-

ciently small standard error around our power estimates such

that parameter sets investigated are distinguishable. At the end

of each simulation, we use the simulated patterns of diversity

and distributions of selection coefficients to simulate phenotypes,

as described above.

Simulations of phenotypes

We simulated phenotypes under our selection-based model of

complex traits, and also the allele frequency based model of Wu

et al. (2011).

For simulations under our phenotype model, we do not have

an analytical expectation for the distribution of sampled selection

coefficients for the complicated three-population demographic

models that we simulate here. For this reason, we use the sampled

variants in any given simulation to provide a distribution on s.

When t = 1, r is also the Pearson correlation between the selection

coefficient and the absolute value of effect size, but this is not

the case when t=1. However, the interpretation that a high value

of r corresponds to a high correlation and a low value corresponds

to aweak correlation holds across all values of t. We only take non-

synonymous sites as causal; synonymous sites always have 0 effect

in our simulations.

We also simulate phenotypes under the model of Wu et al.

(2011). In this model, an allele with frequency x < 0.03 has effect

size z(x)/ log10(x) with probability 0.05, and otherwise has an

effect size of zero. Here, we take all nonsynonymous sites under

3% frequency to be causal, such that the total number of causal

sites are roughly comparable between simulations under our mod-

el and simulations using the effect size distribution of Wu et al.

(2011). Note that our loci are shorter than the loci simulated by

Wu et al. (2011) because we focus on genes, but by taking all the

nonsynonymous low frequency variants as causal, we have close

to the same expected number of causal variants within the locus

as in their study, although we have far fewer nonassociated vari-

ants. In this sense, our simulations represent a “best-case”
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scenario, since a very high proportion of the sites within each test

locus are causal for the trait, although some sites have very small

effect sizes.

The statistical power of association tests is a function of the

fraction of the variance in the phenotype that is explained by

the test sequence. For this reason, we always fix the total contri-

bution of the test loci at a prespecified amount (and hence any ob-

served differences in power cannot be explained by systematic

differences in the contribution of genetics to the phenotype).

We simulated a polygenic model, in which genetic variation in

the trait is driven by 20 genes, and fix the total contribution of

genetics to the phenotype at 50% (i.e., h2 = 0.5) in Europeans.

We have conditioned on the heritability of Europeans because

themajority of genetic studies to date have beenperformed in pop-

ulations of European descent (Rosenberg et al. 2010; Bustamante

et al. 2011), and the events in the African demographic model

are a subset of those found in the European model. Hence, the

heritability in Africans is not guaranteed to be exactly 0.5, but

can be either smaller or larger in any given simulation, depending

on the effect sizes and allele frequencies of the causal variants in

the sampled African sequences.

Calculating the impact of demographic events on genetic

architecture

We investigated the impact of selection and demography on the

SFS, as well as the genetic architecture of complex traits, using nu-

merical calculations under theWright-Fishermodel and stochastic

forward simulations.

For our numerical calculations, we consider a model consist-

ing of discrete and exponential population size changes. Although

our software is generalizable to other demographic models of

interest, here we focused on the marginal European demographic

history (Gravel et al. 2011). This model includes population

size changes of magnitudes n = [1.9827,0.1286,0.5545] at times

t = [0,0.2658,0.3425] (times are in coalescent units of 2NA genera-

tions, where NA is the ancestral population size). These events

correspond to an expansion in the African ancestral population,

an out-of-Africa bottleneck, and a second bottleneck with the

founding of Europe. Immediately after the last bottleneck event,

the population grows exponentially at rate 55.48 (scaled in coales-

cent units). For further details on themodel parameters, see Gravel

et al. (2011) or Uricchio et al. (2015).

To calculate the SFS as a function of time after demographic

events, we propagated Wright-Fisher transition matrices forward

in time. The transition probability for a site present in k copies

in a population of size 2N to k∗ in the next generation with selec-

tion coefficient s is given as

Binomial k∗; 2N,
(1+ s)x

1+ sx

( )

, (2)

where x = k/2N, the allele frequency of the site. Discrete changes

in population size change the state space on k, and hence, the

rate at which drift happens in each subsequent generation, as

well as the equilibrium proportion of variable sites present at any

given frequency. However, to avoid the computational cost of

changing the state space on k, we instead rescale both time and

population size (Hoggart et al. 2007; Uricchio and Hernandez

2014). The code we developed is implemented in Python and is

provided in the Supplemental Material.

We performed these calculations for two selection coeffi-

cients, s = −10−2 and s = −2× 10−4, each with identical underly-

ing mutation rates, exactly as in the selection-based phenotype

model of Simons et al. (2014).We assumed a human ancestral pop-

ulation size of 7.3× 103, as was inferred by Gravel et al. (2011),

such that the g = 2Ns = −146 for the large selection coefficient

and g = −2.92 for the small selection coefficient.

We used our code to calculate the proportion of variable sites

that are present in a single copy (singletons) in a sample of 500

chromosomes for each of the selection coefficients in this model,

which we denote as C. We also calculated the genetic variance

due to singleton sites as a function of r in our phenotype model,

assuming that t = 1.

We performed stochastic simulations under this model of se-

lection and demography and sampled variants at time points from

t = 0 to t = 0.45 (in coalescent units of 2NA generations, whereNA is

the ancestral population size). We performed 100 simulations

per time point. Scripts for the simulations, which were performed

using sfs_coder (Uricchio et al. 2015), are provided in the

Supplemental Material.

Calculating the genetic variance

We follow several earlier studies in calculating the genetic variance

due to alleles at frequency x, including Pritchard (2001) and

Simons et al. (2014). Genetic variance Vx due to variants at or

below allele frequency x is given by

Vx =

∫x

x=0

1

2
E(z2|x)f (x)(1− x)(x) dx, (3)

where f(x) is the SFS, i.e., the proportion of sampled alleles at fre-

quency x; and E(z2|x) is the mean-squared effect size of variants

at frequency x. In order to obtain an accurate measure of the SFS

and the effect sizes of variants at frequency x, we pool 250 simula-

tions performed under each model, for a total of 5× 103 total

simulated genes. We divide by V1, the total variance explained

by genetic factors, in order to obtain a value that represents the

proportion of the genetic variance explained by variants under

frequency x.

Power of rare variant tests

We obtained the SKAT-O R package from http://www.hsph.

harvard.edu/skat/. We computed power as the proportion of sim-

ulations with P-values below 2.5× 10−6. We used this threshold

because our study focuses on selection in coding regions, and

hence, our analysis is relevant to an exome sequencing study

with ≈ 2× 104 genes. 2× 104 statistical tests correspond to a

Bonferroni corrected P-value of 2.5× 10−6. We used the default

settings for SKAT-O unless otherwise stated.

We repeated this analysis for a subset of the parameter space

for two other rare variant association tests in Europeans using the

rvtests software (http://zhanxw.github.io/rvtests/), in particular

CMC (Li and Leal 2008), the test of Morris and Zeggini (2010),

and CMC-Wald, which first runs CMC and then the Wald test.

We find that the overall trends are replicated for these tests, but

that SKAT has better overall power (Supplemental Fig. S4).

If we were to relax our assumption that deleterious alleles are

equally likely to be trait-increasing or decreasing, it is likely that

the relative power of the statistical tests that we have investigated

could change. However, we note that SKAT-O was specifically de-

signed to retain power in both situations (equal and unequal

proportions of trait-increasing/trait-decreasing variants) (Lee

et al. 2012a,b), so we do not expect that the main results of the pa-

per (i.e., that selection strength and growth rate alter architecture

and power) are affected by this choice. Moreover, a recent study

examined the Pearson correlation between P-values reported by

a wide range of RVATs (Moutsianas et al. 2015), and found that

SKAT-O is highly correlated to SKAT (0.93), C-ALPHA (Neale

et al. 2011) (0.92), and KBAC (Liu and Leal 2010) (0.68). CMC
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is highly correlated to KBAC (0.66), the variable threshold

test (Price et al. 2010) (0.63), and BURDEN (https://atgu.mgh.

harvard.edu/plinkseq/) (0.77). Although these correlations are

likely to depend somewhat on evolutionary parameters and genet-

ic architecture, they constrain the ability of any of the tests to out-

perform the others.

False positive rates

We calculated false positive rates by permuting our simulated phe-

notypes and re-running SKAT-O. Under the null, we would expect

0.00025% of tests to result in P-values under 2.5× 10−6.

Application to RNA-seq data

We obtained RNA-seq data from the GEUVADIS project for 360

individuals of European descent (Lappalainen et al. 2013). To

remove potential confounders such as population structure and

batch effects, we median normalized the samples and performed

principal component analysis (PCA). The first 30 PCs in this anal-

ysis were taken as covariates in the ensuing analysis, and permuta-

tions were performed by permuting the residuals.

We cross-referenced genes in the GEUVADIS expression data

set with transcription factors that were inferred to be under strong

selection in Arbiza et al. (2013) and filtered for genes that are in

the 95% tail of expression (i.e., are highly expressed). Among

these, we selected STAT1, because its coding sequence is about

twice as long (≈ 2200 bp) as the other candidates (which provides

increased power for tests of association) and because a list of puta-

tive downstream targets of STAT1 was immediately available

(Bhinge et al. 2007).

We obtained the coding sequence for STAT1 exons for each of

the 360 individuals from the 1000 Genomes Project phase 3 data

(The 1000 Genomes Project Consortium 2015). We then ran

SKAT-O on the expression values and STAT1 genotypes for each

of the STAT1 target genes that was expressed in the GEUVADIS

data set. To obtain permutation-based P-values, we permuted the

phenotype residuals for each gene 5000 times and used the empir-

ical distribution of P-values from the permutations to obtain an es-

timate of the true P-value.
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