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Abstract Abstract 
Selectional constraints are limitations on the applicability of predicates to arguments. For example, the 
statement “The number two is blue” may be syntactically well formed, but at some level it is anomalous — 
BLUE is not a predicate that can be applied to numbers. 

According to the influential theory of (Katz and Fodor, 1964), a predicate associates a set of defining 
features with each argument, expressed within a restricted semantic vocabulary. Despite the persistence 
of this theory, however, there is widespread agreement about its empirical shortcomings (McCawley, 
1968; Fodor, 1977). As an alternative, some critics of the Katz-Fodor theory (e.g. (Johnson-Laird, 1983)) 
have abandoned the treatment of selectional constraints as semantic, instead treating them as 
indistinguishable from inferences made on the basis of factual knowledge. This provides a better match 
for the empirical phenomena, but it opens up a different problem: if selectional constraints are the same 
as inferences in general, then accounting for them will require a much more complete understanding of 
knowledge representation and inference than we have at present. 

The problem, then, is this: how can a theory of selectional constraints be elaborated without first having 
either an empirically adequate theory of defining features or a comprehensive theory of inference? 

In this dissertation, I suggest that an answer to this question lies in the representation of conceptual 
knowledge. Following Miller (1990b), I adopt a “differential” approach to conceptual representation, in 
which a conceptual taxonomy is defined in terms of inferential relationships rather than definitional 
features. Crucially, however, the inferences underlying the stored knowledge are not made explicit. My 
hypothesis is that a theory of selectional constraints need make reference only to knowledge stored in 
such a taxonomy, without ever referring overtly to inferential processes. I propose such a theory, 
formalizing selectional relationships in probabilistic terms: the selectional behavior of a predicate is 
modeled as its distributional effect on the conceptual classes of its arguments. This is expressed using 
the information-theoretic measure of relative entropy (Kullback and Leibler, 1951), which leads to an 
illuminating interpretation of what selectional constraints are: the strength of a predicate’s selection for 
an argument is identified with the quantity of information it carries about that argument. 

In addition to arguing that the model is empirically adequate, I explore its application to two problems. 
The first concerns a linguistic question: why some transitive verbs permit implicit direct objects (“John 
ate Ø”) and others do not (“*John brought Ø”). It has often been observed informally that the omission of 
objects is connected to the ease with which the object can be inferred. I have made this observation more 
formal by positing a relationship between selectional constraints and inferability. This predicts (i) that 
verbs permitting implicit objects select more strongly for (i.e. carry more information about) that 
argument than verbs that do not, and (ii) that strength of selection is a predictor of how often verbs omit 
their objects in naturally occurring utterances. Computational experiments confirm these predictions. 

Second, I have explored the practical applications of the model in resolving syntactic ambiguity. A number 
of authors have recently begun investigating the use of corpus-based lexical statistics in automatic 
parsing; the results of computational experiments using the present model suggest that many lexical 
relationships are better viewed in terms of underlying conceptual relationships. Thus the information-
theoretic measures proposed here can serve not only as components in a theory of selectional 
constraints, but also as tools for practical natural language processing. 
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Abstract

Selection and Information:

A Class-Based Approach to Lexical Relationships

Philip Stuart Resnik

Supervisor: Aravind Joshi

Selectional constraints are limitations on the applicability of predicates to arguments. For example, the

statement “The number two is blue” may be syntactically well formed, but at some level it is anomalous —

BLUE is not a predicate that can be applied to numbers.

According to the influential theory of (Katz and Fodor, 1964), a predicate associates a set of defining

features with each argument, expressed within a restricted semantic vocabulary. Despite the persistence of

this theory, however, there is widespread agreement about its empirical shortcomings (McCawley, 1968;

Fodor, 1977). As an alternative, some critics of the Katz-Fodor theory (e.g. (Johnson-Laird, 1983)) have

abandoned the treatment of selectional constraints as semantic, instead treating them as indistinguishable

from inferences made on the basis of factual knowledge. This provides a better match for the empirical

phenomena, but it opens up a different problem: if selectional constraints are the same as inferences in general,

then accounting for them will require a much more complete understanding of knowledge representation

and inference than we have at present.

The problem, then, is this: how can a theory of selectional constraints be elaborated without first having

either an empirically adequate theory of defining features or a comprehensive theory of inference?

In this dissertation, I suggest that an answer to this question lies in the representation of conceptual

knowledge. Following Miller (1990b), I adopt a “differential” approach to conceptual representation, in

which a conceptual taxonomy is defined in terms of inferential relationships rather than definitional features.

Crucially, however, the inferences underlying the stored knowledge are not made explicit. My hypothesis is

that a theory of selectional constraints need make reference only to knowledge stored in such a taxonomy,

without ever referring overtly to inferential processes. I propose such a theory, formalizing selectional

relationships in probabilistic terms: the selectional behavior of a predicate is modeled as its distributional

effect on the conceptual classes of its arguments. This is expressed using the information-theoretic measure

of relative entropy (Kullback and Leibler, 1951), which leads to an illuminating interpretation of what

selectional constraints are: the strength of a predicate’s selection for an argument is identified with the

quantity of information it carries about that argument.

In addition to arguing that the model is empirically adequate, I explore its application to two problems.

The first concerns a linguistic question: why some transitive verbs permit implicit direct objects (“John

ate �”) and others do not (“*John brought �”). It has often been observed informally that the omission of

objects is connected to the ease with which the object can be inferred. I have made this observation more

formal by positing a relationship between selectional constraints and inferability. This predicts (i) that verbs

permitting implicit objects select more strongly for (i.e. carry more information about) that argument than

verbs that do not, and (ii) that strength of selection is a predictor of how often verbs omit their objects in

naturally occurring utterances. Computational experiments confirm these predictions.

Second, I have explored the practical applications of the model in resolving syntactic ambiguity. A

number of authors have recently begun investigating the use of corpus-based lexical statistics in automatic

iv



parsing; the results of computational experiments using the present model suggest that many lexical rela-

tionships are better viewed in terms of underlying conceptual relationships. Thus the information-theoretic

measures proposed here can serve not only as components in a theory of selectional constraints, but also as

tools for practical natural language processing.
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Chapter 1

Introduction

1.1 Setting

This thesis is about lexical relationships. Its underlying premise is that the information-theoretic view of

language as a stochastic phenomenon and the linguistic view of language as a cognitive phenomenon, though

often characterized as being in opposition to each other, are not fundamentally incompatible. Although this

premise is accepted in principle by many, it seems only rarely to have found its way into actual research.

I demonstrate the compatibility of the two viewpoints by showing that selectional constraints — long

discussed by linguists and philosophers of language — can be expressed as an information-theoretic rela-

tionship in a way that respects those discussions rather than ignoring them. I argue that this formalization

has value both for linguistic analysis and for practical work in natural language processing (NLP).

In the process of doing this work, a priorityof mine has been that the ideas be coherent both to researchers

in statistical NLP methods and also to linguists and psycholinguists interested in language from a cognitive

perspective. Walking this line has not always been easy, especially with regard to methodology — I expect

that some cognitive scientists will remain unconvinced by experiments that use on-line text corpora rather

than human subjects, and that some applications-orientedNLP researchers will question the value of building

introspective knowledge into a system without regard to what the actual training and test data are going

to be. Nonetheless, I hope even those people will find the result relevant and interesting, if not ultimately

persuasive.

The proposals in this thesis are, I think, consistent with directions in which research on language from

both practical and theoretical perspectives appears to be evolving. I will mention just a few examples of

what I mean by this. First, it is becoming clear that statistical methods in natural language processing are

moving toward the integration of more linguistic information into probabilistic models — as an indication

of how much so, consider that the Penn Treebank is moving in the direction of annotating not only surface

linguistic structure but predicate-argument structure, as well (Marcus, Santorini, and Marcinkiewicz, 1993).

This makes perfect sense, since the value of a probabilistic model is ultimately constrained by how well its

underlying structure — that is, the event space over which it is defined — matches the underlying structure

of the phenomenon it is modeling. Despite references to “purely statistical” models of language, there is no

such thing: even the simple n-gram model has underlying it a finite-state model, entailing a commitment to

the view of linguistic structure criticized to such great effect by Chomsky in Syntactic Structures.

1
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Second, in studies of human sentence processing there is an increasing interest in models based on the

satisfaction of probabilistic constraints rather than the application of rules or strategies; see, for example,

(MacDonald, in press; Tabossi et al., in press). Such studies share many of the same concerns that are central

in constructing stochastic language models: how plausible is this lexical combination as compared to that

one, and given this context what is expected next? In addition, I think work in language learning is beginning

to pay increasing attention to large quantities of realistic data. This is reflected in empirical studies that use

the CHILDES data collection to confirm or refute hypotheses (e.g. (Xu and Pinker, 1992)) and in theoretical

work on language learning that takes the messy nature of real data into account (e.g. (Siskind, 1993a; Kapur,

1992)).

1.2 Argument

Selectional constraints are limitations on the applicability of predicates to arguments. For example, the

statement “The number two is blue” may be syntactically well formed, but at some level it is anomalous

— BLUE is not a predicate that can be applied to numbers. Philosophers have called examples like this one

“category mistakes,” and generative linguists have called them “selectional violations.”

The most influential theory of selectional constraints has been the one proposed by Katz and Fodor

(1964), according to which a predicate associates a set of defining features with each argument, expressed

within a restricted semantic vocabulary. Despite the persistence of this theory, however, there is widespread

agreement about its empirical shortcomings (McCawley, 1968; Fodor, 1977). As an alternative, some

critics of the Katz-Fodor theory (e.g. (Johnson-Laird, 1983)) have abandoned the treatment of selectional

constraints as semantic, instead treating them as indistinguishable from inferences made on the basis of

factual knowledge. This provides a better match for the empirical phenomena, but it opens up a different

problem: if selectional constraints are the same as inferences in general, then accounting for them will

require a much more complete understanding of knowledge representation and inference than we have at

present.

The problem, then, is this: how can a theory of selectional constraints be elaborated without first

having either an empirically adequate theory of semantic features or a comprehensive theory of conceptual

knowledge and inference?

I will suggest that an answer to this question lies in the representation of conceptual knowledge. Fol-

lowing Miller (1990b), I adopt a “differential” approach to conceptual representation, in which a conceptual

taxonomy is defined in terms of inferential relationships rather than definitional features. Specifically,

knowledge about words is represented in terms of other words whose meanings they share. I characterize

the notion of “sharing” a meaning in terms of plausible entailments: two words share a meaning if there is a

representative context in which they are mutually substitutable without changing the inferences one would

ordinarily be licensed to draw. Crucially, however, the inferences themselves are not made explicit in the

knowledge representation. The role of inferences is indirect — they determine what the structure of the

taxonomy will be, but otherwise are not a part of the knowledge stored there.

My hypothesis is that a theory of selectional constraints need make reference only to knowledge stored

in a taxonomy of this kind, without ever referring overtly to inferential processes or to other forms of

factual knowledge. I propose such a theory, formalizing selectional relationships in probabilistic terms. The

selectional behavior of a predicate is modeled as its distributional effect on the conceptual classes of its

arguments, expressed using the relative entropy between the prior distribution of argument concepts and the
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posterior distribution of argument concepts given the predicate. Using this information-theoretic measure

leads to an illuminating interpretation of what selectional constraints are: the strength of a predicate’s

selection for an argument is identified with the quantity of information it carries about that argument.

In the computational implementation of this model, WordNet (Miller, 1990b) serves as a proxy for the

conceptual taxonomy, and on-line corpora provide linguistic input. Thus, unlike previous theories, the

present model demonstrates the capacity to acquire selectional constraints, and it has been tested using

large quantities of naturally occurring data. The performance of the implementation supports the empirical

adequacy of the theoretical model: without additional special-purpose algorithms, the implemented model

shows appropriate behavior when confronted with traditional examples considered by Katz and Fodor, and

their critics.

The remainder of the thesis concerns the application of the theory to two problems. First, I consider a

linguistic question: why some transitive verbs permit implicit direct objects (“John ate �”) and others do not

(“*John brought �”). It has often been observed informally that the omission of objects is connected to the

ease with which the object can be inferred. I have made this informal observation more precise by positing

a relationship between selectional constraints and inferability. This would predict (i) that verbs permitting

implicit objects select more strongly for (i.e. carry more information about) that argument than verbs that

do not, and (ii) that strength of selection is a predictor of how often verbs omit their objects in naturally

occurring utterances. Computational experiments confirm these predictions.

Second, I explore the practical applications of the model in resolving syntactic ambiguity, following a

number of authors (e.g. Hindle and Rooth (1991; 1993)) who have recently begun investigating the use of

corpus-based lexical statistics in parsing. The hypothesis considered here is that many lexical relationships

reflect underlying conceptual relationships, and that statistical disambiguation strategies should take those

into account. Like approaches that create and use word classes on the basis of distributional behavior in text

corpora, this provides some measure of resistance to the problem of data sparseness. Unlike those approaches,

however, the use of knowledge-based rather than distributional classes provides a clear interpretation for

what is in a class, and takes advantage of existing on-line knowledge sources. Although the use of semantic

or conceptual word classes in disambiguation has been investigated using a small set of semantic primitives

or text from a restricted domain (Basili, Pazienza, and Velardi, 1991; Chang, Luo, and Su, 1992; Grishman

and Sterling, 1992; Weischedel et al., 1991), to my knowledge the present work is the first to apply statistical

disambiguation techniques using a large-scale conceptual taxonomy to unrestricted text corpora. The results

suggest that the information-theoretic measures proposed here can serve not only as components in a theory

of selectional constraints, but also as tools for practical natural language processing.

1.3 Chapter Summaries

Chapter 2. In this chapter, I discuss the use of corpus-based statistics to capture lexical properties. After

illustrating how some limitations of statistics based solely on word co-occurrence suggest generalizing from

words to word classes, I discuss the alternatives of using classes based on distributional similarity and using

classes based on taxonomic knowledge. I then propose to compute class-based statistics using a knowledge-

based, conceptual taxonomy, detailing the semantics of such a taxonomy and discussing how class-based

probabilities are estimated.
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Chapter 3. This chapter represents the core of the thesis. Limits on the applicability of predicates to

arguments have variously been called sortal constraints, selection (or selectional) restrictions or constraints,

and type rules. A review of the literature on such constraints suggests two different ways in which they can be

characterized: a “semantic” approach, which has been questioned on empirical grounds, and an “inferential”

approach, for which the theoretical issues are at present poorly understood. In this chapter, I propose a

new, information-theoretic formalization of selectional constraints based on the taxonomic representation

introduced in Chapter 2, and argue that it addresses both theoretical and empirical concerns.

Chapter 4. In this chapter, I investigate one application of the model proposed in Chapter 3, exploring

the relationship between selectional constraints and argument omissibility for verbs in English. It has been

observed that the ability of some verbs to omit their objects is connected with the inferabilityof properties for

that argument, and that inferability can to a great extent be identified with the selectional information carried

by the verb. This hypothesis is supported by a computational study: the first experiment demonstrates that

verbs permitting implicit objects tend as a group to select more strongly for that argument than obligatorily

transitive verbs; the second experiment demonstrates that the tendency in practice to drop the object of verbs

correlates with selectional preference strength; and a third experiment investigates the inferability of direct

objects for verbs that do and do not require a salient antecedent for that argument in order for it to be omitted.

I conclude the chapter with a discussion of some possible implications of this study for accounts of verb

acquisition by children.

Chapter 5. In this chapter, I investigate a second application of the model proposed in Chapter 3, exploring

the use of the implemented model as a statistical method for resolving syntactic ambiguity in process-

ing unconstrained text. I argue that a number of “every way ambiguous” constructions — in particular,

prepositional phrase attachment, coordination, and nominal compounds — can be resolved by appealing

to conceptual relationships such as selectional preference and semantic similarity, and that class-based,

information-theoretic formalizations of these notions provide a practical way to do so.

Chapter 6. I summarize the contributions of the dissertation, and present some thoughts on future work.



Chapter 2

Word Classes in Corpus-Based
Research

In this chapter, I discuss the use of corpus-based statistics to capture lexical properties. After

illustrating how some limitations of statistics based solely on word co-occurrence suggest

generalizing from words to word classes, I discuss the alternatives of using classes based on

distributional similarity and using classes based on taxonomic knowledge. I then propose to

compute class-based statistics using a knowledge-based, conceptual taxonomy, detailing the

semantics of such a taxonomy and discussing how class-based probabilities are estimated.

2.1 Overview

It has become common in statistical studies of natural language data to use measures of lexical association to

extract useful relationships between words. To take a few examples, (Smadja, 1991) uses lexical association

measures to extract collocation information from large corpora for use in language generation, (Church and

Hanks, 1989) propose the use of mutual information to estimate word association norms on the basis of

lexical co-occurrence, and (Yarowsky, 1993) shows that local word co-occurrences provide reliable cues for

sense disambiguation. (See (Church et al., 1991) for a useful overview of statistical techniques for lexical

analysis.)

Lexical association has its limits, however, since often either the data are insufficient to provide reliable

lexical correspondences, or a task requires more abstraction than solely lexical correspondences permit. In

the next section I illustrate these points by looking at one application of lexical association — a proposal

by (Hindle, 1990) to use mutual information in capturing predicate-argument relationships. In the sections

that follow, I discuss the extension of lexical relationships to class-based relationships, and consider the

advantages and disadvantages of constructing word classes on the basis of lexical distributions in corpora.

I then turn to the possibility of using word classes defined in terms of a knowledge-based taxonomy. In

particular, I consider the theory of lexical representation implemented in WordNet (Beckwith et al., 1991),

which is closely related to a proposal by Sparck Jones (1964). The chapter concludes with a straightforward

method for estimating probabilities in such a noun-class taxonomy on the basis of lexical co-occurrence in

5
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a corpus; this will lay the groundwork for the information-theoretic model of selectional constraints to be

proposed in Chapter 3.

2.2 Lexical Statistics and their Limitations

Recent discussions of lexical statistics often begin with mutual information, an information-theoretic measure

of association used with natural language data to gauge the “relatedness” between two words. The mutual

information between two words x and y is defined as follows:

I�x; y� � log
p�x� y�

p�x�p�y�
� (2.1)

Intuitively, the probability of seeing x and y together, p�x� y�, gives some idea as to how related they are.

However, if x and y are both very common, then it is likely that they appear together frequently simply by

chance and not as a result of any relationship between them. In order to correct for this possibility, p�x� y� is

divided by p�x�p�y�, which is the probability thatx and y would have of appearing together by chance if they

were independent. Taking the logarithm of this ratio gives mutual information some desirable properties; for

example, its value is respectively positive, zero, or negative according to whether x and y appear together

more frequently, as frequently, or less frequently than one would expect if they were independent.

Another quite useful interpretation of mutual information can be derived by looking at the information-

theoretic notion of entropy. The entropy of a random variable X is defined as the expected value of

� log p�x�. That is,

H�X� � E
�
� log p�x�

�
� �

X
x

p�x� logp�x�� (2.2)

where the summation is over all possible values of X. The quantity H�X� is, roughly speaking, a measure

of how uncertain we are about the value that X will have. The conditional entropy of X given another

random variable Y measures the uncertainty of X, given that the value of Y is known:

H�XjY � � E
�
� log p�xjy�

�
� �

X
x�y

p�x� y� log p�xjy�� (2.3)

Clearly, H�XjY �, the uncertainty about X given that you know the value of Y , is always less than or equal

to H�X�, since any additional knowledge about Y can only decrease (or at worst have no effect on) our

uncertainty about X.

Now, the mutual information of random variables X and Y is:

I�X;Y � � E

�
log

p�x� y�
p�x�p�y�

�
� H�X� � H�XjY �� (2.4)

Notice that this is just the expected value for the quantity defined in equation (2.1), which is also known

more precisely as “pointwise mutual information.”
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H�X�

I�X�Y�

H�X j Y�

Uncertainty

about X

Uncertainty

about X� if

you know Y

Amount of information
Y gives you about X

Figure 2.1: Relationship between mutual information and entropy

As equation (2.4) shows, mutual information is a measure of how much information Y provides about

X — that is, how much it decreases uncertainty.1 This relationship between mutual information and entropy

is depicted in Figure 2.1.

As an example of how mutual information has been used in corpus-based work, consider Hindle’s (1990)

application of mutual information to the discovery of predicate-argument relations. Unlike some researchers

who restrict themselves to surface distributions of words, Hindle investigates word co-occurrences as

mediated by syntactic structure — that is, words x and y are counted as appearing together whenever

they stand in a certain syntactic relationship to each other (e.g. subject, object) within a sentence. A

six-million-word sample of Associated Press news stories was parsed in order to construct a collection

of subject-verb-object instances. On the basis of these data, Hindle calculated a co-occurrence score (an

estimate of mutual information) for verb-object pairs and verb-subject pairs. Table 2.1 shows the verb-object

pairs for the verb drink that occurred more than once, ranked by co-occurrence score, “in effect giving the

answer to the question ‘what can you drink?”’ (Hindle, 1990, p. 270).

Hindle’s proposal illustrates two limitations of using mutual information between words as a measure of

predicate-argument association:

� Sparseness of data: the corpus may fail to provide sufficient information about relevant word-word

relationships

� Lack of abstraction: word-word relationships, even those supported by the data, may not be the

appropriate relationships to look at for some tasks.

Indeed, any of a family of statistics based solely on lexical co-occurrences — including mutual information,

t-score (Church et al., 1990), �2, and so forth — suffers from these limitations. Let us consider them in turn.

1Being symmetrical, it also measures how much information X provides about Y . See (Cover and Thomas, 1991) for a clear
discussion of mutual information and related topics.
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score verb object

12.34 drink bunch (of) beer
11.75 drink tea
11.75 drink Pepsi
11.75 drink champagne
10.53 drink liquid
10.20 drink beer
9.34 drink wine
7.65 drink water
5.15 drink anything
2.54 drink much
1.25 drink it
1.22 drink SOME AMOUNT

Table 2.1: Verb-object pairs for drink (with count � 1)

score verb object count

7.76 open closet 2
6.93 open mouth 9
6.79 open door 32
6.14 open window 5
5.88 open store 2
5.76 open season 2
4.54 open church 2
4.49 open heart 2
4.24 open eye 7
2.38 open way 4

Table 2.2: Verb-object pairs for open (with count � 1)

First, as in all statistical applications, it must be possible to estimate probabilities accurately. Although

larger and larger corpora are increasingly available, the specific task under consideration often can restrict the

choice of corpus to one that provides a smaller sample than necessary to discover all the lexical relationships

of interest. This can lead some lexical relationships to go unnoticed.

For example, the Brown Corpus of American English (Francis and Kučera, 1982) has the attractive

(and for some tasks, necessary) property of providing a sample that is balanced across many genres. In

an experiment using the Brown Corpus, modeled after Hindle’s (1990) investigation of predicate-argument

relationships, I calculated the mutual informationbetween verbs and the nouns that appeared as their objects. 2

Table 2.2 shows objects of the verb open. As in Table 2.1, the listing includes only verb-object pairs that

were encountered more than once.

Attention to the verb-object pairs that occurred only once, however, led to an interesting observation.

Included among the “discarded” object nouns was the following set: discourse, engagement, reply, program,

and session. Although each of these appeared as the object of open only once — too infrequently to provide

reliable probability estimates — this set, considered as a whole, reveals an interesting fact about some kinds

of things that can be opened, roughly captured by the notion of communications. More generally, several

2Direct objects in this experiment were identified using the parsed version of the Brown corpus found in the Penn Treebank.
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pieces of statistically unreliable information at the lexical level may nonetheless capture a useful statistical

regularity when combined. This observation motivates an approach to lexical association that makes such

combinations possible.

The second limitation of word-word associations is simply this: some tasks are not amenable to treatment

using lexical relationships alone. An example is the automatic discovery of verb argument preferences for

natural language systems. Here, the relationship of interest holds not between a verb and a noun, but between

the verb and a class of nouns (e.g. between eat and nouns representing things that are edible). Given a

table built using lexical statistics, such as Table 2.1 or 2.2, no single lexical item necessarily stands out as

the “preferred” object of the verb — the selectional restriction on the object of drink would typically be

something like “beverages” or “liquids,” not tea. Once again, the limitation seems to be one that can be

addressed by considering sets or classes of nouns, rather than individual lexical items.

2.3 Word Classes Based on Lexical Distributions

The limitations discussed in the previous section suggest a shift from looking at words to looking at groups

or classes of words. A class of words will have attributed to it the accumulated properties of its members,

even if observations of the individual members are sparse; in addition, word classes can be used to capture

higher level abstractions such as syntactic or semantic features.

A great deal of recent work addresses the creation and use of word classes using lexical distributions in

text corpora. The premise behind this approach is that the relatedness of words is reflected by similarities

in their distributional contexts, as observed in large collections of naturally occurring text. Church et al.

(1990, p. 159), discussing statistical methods and linguistic performance, sum up this idea as follows:

Our approach has much in common with a position that was popular in the 1950s. It was

common practice to classify words not only on the basis of their meanings but also on the basis

of their co-occurrence with other words. Running through the whole Firthian tradition, for

example, is the theme that “You shall know a word by the company it keeps” [Firth, 1957].

Harris’s “distributional hypothesis” dates from about the same period. He hypothesized that

“the meaning of entities, and the meaning of grammatical relations among them, is related to

the restriction of combinations of these entities relative to other entities” ([Harris, 1968], p. 12).

In this section, I will review a number of computational proposals for deriving word classes on the basis

of distributionalbehavior in corpora. These can be broken up according to the followingrough classification:

� Smoothing methods

These methods make implicit use of word classes, but do not represent them explicitly.

� Proximity methods and clustering

Proximitymethods define measures of word similarity. Clusteringmethods use proximity relationships

to form explicit word classes, but do not decompose word tokens into representations that are related

to class membership.

� Vector representations

These methods form decompositional word representations, but may or may not use these representa-

tions to derive explicit word classes.
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Dividing the distributional techniques in this way is somewhat artificial, since many methods are closely

related. For example, given a vector representation, it is always possible to derive a proximity measure

such as Euclidean distance. Similarly, given a measure of word proximity, it is always possible to perform a

cluster analysis to derive explicit classes, and given a hierarchical clustering, it is always possible to define

a similarity measure based on some notion of proximity in the hierarchy. Nonetheless, this classification

provides a way to make some helpful distinctions among the current approaches reviewed in the subsections

that follow.

2.3.1 Smoothing methods

Smoothing is a general term for the combination of multiple sources of information,often under circumstances

in which using the information at a single data point might be undesirable or misleading. For example, given

a set of data points plotted in two dimensions, it may be uninformative to simply draw a curve that goes

through each individual data point �x� y�; such a curve might be jagged and hard to interpret, as opposed

to a smooth curve that misses some points but reveals a general trend in the data. In the absence of some

parametric model (e.g. finding the parabola that best fits the data), a smooth curve can be obtained by

“averaging” each data point together with the nearby points.3 Thus in a sense a point together with its nearby

points constitutes a class, and the properties of the class are derived from the properties of its individual

members.

For purposes of language processing, the “points” of interest are typically words or sequences of words.

For example, the language model in a speech recognition system generates hypotheses about what the next

word will be, on the basis of a previous word sequence. Hypotheses take the form of a conditional probability

distribution p�Wkjw1� � � � � wk�1�, where random variable Wk ranges over possible words to be predicted,

and word sequence w1� � � � � wk�1 is the prior context. In many speech systems, it is assumed that words are

produced according to an underlying Markov model, so that the distribution is well approximated by

p�Wkjw1� � � � � wk�1� � p�Wkjwk�n� � � � � wk�1�� (2.5)

where n is the order of the Markov model. Notice that this approximation implicitly represents a grouping of

word sequences into classes, since all sequences for whichwk�n� � � � � wk�1 is the same are treated identically.

For trigram models, where n � 2, this means that the sequences (I’ll,see,him,after) and (She,met,him,after)

are equivalent — in both cases dinner and the are each reasonable hypothesis about the word that will follow.

However, often even this equivalence classification of prior word sequences is insufficient, because the data

are too sparse to estimate probabilities accurately: even for a corpus of reasonable size, many trigrams do

not occur at all.

One method proposed for solving this problem is the technique of interpolated estimation (Jelinek and

Mercer, 1980; Bahl, Jelinek, and Mercer, 1983), in which several probability estimators are smoothed

together. The central idea behind interpolated estimation is to take a linear combination of several estimates,

weighting each according to how reliable it is. That is,

ep�wj�� �
X
i

�i��i����p�wj�i����� (2.6)

where w is a possible word to be predicted, � is the prior context, each �i is a different equivalence class

function, and �i��i���� must always sum to 1. As an example, consider the case where � � w1� � � � � wk�1,

3See discussion and references in (Press et al., 1988).
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and

�1��� � wk�2� wk�1

�2��� � wk�1�

Here, the first estimator uses two previous words of context, and the second estimator uses just one word of

context. Clearly it is better to use more information when it is available, so ��1��� will be high relative to

��2��� when �1��� occurs frequently; when it does not, ��2��� will be accordingly higher. Jelinek et al.

discuss methods for estimating the �i using held-out data in order to achieve this behavior.

(Bahl et al., 1989) discuss a related approach to combining estimators, in which the equivalence classes

are determined not simply by applying an nth-order Markov assumption for varying n, but by classifying

prior contexts using a decision tree. The process of classifying a context sequence w1� � � � � wk�1 involves

starting at the top node of the tree and descending along a path until a leaf is reached. At each node, the choice

of which branch to descend is made on the basis of a question at that node (e.g., is wk�1 a determiner?).

Thus the top node of the tree can be viewed as implicitly representing an exhaustive equivalence class,

and the nodes along a path represent progressively narrower equivalence classes, comprising those context

sequences for which all the questions up to this point have been answered the same way.

There are many ways to construct decision tree classifiers, the most common of which is to start with

the full set of training data at the root, and to proceed top down, recursively partitioning nodes according

to the partition that optimizes some measure such as information gain (Quinlan, 1990). In (Bahl et al.,

1989) the best partition — and hence the choice of equivalence classes created at this branch — is chosen

by minimizing the average conditional entropy H�Wkjci� over the equivalence classes fcig in the partition.

The conditional entropy at a leaf measures the uncertainty of the prediction made at that leaf, based on the

training data.

Because the training data are partitioned at each branching point, by the time a leaf is reached the class

it represents may be too small to support statistically reliable predictions. Accordingly, many decision tree

construction algorithms prune paths below a certain point (e.g., (Breiman et al., 1984)), increasing the size of

the classes represented by the leaves of the tree. Bahl et al. take a different approach: they apply interpolated

estimation, using estimators based on the equivalence class represented at each node. Specifically, p�wj��

is calculated by classifying � in the tree, and then computing

ep�wj�� � �rp�wj�r���� � � � �� �lp�wj�l����� (2.7)

where nr� � � � � nl are the nodes on the path that was taken from root to leaf and�r � � � � � �l are the equivalence

classes associated with those nodes. As before, the �i are estimated on the basis of held-out data, with the

end result being that the nodes in a path contribute according to how reliably the prediction at that node can

be estimated.

In summary, both n-gram and decision tree word prediction methods make implicit use of equivalence

classes of word sequences; in the case of decision-tree techniques, a constructed tree implicitly represents

a set of equivalence classes derived according to lexical distributions in the training data. Interpolated

estimation is one way to combine predictions made on the basis of different equivalence classes.

(Grishman and Sterling, 1993), investigating the automated acquisition of selectional constraints, apply

co-occurrence smoothing (Essen and Steinbiss, 1992), a technique in which prediction information fordistinct

words is combined on the basis of their distributional similarity. A matrix P C of confusion probabilities is

constructed on the basis of lexical distributions: PC�wj jwi� indicates the probability on average that word
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wj will occur in a context in which wi occurs. Using this matrix, the likelihood of a word w given some

context can be estimated robustly by combining the likelihoods of all other wordsw � given that same context,

weighting the contribution of each w � by its confusability with w. For example, a smoothed trigram model

would be computed as follows:

ep�wnjwn�2� wn�1� �
X
w�

n

PC�w
�
njwn�p�w�

njwn�2� wn�1�� (2.8)

In general, any property of interest can be smoothed in this fashion: if f is some value based on w, then

f̃�w� �
X
w�

PC�w
�jw�f�w��� (2.9)

Grishman and Sterling smooth frequencies of relational triples (e.g. [like,subject,Mary]) and demonstrate

that the smoothed frequencies yield improved performance over unsmoothed frequencies in constraining the

output of a robust parser.

Co-occurrence smoothing and interpolated estimation are similar in the sense that each computes a

smoothed value by weighting the contributions of multiple estimators. However, in the applications of

interpolated estimation described above, each estimator is associated with a set of words (or word sequences)

that are treated as equivalent. In contrast, co-occurrence smoothing utilizes not equivalence classes, but

a continuous measure of relatedness among the words for which estimated values are combined; in this

respect, it strongly resembles proximity methods.

2.3.2 Proximity methods and clustering

Since a number of techniques for measuring the similarity (or dissimilarity) of words can be viewed as

representing proximity in some semantic space, I will group such techniques under the label of “proximity

methods.” Generally, these methods work by using the frequency with which two words appear in the

same contexts, together with their frequencies in other contexts, to compute a single value representing their

proximity. Proximity need not be symmetric — for example, in (Grishman and Sterling, 1993) the confusion

probabilityPC�wjjwi� need not be the same as PC�wijwj�. In addition to its intuitive plausibility, the idea

that shared contexts indicate semantic similarity appears to have some psychological validity: (Miller and

Charles, 1991) show that the discriminability of word contexts correlates inversely with semantic similarity

ratings.4

Given a measure of proximity, clustering techniques are used to organize data into groupings of similar

entities. It is important to note that traditionalapplications of data clustering are used for exploratory analysis

of existing data. Jain and Dubes (1988, p. 1) write:

The objective of cluster analysis is simply to find a convenient and valid organization of the

data, not to establish rules for separating future data into categories. Clustering algorithms are

geared toward finding structure in the data.

This must be distinguished from the automatic learning of classifiers based on training data. Weiss and

Kulikowski (1991, p. 17) write:

4Miller and Charles determined contextual similarity by having subjects sort sentential contexts (sentences with the target word
blanked out) for pairs of target words. In one experiment the sentences came from the Brown corpus, and, in a replication, a separate
group of subjects generated sentences containing the target words. They discuss the comparative advantages and disadvantages of
contextual similarity measures based on substitutability versus overlap of co-occurring words.
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The objective of learning classifications from sample data is to classify and predict successfully

on new data.

Despite the apparent opposition, of course, there are important relationships between cluster analysis and

statistical pattern classification. For example, k-nearest neighbor classifiers in effect make use of proximity

to form clusters: a new pattern is classified by first seeking an exact match in the training data, and then, if

one is not found, choosing the class that appears most frequently among the k training items that are closest

(or most similar) to the new pattern (Weiss and Kulikowski, 1991, p. 70). Most of the work to be described

here is intended to be used by first fixing a training corpus, and then applying the resulting word classes to

new data, so in general these techniques seem closer to classifier learning than to traditional exploratory data

analysis. However, experimental results are often evaluated by inspecting the cohesiveness of the clusters

that result from training.

One useful way to organize a discussion of word proximity methods is according to the way they

determine that two words occur in similar contexts. Perhaps the simplest interpretation of context is string

co-occurrence: one word is said to appear in the context of another if the two words are adjacent, or, more

generally, if the context word appears within some fixed distance to the left or right. (Church and Hanks,

1989) observe that this form of context may help lexicographers identify useful semantic classes: they

suggest that by ranking the words occurring to the right of a word (in their example, the verb save) by mutual

information, useful patterns may emerge. In effect, their suggestion amounts to computing a word proximity

measure, using the word save some distance to the left as the shared context, although no explicit measure

of similarity is ever computed.

(Brown et al., 1992) make more direct use of mutual information in determining word classes: they

create a hierarchical clustering of words in a vocabulary by first assigning each word to its own cluster, and

then merging clusters bottom up, at each point choosing to merge the pairs of clusters for which the loss

of average mutual information is least. Here mutual information between clusters is calculated using string

adjacency. That is, two clusters c1 and c2 co-occur when a pair w1w2 occurs in the training text, where

w1 � c1 and w2 � c2 — thus the model underlying the clustering criterion is a bigram model.

Brill (1990; 1991) has also investigated bigram-based word clustering; however, his methods operate by

specifying a parameterized measure of word proximity based on similarity of bigram distributions, rather

than maximizing mutual information. By varying the strictness of the similarity criterion from more to less

stringent, a hierarchical clustering results.

Along similar lines, (Bensch and Savitch, 1992) use string adjacency to determine word co-occurrence,

representing the context of each word instance as the pair comprising the preceding and following word.

However, unlike most distributionalapproaches to word clustering, they ignore frequencies of co-occurrence,

and compute a score, the Tanimoto coefficient, based simply on the number of shared and unshared contexts.

Thus what is relevant is not how often two words occur in a shared context, but whether that context is

shared at all. Given a word proximity measure based on the Tanimoto coefficient, Bensch and Savitch create

a clustering by first creating a fully connected graph of the words in the vocabulary, with proximities on

the arcs, and then constructing the minimum spanning tree for the graph. (In this respect the technique is

a specialization of the Pathfinder algorithm (Schvaneveldt, Durso, and Dearholt, 1989), which also begins

with a fully connected graph and produces a network structure. Pathfinder permits two user-set parameters to

vary, and at one extreme value of the parameters the “minimal” network is produced, consisting of the unique

minimal spanning tree if there is one, and the union of all edges in any minimal spanning tree, otherwise.)
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String co-occurrence within a window is a very coarse-grained way to capture linguistic relationships,

and as the size of the window increases, the amount of noise — that is, the frequency of irrelevant co-

occurrences — increases. Given a syntactic analysis, however, it is possible to define word contexts using

relationships that are more constrained and linguistically well motivated. For example, (Hindle, 1990)

proposes a method for classifying nouns on the basis of the verbs for which they appear as arguments, as

determined using a robust parser. The similarity of two nouns n 1 and n2 with respect to a single verb is

defined using mutual information: the “object similarity” (similarity relative to the direct object position) is

taken to be zero if one noun has positive mutual information and the other negative mutual information with

the verb; otherwise this verb can be considered a shared context, and the strength of similarity in this context

is quantified by minimizing the magnitude of the two mutual information values. “Subject similarity” is

defined analogously, and overall similarity is defined as the sum of subject and object similarity for the two

nouns, summed up over all verbs. Grefenstette (1992) has taken a similar approach, though using a broader

set of syntactic relationships, and using the Jaccard measure rather than mutual information. Both Hindle

and Grefenstette produce a similarity-based ranking of words for a given noun, though an explicit clustering

is never constructed.

(McKeown and Hatzivassiloglou, 1993) apply a distributional method not unlike Grefenstette’s to the

clustering of adjectives on the basis of the nouns they modify. For purposes of measuring similarity, they

employ Kendall’s � coefficient, a non-parametric statistic. Unlike the other distributionally-based clustering

methods described here, McKeown and Hatzivassiloglou provide their algorithm with negative evidence

derived from the corpus using linguistic knowledge: essentially, they assume that two adjectives modifying

the same instance of a noun cannot be modifiers on the same scale and therefore should not be grouped

together. (For example, the phrase the tall, dark man provides evidence that tall and dark belong in different

classes.)

(Pereira, Tishby, and Lee, 1993) also use argument relationships to determine similarity, producing a

clustering of nouns based on the verbs for which they appear as direct objects. Words and clusters are

represented using the probability distribution for co-occurrence with verbs, and similarity (really dissimi-

larity) is measured using the relative entropy between distributions. The use of relative entropy yields a

useful information-theoretic interpretation of the relationship between a word and a cluster: it measures

how costly it would be, in bits of information, to use the distribution associated with the cluster rather than

the distribution associated with the noun itself. It is important to note that this method, unlike many of the

others, produces clusters that are not discrete: cluster membership is a matter of degree.

2.3.3 Vector representations

In most of the techniques described above, the set of contexts in which a word appears can be thought of as

a representation for that word in a “semantic” space, the dimensions of which are identified with the set of

words in the vocabulary. For instance, if there are k words in the vocabulary, then the frequency distribution

of words appearing to immediately to the left of a word can be represented as a k-ary vector of integers. In

(Bensch and Savitch, 1992), where co-occurrence is relevant but frequency of co-occurrence is not, a word’s

context can be interpreted as a vector of binary features.

Under the heading of “vector representation” methods, I will describe a set of techniques that construct

word representations on the basis of lexical distributions. In most cases, the resulting representations arise

by means of a reduction in the dimensionality of the semantic space determined by the full vocabulary.
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To begin with an exception, however, the mutual information clustering method of Brown et al., de-

scribed above, can be seen as producing not only a hierarchy of discrete clusters, but also a bit-vector

representation for each word in the vocabulary. The derivation of representations from the cluster hierarchy

is straightforward: if M is the height of the hierarchy — that is, the length of the longest path from the top

of the hierarchy to a word at the bottom — then one need only label each connecting branch in the hierarchy

with either a 0 or a 1, according to the direction of the branch. The resulting bit-vector representation of

each word is the sequence of bits encountered on the path from the top of the hierarchy to that word, where

any sequence of length less than M is padded on the right with sufficiently many 0 bits to make its length

exactly M . Notice that the “meaning” of each bit in the representation will depend on the sequence of bits

preceding it, so the vector does not really identify a point in an M -dimensional space. Nonetheless, such a

representation is useful in contexts where the order-dependence of the bits can be exploited — for example,

in a binary decision tree, where classification is accomplished by asking questions one bit at a time.

In the connectionist community, a fair amount of work has taken place under the rubric of “distributed

representations” — that is, representing a word (or anything else of interest, for that matter) as a pattern of

activity across a set of nodes in a neural network. In many cases, these representations are “subsymbolic,”

in the sense that no individual node constitutes the representation for a single concept or semantic feature.

A thorough description of the connectionist literature on this topic is beyond the scope of this discussion;

however, see (Smolensky, 1988) on the “sub-symbolic paradigm,” and (Smolensky, Legendre, and Miyata,

1992) for an illuminating discussion on the relationship between connectionism and the study of language,

as well as pointers to the connectionist literature.

One interesting and influential example of connectionist work on lexical representation is a study by

Elman (1990) on the automatic discovery of syntactic/semantic features for words. Elman proposes an

extension of the ubiquitous “feed-forward” network architecture — comprising a layer of input units, one

or more layers of hidden units, and a layer of output units — in which the input at any time step includes

the activations of the hidden units from the previous time step. 5 This “recurrent” network model is trained

on (artificially constructed) sentences, in which each word is represented as a bit vector with a single bit

active. Its task is to predict the next word at each time step, on the basis of the information at the input units.

Since these encode previous context, training the network is not unlike automatically constructing a kind of

Markov model. What is of interest here, however, is not performance on the prediction task, but rather the

generalizations the network has been forced to make in order to learn to make its predictions. Elman writes:

[The] network seems to have learned to approximate the likelihoodratios of potential successors.

How has this been accomplished? The input representations give no information (such as form-

class) that could be used for prediction. The word vectors are orthogonal to each other. Whatever

generalizations are true of classes of words must be learned from the co-occurrence statistics,

and the composition of those classes must itself be learned. . . . [One] might expect to see

these patterns emerge in the internal representations which the network develops in the course

of learning the task. These internal representations are captured by the pattern of hidden unit

activations which are evoked in response to each word and its context.

Elman studies these internal representations by constructing for each word a single vector representation,

computed by averaging the vectors of hidden-unit activity for the word in each context in which it appears.

These vector representations are subjected to a hierarchical cluster analysis. The resulting hierarchy shows

5This architecture is a variation on a proposal by Jordan (1986). A similar architecture to Elman’s is proposed in (Allen, 1990).
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that the similarity structure of representations accords with the syntactic and semantic character of the words

they represent — for example, the major distinction is between verbs and nouns, within the verb cluster

there are sub-clusters corresponding to different subcategorizations, and within the noun cluster there are

divisions and subdivisions according to animacy, humanness, and so forth.

It is important to note that Elman’s model appears to depend to a great extent on the orthogonality

of the input representations, since if these representations do not start out as equally dissimilar, spuri-

ous representational similarities between unrelated words could dominate discovered similarities based on

distributional evidence. (In a small study investigating this problem, I found that representing words by

non-orthogonal bit-vectors did, in fact, lead to this problem of spurious similarity (Resnik, 1991). Initial

experiments indicated that the problem could be overcome by making the hierarchical clustering sensitive

not to the distance between internal representations, but to the relative movement of word representations in

representational space over the course of training.) It is also important to note that Elman’s method requires

multiple co-occurrences in the training data, and perhaps depends on these to a greater extent than statistical

methods where low counts can nonetheless be used to compute reasonable probability estimates. It is this

concern, in fact, that motivated Bensch and Savitch to explore a frequency-independent method for word

classification.

(Schütze, to appear) has investigated the acquisition of distributed representations on a far larger scale

than Elman. The heart of his method is a reduction of dimensionality in a semantic space using singular-value

decomposition. Schütze first constructs a large matrix containing frequencies of lexical co-occurrence in a

string; a singular-value decomposition is then performed on this matrix, and 97 singular values extracted,

resulting in vector representations that constitute points in a 97-dimensional “semantic space.” 6 Since

the singular-value decomposition of a matrix provides the best possible least-squares approximation to the

original matrix using the reduced number of dimensions, the resulting 97-dimension vectors will be similar

if the original 5000-dimension vectors were.7

2.3.4 Discussion

There has clearly been a great deal of interesting research on the automated acquisition of word classes based

on lexical distributions — the discussion above illustrates some real variety among approaches, and it is

not exhaustive. The results thus far are promising: in most of the works just described, the authors present

automatically derived word classes that on inspection seem entirely plausible.

However, despite their obvious potential, it is difficult to assess the value of these distributional class

methods at present, and even when there are clear successes, it is particularly difficult to compare the

advantages and disadvantages of alternative proposals. For example, Brown et al. (1992) succeed in using

classes to reduce the space required for storing a language model, but are less successful in their ultimate

goal of increasing the model’s predictive power on unseen data. Most of the other methods discussed pursue

other goals, with ensuing difficulties in drawing comparisons; for example, although Grishman and Sterling

(1993) achieve an improvement in performance according to their evaluation metric — essentially success at

identifyingunlikely relational triples — those results are not evaluated against any other statistical smoothing

method or, indeed, any of the other techniques for making use of lexical class information. Among the other

authors presenting formal evaluations of their proposals, we find still other methods for assessment: Pereira

6For reasons of practicality co-occurrences were taken with respect to four-letter subsequences rather than entire words in some of
Schütze’s work; however, his most recent work makes direct use of word co-occurrences, e.g. (Schütze, 1993).

7See (Deerwester et al., 1990) for a related application of singular-value decomposition in information retrieval
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et al. (1993) measure the relative entropy of held-out test data against the trained cluster models, as well as

performance on an artificial verb-choice task, and Schütze (to appear) applies his statistically-derived lexical

representations to the task of resolving word sense ambiguity.

This difficulty in evaluating alternative methods is by no means isolated to the problem of deriving and

using word classes, and undoubtedly more systematic comparisons will be undertaken as further progress is

made. However, in addition to the question of evaluation, several other issues are worth noting.

Computational expense. The derivation of word classes based on lexical distributions can be extremely

expensive in computational terms. Brown et al. (1992) note that they have no practical method for finding

an optimal solution to partitioning words into classes, and that even the suboptimal greedy algorithm they

use takes O�V 5� time (where V is the size of the vocabulary) if implemented straightforwardly, andO�V 3� if

implemented cleverly. For vocabularies that are still too large to handle, they present a further approximation

according to which the assignment of words to classes proceeds incrementally, holding the total number of

classes constant as new words are added. Computations of this kind can take anywhere from days to weeks

of real time, and runs of several months are not unheard of.8

Although there is in principle nothing wrong with algorithms that require long-term computation —

especially given rapid increases in computational power — increased computing power may not succeed

in catching up with the time complexity of statistical algorithms. More important, it may be that the

computationally intensive nature of statistical approaches slows down the rate of progress. Since training

a statistical model requires a global computation relative to the entire corpus, and since statistics based on

a subset of the corpus may not adequately reflect the whole, testing each new idea requires computation

on a large scale. On the other hand, it may be that the automated discovery of information by statistical

means is worth the wait, when compared to the even longer time-course of knowledge acquisition by hand.

For example, (Magerman, 1993) reports parsing results obtained by statistical methods, trained in weeks

or months, that are comparable to the performance of a grammar developed for the same domain by a

grammarian over the course of a decade.

Class identifiers. A potential problem with distributionally derived word classes is the fact that, in general,

the classes that emerge are not identified with symbolic labels of any kind. If classes are viewed as a means

for reducing data sparseness, as in the language model of (Brown et al., 1992) or the selectional constraints

of (Grishman and Sterling, 1993), this is not a problem — similarity measures or classifications are simply

a means for improving the probability estimates for a given word. When a symbolic component is also

involved, though, some method is needed for relating clusters to other information. For example, (Sch ütze,

to appear) manually labels clusters of word representations in order to identify word senses, and in (Sch ütze,

1993) he takes a similar approach for the identification of part-of-speech tags. The choice of classes to label

is made on the basis of a relatively small test set, and it is not clear how such an approach would be applied

in a more general setting.

The problem is compounded in cases where the classes themselves are not discrete. Pereira et al. (1993),

describing some results of their hierarchical clustering, present the nouns that are closest to the centroid of

8A quote from (Dagan, 1990) seems fairly representative of the prevailing attitude toward computational time among researchers
pursuing statistical approaches: “Although the construction of the full size database [of co-occurrence statistics] is not feasible for us,
it is clearly feasible for a large scale project. This is shown by a similar database that was implemented as part of the language model
of the IBM speech recognition system. . . . Parsing time depends upon the specific parser that is used, but with current technologies it
is reasonable to parse a fairly large corpus within several months” (emphasis added).
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each cluster — for instance, one cluster of direct objects for the verb fire is described by the set fmissile,

rocket, bullet, gung. However, every noun in the vocabulary is a member of this cluster to some degree.

If, as Pereira et al. suggest, these clusters are to be used in automatically constructing grammars, some

method for drawing sharp rather than fuzzy class boundaries seems necessary, and ultimately some way of

identifying classes symbolically as components in a grammar will be needed.

The semantics of word classes. Although the representations or classes discovered using distributional

methods are often described as “semantic,” the information captured by means of statistical distributions

often defies simple description. For example, clusters hand-selected by Brown et al. as particularly

“interesting” include the following (they list just the ten most frequent items):

� feet miles pounds degrees inches barrels tons acres meters bytes . . .

� asking telling wondering instructing informing kidding reminding bothering thanking deposing . . .

These groups are encouragingly coherent and even “semantic” in some sense — but notice that other

information is encoded, as well, such as number (plural units of measurement) and inflection (verbs of

communication in the progressive).

Among their randomly selected rather than hand-picked classes, it is not clear exactly what information

is being captured even in the more coherent cases:

� rise focus depend rely concentrate dwell capitalize embark intrude typewriting . . .

� aware unaware unsure cognizant apprised mindful partakers . . .

For example, with the exception of rise and typewriting, the clustering of focus, depend, and so forth seems

primarily to capture a set of verbs that tend to be followed by on. The distributional property of being

followed by of seems highly relevant for the rather more related group containing aware, unaware, and so

forth, but also appears to pull in the incongruous partakers. Many of the other randomly selected classes

appear to have some connecting link among the most frequent items, but become increasingly opaque beyond

the first few:

� cost expense risk profitability deferral earmarks capstone cardinality mintage reseller . . .

� force ethic stoppage force’s conditioner stoppages conditioners waybill forwarder Atonabee . . .

� industry producers makers fishery Arabia growers addition medalist inhalation addict . . .

Many of the examples selected at random by Schütze (to appear) to illustrate his results have a similar

character:

� disable: deter intercept repel halting surveillance shield maneuvers

� kid: dad kidding mom ok buddies Mom Oh Hey hey mama

It would seem that the information captured using these techniques is not precisely syntactic, nor purely

semantic — in some sense the only word that appears to fit is distributional. Of course, Brown et al.

do not make any claims to the contrary for the above data. They do, however, propose another technique

specifically for the purpose of identifying “semantically sticky” groups of words. Again, the hand-selected

set of classes they present are encouraging; for example, the following:
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� we our ourselves ours

� question questions asking answer answers answering

� write writes writing written wrote pen

� school classroom teaching grade math

� attorney counsel trial court judge

But again it is not clear what links the members of these classes — pen and writingare undoubtedlyassociated

in some sense, as are judge and trial or math and classroom, but it is difficult to go beyond that to a discussion

of what general properties hold of classes discovered by this procedure. The best description seems to be

“words that tend to appear in similar contexts,” which is no more than a restatement of the method by which

the classes were derived.

To be fair, it is far from clear exactly what the criteria of success should be for an automatic discovery

procedure aimed at identifying “semantic” classes. (Miller, 1971) describes four different general methods

used by psychologists to investigate semantic similarity among lexical items, and the psychologists’ criteria

range from frequency of association to substitutability to co-occurrence. The last of these is essentially the

line taken by Brown et al. in the semantically “sticky” examples just presented.

Conflation of word senses. Schütze (to appear), describing the results of his experiment on vector repre-

sentations, comments that “vector representations of words that can be used in a wide variety of contexts

are not interesting.” He illustrates by showing that the nearest “semantic” neighbors of the verb keeping,

according to his method, do not form a coherent class on any obvious interpretation of semantic relatedness.

Now, keeping is not a semantically vacuous word, and its distribution is far from arbitrary. It is likely

that keeping appears in similar contexts to putting more often than it does to, say, speaking:

(1) a. keeping/putting/*speaking them together

b. keeping/putting/*speaking his hands on his head

On the other hand, unlike putting, it is also likely to appear in similar contexts to retaining:

(2) a. keeping/retaining/*putting possession of the football

b. keeping/retaining/*putting a permanent record of the transaction

The real issue seems to be not that the word appears in a wide variety of contexts, but that distributional

analysis is being done with respect to the word token and not the different senses associated with that token.

The same concern arises in many other studies of automatic word classification based on lexical distri-

butions. When Brown et al. present a semantic class containing both school and grade, as described above,

the grouping is perceived as semantically coherent because the reader assigns an appropriate interpretation

to each word on the basis of the other words. However, it is hard to see how their discrete classification could

succeed in grouping those two terms, and at the same time also manage to encode the relationship between

slope and grade, or the relationship between school and hospital, without inducing spurious similarities. If

each token is associated with a single point in semantic space, then words having multiple senses will occupy

a point determined by the relative frequencies of the individual senses. Although in many cases multiple

word senses share relevant properties — for example the newspaper and term paper senses of paper — in
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other instances the single point in semantic space represents an amalgam of properties that may not preserve

the relationships associated with component word senses.

The problem is reduced to some extent in (Pereira, Tishby, and Lee, 1993), where a noun can be a member

of any number of clusters, each of which to some extent encodes a different sense. Thus the appearance of

the noun rocket in a cluster with gun and weapon (things that fire projectiles) does not preclude it from also

appearing in a cluster with shot and bullet (the projectiles themselves). Nonetheless, there still appears to be

some “leakage” across the word senses of a single word token. The “distance” between noun n and cluster

c is calculated by using relative entropy to compare the verb distribution given n and the verb distribution

given c:9

d�n� c� � D�pn k pc�

�
X
v

p�vjn� log
p�vjc�
p�vjn�

� (2.10)

Here each term, measuring the contributionof each verb to the total divergence between the two distributions,

is calculated using the probability of the verb given the noun token, regardless of the sense in which the

noun was being used. This means that frequently used senses of the noun will influence cluster membership,

potentially overwhelming the distributional characteristics of less frequent senses.

To be specific, consider a noun that has two senses s1 and s2, for which sense s2 is much more frequent

than sense s1. Suppose that cluster c is, on intuitive grounds, closely related to s 1 but not s2, and that verb

v tends to co-occur with s1 but not with s2. For example, n might be back, in its senses as a football player

(s1) and a body part (s2), cluster c might represent the portion of the semantic space shared by appropriate

senses of quarterback, kicker, receiver, and so forth, and verb v might be tackle. Even if p�vjs1� is high,

the contribution corresponding to tackle in equation (2.10) will be low, since p�vjn� � p�vjs 2�; conversely,

the contribution corresponding to the verb arch may be high. As a result, it is likely that n will be judged an

unlikely member of c.

Now, a more informed model might resolve this problem by including the relationship between nouns

and noun senses as part of the distance calculation; for example, calculating class membership by replacing

equation (2.10) with

d�n� c� �
X
v

X
i

p�sijn� v�p�vjsi� log
p�vjc�
p�vjsi�

� (2.11)

Such a solution is unfortunately circular for Pereira et al., since identifying the senses fs ig for a given noun

is part of their task.

A rather more radical solution is suggested by Elman: abandoning the idea of context-independent word

tokens altogether. He comments:

Conventional wisdom holds that as words are heard, listeners retrieve lexical representations.

Although these representations may indicate the contexts in which the words acceptably occur,

the representations are themselves context-free. They exist in some canonical form which is

consistent across all utterances. . . .

A different image is suggested in the approach taken here. As words are processed there is no

separate stage of lexical retrieval. The representations of words (the internal states following

input of a word) always reflect the input taken together with the prior state. In this scenario,

9The relative entropy alone does not measure extent of class membership: probability of membership is a function of this value.
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words are not building blocks as much as they are cues which guide the network through

different grammatical states. Words are distinct from each other by virtue of having different

causal properties. (Elman, 1989, p. 23)

On this story — I think of it as “radical polysemy” — it is not words that occupy points in semantic space,

nor even word senses, but word instances taken in context. The idea is not inconsistent with the philosophy

behind distributional clustering methods. As in the work of Pereira et al., a sense could be conceived of as a

point in semantic space, the center of mass for a set of items determined according to similarity of context.

In sum, distributional methods show a great deal of promise for determining word classes automatically.

However, they tend to conflate words with word senses, since corpora contain the former and not the latter.

In addition, little attention has been paid to the semantics of the representations that result. In the next section

I consider resolving these problems by adopting a “knowledge based” approach to distributional statistics.

2.4 Word Classes Based on a Taxonomy

A natural alternative to strictly distributional techniques for acquisition of lexical information, such as word

classes, is the use of existing repositories of lexical knowledge, such as knowledge bases, lexical databases,

dictionaries, and thesauruses. However, it is not always entirely clear how to make use of information from

such sources in a statistical setting. There are several issues in particular that are worth mentioning.

� Coverage. In order to perform corpus-based analyses, adequate coverage of the corpus vocabulary

is necessary. Traditional knowledge-based forms of “deep” lexical-conceptual knowledge — for

example, the domain models in natural language systems like BBN’s IRUS (Ayuso et al., 1989) —

will require a great deal of effort if they are to scale up to large quantities of text, unless the domain is

highly constrained. Text that is not constrained according to topic requires vocabulary coverage more

on the order of that found in machine-readable dictionaries (MRDs).

� Representation. On the other hand, simply putting a dictionary into machine-readable form does not

guarantee that it can be put to practical use as a computational tool. Numerous researchers have made

progress in extracting computationallyuseful lexical information from MRDs and turning it into formal

representations — e.g. (Alshawi, 1987; Byrd et al., 1987; Jensen and Binot, 1987; Braden-Harder and

Zadrozny, 1991) — but some forms of information are easier to reliably extract than others. IS-A

relationships between superordinate terms (hypernyms) and subordinate terms (hyponyms) appear

relatively easy to discover (Byrd et al. report 98% accuracy in finding the head word in noun entries,

taken to represent the noun’s superordinate category), whereas other information may not be. Alshawi

comments that “the fact that definition texts are often not analyzed completely means that information

that is central to a definition is sometimes not taken into account” (p. 198).

� Ambiguity. Because most dictionaries and thesauruses relate words to other words, the automatic

extraction of lexical information is to some extent confounded by lexical ambiguity. Byrd et al.

comment that, absent an explicit indication of intended sense, some of their extraction methods are

“relegated to the status of a semi-automatic (rather than a fully automatic) processing tool” (p. 234).

Given these considerations, it seems sensible from a practical standpoint to begin by investigating the

statistical uses of word class information organized in the form of an IS-A taxonomy, specifically, a noun
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taxonomy. For purposes of implementation, I will be using WordNet (Beckwith et al., 1991), a dictionary-

sized, hand-constructed taxonomy of nouns in English. The use of WordNet’s noun taxonomy addresses

the issues of coverage and representation, and sense ambiguity is not a problem because it is organized

according to noun senses that have been manually disambiguated.

Because reliable extraction of noun sense taxonomies from MRDs is quickly becoming a realistic goal,

results achieved using WordNet will soon be more generally applicable. As techniques for extracting

information from dictionaries continue to improve — and are applied to languages other than English —

statistical methods developed using WordNet can be applied to the taxonomies that result. In addition to its

practical advantages, WordNet is unlike most dictionaries by virtue of the goals with which it was designed:

as a testbed for psycholinguistic principles of lexical organization. The theoretical foundations for WordNet,

which I now discuss in some detail, will become relevant in Chapters 3 and 4.

2.4.1 The WordNet noun taxonomy and its semantics

WordNet (Miller, 1990b; Beckwith et al., 1991) is a large-scale resource for lexical information in English,

constructed by George Miller and colleagues at Princeton University. It is broadly organized according

to parts of speech — verbs, nouns, adjectives, and adverbs — and the information for words belonging

to each of these syntactic classes is encoded in the form of a semantic network. Each network encodes

different kinds of information; for example, the noun network contains links encoding relationships such as

“part of” (CARBURETOR is a part of GASOLINE ENGINE) and antonymy (EVIL is an antonym of GOOD), and

the verb network encodes causal relationships (DISCLOSE causes BECOME KNOWN) and manner distinctions

(STRANGLE is a specialization of KILL).10

In this research, I have used only the noun taxonomy, and within that taxonomy, only two relationships:

hyponymy and synonymy. Hyponymy as used by Miller et al. is intended to capture class inclusion, as in

the classic example ELEPHANT IS-A MAMMAL. They write (Beckwith et al., 1991, p. 215):

A noun X is said to be [a] hyponym of a noun Y if we can say that X is a kind of Y. This

relation generates a hierarchical tree structure, i.e., a taxonomy. . . . A hyponym anywhere in

the hierarchy can be said to be “a kind of” all of its superordinates. Researchers in artificial

intelligence have long noted that a taxonomic organization is a highly efficient and economic

storage system: all of the properties attributed to a superordinate node are inherited by its

hyponyms; consequently, the properties need to be stored only once rather than separately with

each hyponym.

A discussion in (Sparck Jones, 1964) on the definition of semantic relations points to a potential problem

with hyponymy as Miller et al. are using it. Sparck Jones attempts to draw a distinction between “linguistic”

relations, on the one hand, and “factual” relations, on the other — that is, lexical relationships based on

interpretations of meaning as opposed to knowledge about the world. 11 The relationships between woman

and female would seem to fall into the former category; the relationship between woman and blouse would

seem to fall into the latter, since there is at most a contingent relationship having to do with the fact, in the

world, that women sometimes wear blouses. Sparck Jones argues that the distinction is necessary in order

to constrain the domain of lexical description: she comments (p. 48) that unless we do so,

10For purposes of notation, I use italics when referring to a word regardless of its sense, and uppercase when talking about a word in
some specific sense. For example, one sense of word is in the sense of WORD or TIDINGS, as in “Have you received word?”

11Cf. Dowty’s term lexical entailment, for which “the implication follows from the meaning of the predicate in question alone”
(Dowty, 1991, p. 552).
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. . . we would finish up trying to give a description of the whole physical world, in the widest

sense of “physical world.” We would be constructing an encyclopedia, which is not what we

want; and we could, moreover, never finish it (either medically or logically).

One definition of hyponymy that Sparck Jones considers is from (Lyons, 1961), where the lexical

relationship is defined in terms of implication between sentences. In order for A to be a hyponym of B, it

must be the case that a sentence containing A is understood in general to imply the same sentence with B

substituted for A, but not conversely. So, for example, “x is scarlet” is generally understood as implying “x

is red,” though not conversely, and therefore scarlet is a hyponym of red. Implication is not used by Lyons

as it is in formal logic; rather, it is intended to represent the judgements of the language user. As Sparck

Jones describes it, “two sentences are equivalent if the ordinary language user would agree that in asserting

the one we are asserting the other; and one sentence implies another if in saying the one we are prepared to

say the other” (p. 54). I will distinguish implication of this kind from the normal use of implication in logic

by calling it “plausible entailment.”

A possible difficulty with using this definition in a theory of lexical semantics is that it fails to unequiv-

ocally rule out relationships that may be factual, as opposed to linguistic in the sense described above. So,

for example, even if it were true that anything which is a dog is hairy, and that the ordinary language user

would be prepared to say “x is hairy” given that “x is a dog,” one might not want to say that that there is

a hyponymic relation between the words canine and hairy. One the one hand, one could argue that being

hairy is a definitional aspect of being a dog, in which case the relationship does belong within the domain of

lexical semantics; but on the other hand, one could argue against this position, saying that the hairiness of

dogs is accidental and therefore a matter of factual knowledge and not definition. The answer is not clear,

and this, Sparck Jones argues, is the problem with trying to treat implication (plausible entailment) as a

“linguistic” relation. She argues instead for making synonymy the central semantic relation in her lexical

theory, a proposal that I will discuss momentarily.

Given this discussion, one could also conclude that the definition used by Miller et al. is not a linguistic

characterization. Sparck Jones says as much:

[We] might say that A and B are related [by hyponymy –PSR] if an a is a kind of b. But in this

case we are obliged to say that we are no longer concerned with linguistic relations. (p. 63)

It is not entirely clear to me that the “kind of” relationship is in principle non-linguistic— after all, the central

fact captured by such relationships is inheritance of properties, and even Sparck Jones would most likely be

willing to concede that the inheritance of gender from WOMAN (female adult) to QUEEN (female monarch) is

inextricably wrapped up in the meanings of the lexical items and not just accidental facts about the world. On

the other hand, Miller et al. do not provide any rigorous definitionof what they mean by “a kind of” — and, in

fact, the contents of the noun taxonomy suggest that their criteria for superordinate-subordinate relationships

are more generous than a strictly linguistic definition would allow. 12 For example, the classification of FRUIT

(in its sense as foodstuff or produce, not part of a plant) as subordinate to GROCERIES (commodities sold by

a grocer) surely reflects world or perhaps even culturally specific rather than linguistic knowledge. 13

12All examples are from WordNet Version 1.2.
13Whether this is good or bad depends on your point of view. (Nirenburg and Raskin, 1987) argue that creating a conceptual model

encoding “all the world’s knowledge down to some level of detail” — what they call a World Concept Lexicon — is in fact a necessary
preliminary to any construction of a lexicon for analysis or generation. However, they explicitly commit themselves to constrained
domains, rather than the world in general, distinguishing themselves from broad-coverage knowledge acquisition endeavors such as
CYC (Lenat, Prakash, and Shepherd, 1986).
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Word Word Forms
Meanings f1 f2 f3 � � � fn

m1 �
m2 � �

...
mk �

Table 2.3: Schematic representation of a lexical matrix

The distinction between “linguistic” and “factual” knowledge is the source of quite a bit of difficulty;

it is an issue that will arise again in Chapter 3. But assuming the distinction is applicable here, I will

interpret hyponymy in the WordNet noun taxonomy as a lexical-conceptual relationship rather than as

strictly “linguistic” — though the information is as strictly lexical as any one is likely to find in a dictionary,

as distinguished from an encyclopedia.14 From a formal point of view, the taxonomy does appear to respect

implication in the sense used by Lyons: having said “x is a piece of fruit,” the ordinary speaker of English

can reasonably be expected to agree that “x is an item of groceries or foodstuffs” is also true, as well as any

additional facts plausibly entailed by that statement on either linguistic or non-linguistic grounds. Thus, for

the sake of making things concrete, I will formalize hyponymy in WordNet in the following way: if a and

b are distinct hyponyms of c, and �, 	, and 
 are the sets of plausible entailments generated by virtue of

membership in each respective class, then 
 � �, 
 � 	, and � �� 	.15

The second organizing relationship within the WordNet noun taxonomy is synonymy. Miller et al.

(1990) characterize synonymy in terms of a lexical matrix relating “word forms” to “word meanings” —

such a matrix is represented schematically in Table 2.3. Word forms correspond to what I have earlier called

“word tokens,” and what Sparck Jones calls “word-signs” — essentially an atom or symbol, in written text

typically a sequence of characters delimited by spaces.16 Word meanings refer to “the lexicalized concept

that a form can be used to express” (Miller et al., 1990, p. 4). However, an important facet of WordNet’s

formalization of word meaning is the absence — in both theoretical and practical terms — of a complete

conceptual representation. Miller et al. distinguish between constructive theories and differential theories:

the former requires representations that provide enough information to support accurate construction of the

concept by person or machine, but the latter requires only that the representations of meaning are sufficient

for someone to identify concepts that are already known. WordNet instantiates a differential theory by

representing meanings in terms of synonym sets (sometimes shortened to synsets), so that m2, for example,

is identified by ff2� fng, the members of its row in Table 2.3. In this example, m2 might correspond to the

14Miller et al. comment that “somewhere a line must be drawn between lexical concepts and general knowledge, and WordNet is
designed on the assumption that the standard lexicographic line is probably as distinct as any could be” (Miller et al., 1990, p. 15). See
(Jackendoff, 1983, chapter 6) for an argument against taking the purported distinction between “semantic” and “conceptual” structure
too seriously; Jackendoff’s IS-INCLUDED-IN relation seems like it may also be a reasonable basis for hyponymy.

15It may ultimately be necessary to sort out the semantic issues here a bit more clearly, distinguishing implication, entailment,
presupposition, and conventional implicature (see, e.g., discussion in (Dowty, Wall, and Peters, 1981)). Also see discussion of
taxonomies and further references in Chapter 6 of (Cruse, 1986); in particular, Cruse makes a distinction between hyponymy and
taxonymy, the latter being a sub-species of the former. A number of these issues arise in Chapter 3.

16In general, of course, some provision must be made for multi-word lexical items. That complication is ignored here.
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concept BOARD in its sense as “a long, flat slab of sawed lumber” (AHD, 1991), with synonym set ff2� fng

being fboard � plankg. Miller et al. (1990, p. 4) comment:

These synonym sets (synsets) do not explain what the concepts are; they merely signify that the

concepts exist. People who know English are assumed to have already acquired the concepts,

and are expected to recognize them from the words listed in the synset.

As it turns out, an approach to synonymy of very much the same kind is argued for at length by Sparck

Jones, in the context of specifying which relationships are to be captured by an automatically constructed

thesaurus. She makes a distinction similar to the one just described, and concludes (Sparck Jones, 1964,

p. 28):

The distinction between the two different ways of looking at a thesaurus head [i.e., a lexical

grouping or class –PSR] is therefore a useful one, because it suggests a new approach to the

problem of constructing a thesaurus; it suggests that we should treat a thesaurus head primarily

as a set of words which are related to one another, and only secondarily as a set of words which

express an idea. This means that we can set about the business of finding heads by looking

for sets of words which are related in a suitable way, and then labelling them, rather than by

inventing ideas, and then searching for words which express them. This approach has two

advantages: the first is that the heads can be found more easily, and the second is that they can

be found without any reference to an a priori set of ideas.

Sparck Jones characterizes synonymy as follows. First, as a background assumption sentences are taken to

have a property she calls a ploy (i.e. the way in which it is employed) — for example, Shut up and Keep

quiet have the same ploy. Given a sentence S and one of the word positions in S, a row is defined as a set of

words that can appear in that position without changing the ploy of S. So, for example, the sentences in (3)

give rise to the row fsignal � signg and (4) gives rise to the row fshouted � cried � calledg.

(3) a. He gave the signal for the advance.

b. He gave the sign for the advance.

(4) a. He shouted for help.

b. He cried for help.

c. He called for help.

One might argue that, even if ploy can be given some precise interpretation, no two words are ever truly

substitutable even in a particular context, since each carries different associations or overtones. Sparck Jones

responds to this objection as follows (p. 84):

In spite of this argument, it is an empirical fact that we do explain the meaning of a word in a

context by giving other words which we say can be used in the same way; we do in practice say

that words may be used synonymously. This suggests that we can make a distinction between

a particular use and the whole range of uses of a word. We can and do say that though the

overtones of two words, representing their whole ranges of uses may be different, their uses in

a particular context may, for all practical purposes, be treated as indistinguishable.

Given this discussion, it seems clear that Table 2.3 is representative of the theories of both Miller et al. and

Sparck Jones. In both cases, the goal is not to provide a thesaurus defined in terms of word synonymy; 17 rather,
17Indeed,Sparck Jones expendsconsiderableeffort detailing the argumentsagainst this view, and later proposes that “total” synonymy

be derived from synonymy of word uses.
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taxonomic classes comprise differential representations corresponding to word uses that are synonymous in

particular contexts. Although WordNet classes represent a higher level of abstraction than Sparck Jones’s

rows — something like what she calls a group — the core idea is the same. Lexical classes comprise sets of

words that in some contexts are mutually substitutable while preserving the essential components of meaning

and use.

To summarize, one way to characterize synonymy in WordNet is as follows. Let s be a WordNet synset

containing synonyms (word forms) fwig. Then there is a “representative” set of sentences fSjg such that if

Sj entails �, then Sj �n � w� also entails � for all w � s, where Sj �n � w� denotes sentence Sj with word

w substituted at position n; furthermore, s contains all such w. So, for example, suppose s is the synset

fboard � plankg: for all practical purposes the sentences in (5) are interchangeable, in that the conclusions

one can draw — such as �1 and �2 — are the same.

(5) a. John sawed the board in two.

b. John sawed the plank in two.

(6) a. ��1� The thing John sawed is used for construction.

b. ��2� The thing John sawed is flat.

Furthermore, some entailment serves to exclude other similar words from the set; for example, brick and

shingle are closely related to this sense of board, but substituting brick for board in (5a) would violate � 2,

and substituting shingle would introduce a new entailment � 3 not shared by board and plank.

(7) ��3� The thing John sawed is used for covering roofs.

Again, it should be noted that the notion of entailment that is operative here is concerned not with logical

necessity, but with implication in the sense used by (Lyons, 1961) — that is, entailed properties consist

in conclusions that one would be willing to draw. It is not difficult to elicit such properties from human

subjects; for example, (McRae, de Sa, and Seidenberg, 1992) describe a norming study in which subjects

produced properties like requires a driver and used for transportation (e.g., given bus). Although I have

characterized relationships in WordNet in terms of such properties, however, it is important to remember that

this is done solely in the interest of providing a well-founded interpretation for an existing taxonomy — such

relationships are not explicitly represented in WordNet, nor were they explicitly used in its construction.

Computationally, these two taxonomic relationships in WordNet, hyponymy and synonymy, form the

basis for what is essentially an inheritance system. Each word token w is mapped to senses(w), a set of

synonym sets that in effect represent all of its word senses. For the sake of notational convenience, such

synonym sets will be represented not by listing each included word, but by pairing a single descriptive word

with a unique identifier — for example, hboard,4012740i rather than fboard � plankg.18 Each synset s

in the taxonomy may have hyponyms (subordinates) and hypernyms (superordinates); these correspond to

both directions of an IS-A link. Because WordNet permits multiple inheritance, hyponymy and hypernymy

are one-to-many relationships, and the structure of the taxonomy is a directed acyclic graph rather than a

tree.

18The numerical identifiers are derived from WordNet’s internal data representation and can be thought of as arbitrary; hence this is
equivalent to providing traditional sense labels like BOARD1, BOARD2, etc. I will sometimes omit the unique identifier when it is not
particularly relevant, e.g. writing hboardi rather than hboard,4012740i. Identifiers used here are from WordNet version 1.2.
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Description Example Count

Hyphenated term grease-removal 17
Occurred once in corpus carousing 16
Number .05% 4
Not in dictionary fella 3
Unusual or wrong spelling threshhold 2
Acronym USP 1

Other alkali 6

Table 2.4: Brown corpus nouns missing from WordNet

Each synset in WordNet can be viewed as a class containing all the words in all directly or indirectly

subordinate synsets — that is, all synonym sets that inherit its plausible entailments. The extensional inter-

pretation of a class c will be written using the notation words(c); for example, synset hlumber,4012560i,

interpreted as an extensional class, contains batten, board, deal, fin, furring, lath, louver, louvre, lumber,

pale, picket, plank, slat, spline, stave, strip, and timber.19 Conversely, classes(w) will represent the set

fcjw � words�c�g — notice that this includes all the classes in which word tokenw is contained, regardless

of whether a particular sense of w was intended. From this point on, notation that is ambiguous between

synonym sets and classes — e.g. hlumber,4012560i — should be interpreted as referring to the class,

unless otherwise noted.

In terms of size, the WordNet noun taxonomy (version 1.2) contains on the order of 35,000 synonym sets,

and a vocabulary of on the order of 47,000 nouns (approximately 30,000 if compounds are excluded). Using

the Brown corpus as a representative sample of English, WordNet’s coverage accounts for approximately

95% of the tokens tagged as common nouns (singular or plural). Table 2.4 shows a breakdown into

categories for 49 nouns randomly chosen from the set of nouns in the Brown Corpus that do not appear in

the WordNet taxonomy. The reference dictionary for the “not in dictionary” category was (AHD, 1991), and

the one acronym on the list, USP, derives from the United States Pharmacopoeia reference standard. Of the

hyphenated terms, just one, vice-president, appears in WordNet as a compound.

This coverage estimate will most likely remain fairly stable as WordNet changes: of the six nouns in the

“other” category — alkali, glycol, growl, handspike, quicksilver, and slam — only one, alkali, appears in

the more recent WordNet Version 1.3.

2.4.2 Estimation of class probabilities

Although the discussion in Section 2.4.1 describes a structured taxonomy, the probabilistic formalization

presented here will be based on a sample space consisting of class labels. In essence, the theoretical

formulation of the sample space will suppose that people say things like “I drank some hbeveragei” rather

than “I drank some wine.” The structure of the taxonomy will play a role not in defining the sample space,

but in estimating probabilities.

19Actually, it also contains the compoundnoun furring strip; however, I treat all compoundnouns in WordNet as if they did not exist.
Although this potentially loses useful information, it does away with the problem of determining whether or not a nominal compound
should be treated as a unit.
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To be specific, let the probability space hΩ�F � pi consist of:

Ω � fc1� c2� � � � � ckg

F � P�Ω�

p : F 	 �0� 1��

where Ω is the complete set of unique class identifiers in the taxonomy. F is simply the maximally fine-

grained event space based on such a sample space, and p is a probability function. Thus the probability

space here is just like the space for rolling a die; in this case it just happens that the die has k sides.

Since real observations contain not class labels but words, the frequency of a class c will be estimated as

freq�c� �
X

w�words�c�

1
jclasses�w�j

freq�w�� (2.12)

Whenever word w is observed, credit must be assigned to some of the classes in the sample space.

So, for example, if the actual observation is drink wine, the frequency of co-occurrence with drink will

be incremented for hwine,2657055i, halcoholic beverage,2654808i, hbeverage,2653465i, and

h5941,substancei, among others. At the moment they are incremented by equal amounts, something I

will discuss further in detail in a moment.

There are many ways to estimate class probabilities p�c� on the basis of such a frequency distribution, of

which the maximum likelihood estimate (MLE) is the simplest. Although there are known problems with

maximum likelihood estimates of probability (see discussion in (Church and Gale, 19xx)), MLE seems a

reasonable starting point, especially since one of its main problems — the assignment of zero probability to

all unseen data — is in fact one of the problems this work is attempting to resolve. A similar point is made

by Pereira et al. (1993), who write, “We could [smooth zero frequencies] . . . However, this is not very

satisfactory because one of the goals of our work is precisely to avoid the problems of data sparseness.”

Results obtained using MLE should be further improved by using improved probability estimates. 20

The estimation of probabilities using MLE is straightforward:

p̂MLE�c� �
freq�c�
N

� (2.13)

where N �
P

c� freq�c��. The calculation of joint probabilities is similarly straightforward: if the sample

contains co-occurrences �x�w�, where x is an element of some set X of tokens, one need only replace

equation (2.12) with

freq�x� c� �
X

w�words�c�

1
jclasses�w�j

freq�x�w�� (2.14)

For example, such a sample might contain pairs consisting of a verb and its direct object, in which case

p̂MLE�v� c� would represent the estimated probability of a member of c appearing as the direct object of v.

Let us return to the fact that in equation (2.12) the observation of a word w has an equal effect on every

class to which w belongs. This is clearly an oversimplification. However, absent a solution to the problem

of word sense disambiguation, distributing the “credit” for a word uniformly over its possible classes seems

the most sensible solution.

This brute-force approach works because related words tend to be ambiguous in different ways. For

example, consider the observation of two verb-object combinations, drink wine and drink water. On the basis

20In earlier work, I used Good-Turing estimates rather than MLE; for discussion of this and further notes on probability estimation,
see Appendix A.
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of these observations, the joint frequency will be incremented for each class containing wine in any sense

— including, for example, hchromatic color,1925370i. Similarly, the second pair will be recorded

as a co-occurrence between drink and inappropriate categorizations such as hbody of water,2995307i.

However, evidence for co-occurrence will accumulate only for classes containing both water and wine, such

as hbeverage,2653465i. The cumulative evidence thus will tend to support appropriate interpretations,

and counts with inappropriate senses will appear only as very low frequencies dispersed throughout the

taxonomy. A similar point is made by Yarowsky (1992), commenting on the calculation of statistics using

the numbered categories in Roget’s Thesaurus:

While the level of noise introduced through polysemy is substantial, it can usually be tolerated

because the spurious senses are distributed through the 1041 other categories, whereas the signal

is concentrated in just one. (p. 455)

Given the much larger set of categories in WordNet, the dispersal of inappropriate senses should be even

more effective. However, using classes at all levels of the WordNet taxonomy has its disadvantages, relative

to the flat set of Roget’s categories used by Yarowsky: classes low in the taxonomy accumulate less evidence

than classes higher up. As a result, among small classes it can be more difficult distinguishwhich correlations

are signal and which are noise. For example, given numerous observations of verb blow with object nose,

there is not enough accumulation of evidence to determine that the high frequency with hnose,2088032i

(the body part) is appropriate but the high frequency for hnose,1172320i (e.g. the front part of an aircraft)

is not.

2.4.3 Comparison with distributional methods

The following discussion is organized around several of the issues that have been raised in this section.

Sparseness. Knowledge-based taxonomies and distributional methods both address the problem of sparse

data. Knowledge-based methods have the advantage of classifying words that have not been encountered

at all, or words that are difficult to classify distributionally owing to lack of evidence. However, every

dictionary has gaps, and unlike distributional methods, knowledge-based taxonomies are not well-suited

to keeping up with changing terminology, proper names, and productive variations in usage. Hearst and

Schütze (1993) present a promising approach to this problem; their work suggests that distributionalmethods

can be used to classify new words and proper names within the WordNet taxonomy.

Abstraction. Taxonomies of the kind defined in Section 2.4.1 provide a rich source of information about

lexical items, expressed at a level of abstraction that seems suitable for capturing conceptual in addition to

simply lexical information. However, some relationships may be more genuinely lexical than conceptual

— for example, (Smadja, 1991) argues that the distinction between strong tea and powerful tea cannot be

accounted for on purely syntactic or semantic grounds, and thus should be considered an instance of lexical

idiosyncracy. Capturing such relationships may be more difficult using a taxonomy like WordNet as an

intermediary. Therefore, consistent with the approach taken by Hearst and Schütze, the use of a word sense

taxonomy should be viewed as a way to extend, not replace, purely lexical methods.21

21One could argue that some relationships seem “purely” lexical simply because the appropriate syntactic or semantic characterization
has not yet been found — for example, Patrick Hanks has conjectured that strong describes an intrinsic property whereas powerful
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Computational expense. The distributional derivation of classes clearly entails a great deal of computational

expense. Such expense can be justified on the grounds that the cost will vanish in the limit as computers

become more and more powerful; however, the sheer combinatorics of lexical relationships suggests that

some forms of distributional analysis may never be tractable. For the time being, even highly optimized

algorithms, such as those presented by (Brown et al., 1992), require a great deal of computation.

On the other hand, dictionary building requires an enormous amount of effort — work undertaken by

people, not machines. Although it is increasingly possible to take advantage of existing dictionary resources

that appear in machine-readable form, the extraction of useful information from such sources — for example,

by parsing dictionary entries — can itself require significant computation. Moreover, there is no guarantee

that existing sources of information, constructed as they are for other purposes, can be used for computational

purposes without substantial modification, if at all.

Perhaps a more interesting issue is the cost of keeping up with language use as it changes over time.

Most distributional methods involve global computations, requiring a complete recomputation of the model

even if the new version will differ significantly from the old only in a small fraction of cases. In contrast,

on-line knowledge sources can be modified incrementally without affecting core information that is retained

over time.

Class identifiers. There are two reasons for associating symbolic descriptions with word classes: human

readability, and integration with other symbol-based system components. To some extent, WordNet comes

with human-readable class labels built in — this property will be shared by any knowledge base constructed

according to what Miller terms a differential theory of representation (see discussion in Section 2.4.1). 22

Distributionally-derivedclasses may or may not be similarly interpretable; for example, showing the three or

four words closest to the cluster centroid, as done by Pereira et al. (1993), leads to some easy interpretations

(e.g. the centroid for recognition, acclaim, renown, and nomination) and some that are rather more opaque

(e.g. pollution, failure, increase, and infection).

Symbolic class labels can also be necessary in order to integrate word classes with other components of

a language-processing system — for example, once a sense disambiguation algorithm has selected the most

likely category for a word in context, the rest of a language-processing system will need to make use of other

information indexed by that category. Such an integrationmay be more difficult when the only representation

of classes is extensional. On the other hand, class labels alone do not suffice: it is also necessary to define a

mapping between the set of class labels and the set of symbols used by other components of the system. At

one extreme, the other components use the class taxonomy as a reference point and this task is trivial; at the

other extreme, the other components have their own distinct characterization of word categorization and the

problem effectively becomes one of merging ontologies (Knight, 1993).

In some cases, neither human readability nor system integration is an issue and word equivalence classes

can be used as such without further interpretation. This is most notably the case for class-based language

models — although even in such cases the ability to describe classes concisely may help, for example in

interpreting what exactly the language model has done when it makes an error.

describes an extrinsic property (Church and Mercer, 1993, p. 20). This issue is not likely to be resolved any time soon, given our
current limited understanding of lexical semantics, so maintaining Smadja’s distinction seems reasonable.

22Even WordNet has exceptions, of course; for example, synonym sets containing only a single synonym. Peter Norvig (personal
communication) has explored methods for rendering synsets in human-readable form — for example, augmenting a singleton synonym
set with terms from its immediate superclass, e.g. distinguishing FILE/RECORD vs. FILE/HAND TOOL.
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The semantics of word classes. Although, as discussed in Section 2.4.1, it is difficult to ground taxonomic

representations such as WordNet in precise formal terms, the use of the WordNet taxonomy makes reasonably

clear the nature of the relationships being represented. (The same may not be true of other taxonomies — see

for instance Sparck Jones’s discussion of the various relationships that relate words in Roget’s Thesaurus.)

However, like the need for class identifiers, the extent to which the contents of a class need to be clearly

describable will vary depending on the problem being solved. For tasks such as topic labelling, a group

of words that are associated according to topic may suffice (Hearst and Schütze, 1993); for integration of

classes within a language understanding system framework, the ability to more clearly identify what a class

contains may be important.

Conflation of word senses. The distributional hypothesis — that words sharing distributional contexts will

be similar to some degree — makes the most sense when taken at the level of word meanings or uses rather

than word tokens. Consider a single polysemous word token: its distributional signature may capture the

essential connection between a word’s different uses (e.g. a door as an entranceway as well as the barrier

that occupies the entranceway), or the distribution may sum together quite independent uses (e.g. crane as

bird versus machine), or it may fall somewhere in between. In the first case, the distributional hypothesis

clearly holds. In the second case, the hypothesis runs into trouble, although perhaps the distribution can

somehow be analyzed into its independent components, and those used as the basis for judging similarity.

(This would amount to extracting easily distinguished word senses from the distribution of the word token.)

The third case is the most problematic: two word senses that intuitively are distinct will be treated as one on

the basis of the word token’s distribution.

Although it is possible to induce word senses as entities in their own right on the basis of word token

observations, as in (Pereira, Tishby, and Lee, 1993), the discussion in Section 2.3.4 suggests that capturing

word similarity will ultimately require a distributional analysis of word senses rather than word tokens. 23

Such a solution is circular, however, under the assumption that the set of word senses is itself defined by

analyzing how word tokens are distributed. The proposal here to use externally-defined word senses can be

seen as one way of breaking that circularity: given a distributional analysis of classes using the model of

Section 2.4.2, it becomes possible to consider both the distributional behavior of words and the distributional

behavior of the classes to which they belong.24

Distinction between domain-dependent and domain-independent knowledge. Information extracted

from a corpus is always domain dependent to some extent, even for corpora that aspire to balanced coverage.

Church and Mercer (1993, p. 19) argue that if corpora are combined to obtain larger quantities of data, the

quirks of individual subcorpora can essentially be treated as noise:

Fortunately, though, it is extremely unlikely that [phrases specific to an individual corpus] will

appear much more often than chance across a range of other corpora . . . If such a phrase were

to appear relatively often across a range of such diverse corpora, then it is probably worthy

of further investigation. Thus, it is not required that the corpora be balanced, but rather that

their quirks be uncorrelated across a range of different corpora. This is a much weaker and

23See especially equations (2.10) and (2.11) in Section 2.3.4.
24Re-estimation is another possible way out of this circularity, though I will not pursue that idea further here.
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more realistic requirement than the more standard (and more idealistic) practice of balancing

and purging quirks.

In practice, however, statistical methods are often useful for capturing language as it is found within a

particular context — automated tailoring to a particular domain is, in fact, one of the biggest advantages

of corpus-based techniques. If the goal is to parse IBM manuals, for example, then more general language

usage in sources like the Brown corpus may be misleading: things that get installed in general (8b) may not

be the kinds of things that get installed when dealing with computers (8a).

(8) a. After installation of the option, the backup copy of the Reference Diskette was started for the

computer to automatically configure itself.

b. Makes necessary purchases, places contracts, supervises construction, installation, finishing

and placement of furniture, fixtures and other correlated furnishings . . .

Knowledge-based sources of information also have their quirks. However, by using taxonomic classes

rather than distributionally derived classes, it is possible to isolate word classification from other distributional

issues. As a result, the behavior of class-based statistical methods can be broken down according to corpus-

dependent and corpus-independent factors. This should be useful for identifyingdifferences between corpora

as well as for evaluating the quality of the taxonomy itself.

In conclusion, distributional methods and knowledge-based methods for using word classes each have

advantages and disadvantages. Quite a few researchers have started investigating the derivation of word

classes on the basis of distributional similarity; in this chapter I have attempted to provide a balanced

description of their approaches. The present work differs from those investigations, beginning instead with

existing large-scale knowledge sources as a source of lexical information.

It seems clear that although lexical taxonomies cannot provide all the knowledge one could hope to

extract from a corpus, neither are distributional methods likely to capture all the information found in a

resource like WordNet, even in principle. Methodologically, the use of classes from a taxonomy makes

it possible to be clear about what kind of knowledge is represented, to keep separate what information is

provided by the classes and what by the lexical statistics, and to take advantage of existing resources.

Finally, an underlying goal of this work has been to incorporate knowledge-based information in to

statistical methods in the most conservative fashion possible. Although there is always some residual

uncertainty as to how to interpret notions like synonymy and hyponymy — at least in terms of formal

semantics — the synonym and IS-A relationships captured within the WordNet taxonomy are intuitively

reasonable and as widely accepted as any other form of knowledge representation. Furthermore, even those

representational details can be separated from the way the taxonomy is used in determining probabilities

based on classes: the class frequency estimate proposed here assumes only an extensional representation

of classes as sets of words, without requiring any further interpretation. The methods developed here can

therefore be applied in other settings, where some other model determines the criterion for coherent sets of

words.

In the next chapter I turn to selectional constraints. After providing a review of the philosophical and

linguistic issues, I will argue that previous approaches leave unresolved problems concerning how such

constraints are to be formalized. These problems, I will suggest, can be resolved in part by making use of
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the taxonomic lexical representation discussed here, and in part by formalizing selectional constraints using

a model within which class-based probabilities play a vital role.



Chapter 3

An Information-Theoretic Account of

Selectional Constraints

Limits on the applicability of predicates to arguments have variously been called sortal con-

straints, selection (or selectional) restrictions or constraints, and type rules. A review of the

literature on such constraints suggests two different ways in which they can be characterized:

a “semantic” approach, which has been questioned on empirical grounds, and an “inferential”

approach, for which the theoretical issues are at present poorly understood. In this chapter, I

propose a new, information-theoretic formalization of selectional constraints, and argue that it

addresses both theoretical and empirical concerns.

3.1 Overview

The topic of this chapter can be traced back to Aristotle.1 He considered the case of sentences like

(9) a. � is even.

b. � is not even.

when � is not a number — for example, when � is Socrates. Intuitively, “Socrates is even” is certainly not

true, but neither is it clearly false; rather, it seems to be a case where � is simply not the sort of thing to which

the predicate can be applied. More recent examples of this phenomenon include Chomsky’s predications

concerning ideas and sincerity:

(10) a. Colorless green ideas sleep furiously.

b. Sincerity may admire the boy.

Limitations on the applicability of a predicate have variously been called sortal constraints, selection

(or selectional) restrictions or constraints, and type rules; expressions violating constraints of this kind have

been discussed in terms of category mistakes, selectional violations, type crossings, and semantic anomaly.

Whatever the guise, phenomena of this kind raise a number of difficult issues.

1I regret that I am not nearly as erudite as this opening statement might suggest: in this section and the one that follows I draw
heavily on the deep and insightful discussion found in (Horn, 1989), especially chapters 2 and 6.

34
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First, examples like (9) pose a problem for straightforward truth-theoretic semantics: the axiom that

every proposition is either true or false (Aristotle’s “law of the excluded middle”) confronts the widely-held

intuition that sentences like “Socrates is even” are neither true nor false, but instead nonsensical, absurd, or

meaningless.

Second, in addition to the philosophical problems posed by anomalous sentences of this kind, it is nec-

essary to consider the positive application of predicate-argument constraints in the process of interpretation.

Someone reading (9) — under the mathematical interpretation of even — will infer that � is an integer.

Similarly, to take an example from (Fodor, 1977, p. 195), the pronoun in

(11) This one admires John.

will have attributed to it properties consistent with its use as the subject of admire, such as animacy and the

possession of higher psychological functions.

A third, closely related point concerns the interpretation of ambiguous lexical items. To take an example

from (McCawley, 1968, p. 131),

(12) a. John has memorized the score of the Ninth Symphony.

b. The score of the Ninth Symphony is lying on the piano.

lexical items that denote works of art or scholarship can also denote the physical embodiment of those works;

example (12) suggests that the correct interpretation of score may in part derive from constraints provided

by the verb.

I consider the first of these issues in Section 3.2, where I review some of the philosophical approaches

to sentences like “Socrates is (not) even” and recapitulate Horn’s (1989) argument for a pragmatic rather

than semantic treatment of (negative) category mistakes. In Section 3.3, I turn to the characterization of

selection restrictions in generative linguistics, particularly the discussions of Katz and Fodor (1964) and

McCawley (1968), who concern themselves not only with selectional violations but also with the role of

selection restrictions in constraining the interpretation of non-anomalous sentences (issues two and three).

At this point, I will suggest that the discussion has reached something of an impasse (Section 3.4). On

the one hand, it will have become evident that the truth-theoretic approaches to selection restrictions —

that is, most of the voluminous literature reviewed by Horn — rest on the assumption that such restrictions

are phrased in terms of necessary and sufficient semantic conditions on the applicability of a predicate. I

will observe that this approach is equivalent to the “defining properties” approach to mental categories and

thus inherits some substantial empirical problems associated with that approach. On the other hand, I will

argue that the “pragmatic” or “inferential” approach proposed by Horn (aspects of which can be found in

McCawley and in (Drange, 1966) and (Johnson-Laird, 1983)) is too open-ended, potentially requiring a

theory that encompasses all the inferences a person might make on the basis of factual knowledge.

The rest of the chapter, naturally enough, will be devoted to a proposal for going beyond the impasse. In

Section 3.5, I will focus on the inferential view, but argue that, rather than incorporating all kinds of knowledge

and inference, a characterization of selectional phenomena can be formulated in terms of an extremely

restrictive knowledge representation, together with an appropriate information-theoretic characterization

of predicate-argument relationships. By replacing selectional restrictions with an information-theoretic

proposal for selectional preference, I provide a precise model that is nonetheless consistent with the inferential
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view of the verification and transfer of properties in anomalous and non-anomalous utterances. In Section 3.7,

I describe a computational implementation of this model, and illustrate its behavior on examples from

throughout the chapter. In addition, I consider the possibility that this account might provide the groundwork

for a psycholinguistic model of “local semantic fit” and thus contribute to the study of on-line plausibility

effects in sentence processing. I conclude in Section 3.8 with a brief consideration of the present approach

in relation to other computational proposals for capturing selectional constraints.

3.2 Category Mistakes

In this section, I rely to a great extent on the discussion in (Horn, 1989), who describes utterances such

as (13) as category mistakes (CMs):

(13) a. The number two is blue.

b. The number two is not blue.

The latter sentence is an instance of a negative category mistake (NCM).

These and closely related expressions have generated a formidable quantity of philosophical discussion

— at one point Horn refers to “standard approaches of dual-negation logics” in which (13b) can be read as

“simply false, a priori false, neither true nor false, false and insecure, or meaningless, depending on whether

the assessor is, respectively, an Aristotelian, a Drangean, a Bochvarian, a Bergmannian, or a Russellian”

(p. 139). On the following page he presents a chart in which no fewer than twenty-two other philosophers

join the five just cited.

Rather than attempting the hopeless task of improving on Horn’s review of the literature, I will restrict

myself to a summary of the major issues that are relevant to the present study. These are the questions

of whether category mistakes are best analyzed in terms of entailments or presuppositions, whether they

should be considered meaningful or meaningless, and whether they should be treated within a theory of

(truth-conditional) meaning or from a broader, pragmatic perspective.

3.2.1 Entailment

If predicate P does not “naturally” apply to argument x, as is the case with blue and the number two, what

can be said about the truth value of P(x)? One might begin by supposing that any predicate has associated

with it a domain of applicability, and that applicability is an entailment of the predication. On this view,

introduced by Aristotle, the predication (13a) entails that the number two be something that can be described

as having a color, and since this entailment is false, (13a) simply is false as well.2

Sentence (13b) could be described as generating the same entailment, and therefore also false. At first

glance, this would seem to be problematic, since it suggests that both a proposition and its negation could be

simultaneously false. However, it is not necessarily the case that (13b) is the negation of (13a). Aristotle’s

analysis of (13b) posits two different readings: in one the entire predicate is negated, and in the other what

is negated is the term blue itself. These interpretations can respectively be phrased as follows:

(14) a. The number two is-not blue.

2For the moment, nouns are to be interpreted literally — so although “the number two” might be used to refer to, say, a sheet of
paper cut out in the appropriate shape, here it should be interpreted as referring to the abstract mathematical concept. The ability to
construe arguments on other than their intended readings will be discussed in Section 3.5.
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b. The number two is not-blue.

On this analysis, the former interpretation does not ascribe a color to the number two, but merely negates

the predication (13a) that does so — therefore applicability of the predicate is not entailed and the statement

is simply true (since the number two is not among the set of blue things). The latter reading is an instance of

term negation, in this case ascribing the property not blue to the number two. Unlike predicate negation,

term negation requires that the applicability of a property be considered; in essence, not blue is to be

interpreted as equivalent to red or green or yellow or.... As a result, (13b) does entail the

applicability of color terms to the argument, and is therefore false.

Horn points out that this analysis of category mistakes is closely tied to the analysis of sentences

containing empty (i.e. non-denoting) subjects, such as (15):

(15) a. The king of France is bald.

b. The king of France is not bald.

Taking Aristotle’s view, sentence (15b) can be treated as an instance of term negation — affirmation of the

predicate not bald of the king of France — which entails that the king of France exist. Alternatively, it

can be treated as an instance of predicate negation, which does not generate such an entailment.

3.2.2 Presupposition and meaninglessness

A widely discussed alternative to the entailment approach, associated in particular with Strawson, is that

statements do not entail the applicability of predicates to subjects (or the existence of subjects), but rather

that applicability (and existence) are presupposed. On this view, someone uttering (15a) has not asserted

that a unique king of France exists, but rather has acted on the presupposition that such a person exists. If

the presupposition is not true, then the truth value of (15a) is simply not at issue; it is neither true nor false.

It is important to distinguishbetween a proposition being neither true nor false and its being meaningless.

An uncontroversially meaningless expression is (16):

(16) Boy girl of picture saw the and.

“Word salad” sentences like this result in more word salad when embedded in a matrix sentence:

(17) I dreamed that boy girl of picture saw the and.

and there is no intuition that the import of (17), if there were one, could be distinguished from another

instance of the same kind of anomaly:

(18) I dreamed that the saw picture of girl boy and.

Sentences that appear more normal on the surface can nonetheless exhibit behavior similar to this; for

example, violations of Grimshaw’s (1979) s-selection:

(19) a. John believed if the train left on time.

b. Mary reported that John believed if the train left on time.

In contrast, category mistakes can be felicitously embedded (20) and distinguishedfrom each other, since

in (21a,b) Mary is clearly making two different claims:

(20) I dreamed that the number two was blue.
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(21) a. Mary claims that colorless green ideas sleep furiously.

b. Mary claims that sincerity may admire John.

Furthermore, category mistakes can be entailed by and entail other propositions. For example,

(22) Quadratic equations do not go to race meetings.

entails

(23) Quadratic equations do not watch the Newmarket horse races.

and is entailed by

(24) Quadratic equations do not move in space.

Similar observations hold of “empty subject” cases like those involving the king of France.

Propositions that generate entailments can certainly not be viewed as meaningless. One way of describing

the truth-conditional status of category mistakes, then, is to say that they are meaningful, but in some sense

insignificant. “Presuppositionalist” accounts generally accomplish this by relaxing the assumption that the

truth function be complete, instead characterizing it as a partial function and permitting category mistakes to

fall into a “truth value gap,” or by using a multi-valued logic, with category mistakes taking an intermediate

value expressing something like “not true.” Crucially, in such a system the non-truth of a proposition will

not entail the truth of its negation. 3

3.2.3 Implicatures, pragmatics, and metalinguistic negation

To summarize thus far, one treatment of anomalous expressions involving inappropriate or empty subjects

retains a truth-theoretic analysis in which every proposition is either true or false; on this view the existence

and appropriateness of the subject amounts to an entailment of the proposition. Another widely held view

analyzes these not as entailments but as presuppositions, requiring some semantic status other than truth or

falsity.

Presuppositional treatments are complicated by the fact that negative category mistakes and negative

existentially-presupposing expressions have a reading in which the presupposition appears to be “can-

celled”:

(25) a. The king of France isn’t bald — there is no king of France!

b. Ideas aren’t green — they’re only in your head!4

In these cases, it is evident that the speaker is asserting the truth of the first statement, and justifying the

assertion by explicitly rejecting a presupposition.

3For a presuppositional treatment of category mistakes within the framework of Montague semantics, see (Waldo, 1979), who
follows van Fraasen’s (1968) method of supervaluations in treating truth as a partial function. Interestingly, Waldo’s method succeeds
in evaluating “The theory of relativity is shiny” as neither true nor false, while still managing to evaluate “Every shiny theory of
relativity is shiny” as a tautology; however, no account is given for category mistakes that appear as the embedded clause in embedded
contexts.

4This example is adapted from an exchange between Barbara Landau and a blind five-year-old subject, brought to my attention by
Lila Gleitman:

(a) Barbara: Could an idea be green?

(b) Blind child: No, silly! They’re only in your head.
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An alternative that is still very much in the spirit of presuppositionalist approaches, proposed by Karttunen

and Peters (1979), distinguishes between the truth-conditionalsemantics of a propositionand its conventional

implicatures. Conventional implicatures are distinguished from conversational implicatures in that in the

former case “the conventional meaning of the words,” as opposed to general conversational principles, will

determine what is implicated (Grice, 1975, p. 66). Karttunen and Peters focus on cases like the following:

(26) a. John managed to solve the problem.

b. John didn’t manage to solve the problem.

(27) It was difficult for John to solve the problem.

(28) John solved the problem.

Here the implicatum (27) is part of the meaning of both the positive and the negative statements in (26),

but not part of the truth-conditional meaning, since (26a) and (28) are truth-conditionally equivalent. The

distinction is formalized by breaking down the meaning � of an utterance into a pair h� e� �ii, respectively

representing the utterance’s truth-conditional meaning and its conventional implicata.

The ambiguity between presupposition-preserving and presupposition-cancelling negation is then ac-

counted for by the existence of two negation operators:

h
�e� �ii [Ordinary negation of �]

h
��e � �i�� ��i �
�i�i [Contradiction negation of �]

Ordinary negation affects only the truth-conditional meaning, preserving implicatures (roughly equivalent

to presuppositions), so that John’s not managing to solve the problem still implicates that the problem was

difficult. In contrast, the meaning of the “contradiction” negation leaves unspecified whether the negation

is based on the truth-conditional meaning or the conventional implicata; and crucially, the implicata of the

contradictory negation are vacuous, thus in effect cancelled.

Although Karttunen and Peters do not discuss category mistakes explicitly, it is not difficult to see

how directly this approach would adapt to such cases: applicability conditions of predicates (e.g. having a

physical surface for color predicates like green) can be taken as conventional implicatures. As a result, the

utterance “Ideas are not green” has an interpretation as an ordinary negation, in which case it suffers from

the same presupposition failure as “Ideas are green,” or as a contradiction negation, as in example (25b).

Notice the analogy between this approach and the term- vs. predicate-negation ambiguity discussed earlier.

Horn (p. 146) comments that “as part of the meaning of an expression and yet not part of its literal

meaning (that aspect of meaning which affects truth and satisfaction), conventional implicata are located

simultaneously within semantics . . . and pragmatics.” However, the ambiguity of negation is still a

semantic ambiguity since it concerns only meaning, albeit construed slightly more broadly. Having gone

this far, he argues in favor of going still further, proposing an analysis according to which the ambiguity of

negation unashamedly involves pragmatics.

At the core of Horn’s argument is a distinction between descriptive negation, which concerns semantic

or logical status, and metalinguistic negation, which concerns assertability. Crucially, descriptive negation

is an operator over propositions, but metalinguistic negation relates to utterances.
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Horn justifies the shift from semantic to pragmatic issues by presenting an array of data showing that the

“presupposition-cancelling” variety of negative category mistakes and empty subjects — illustrated in (25)

— is just one case of a more general phenomenon that is not restricted to the domain of semantics. For

example, what is rejected in (29)

(29) Chris didn’t manage to solve some of the problems, he managed to solve all of them.

is not a conventional implicature, but the conversational implicature that leads the typical listener to infer

that “some” implies “not all.”

Other conversational implicatures are handled along similar lines. For example, Grice (1975, p. 73)

suggested that a reviewer might choose to write (30a) in order to imply that writing (30b) would have left

out crucial information, such as a hideous defect in Miss X’s performance.

(30) a. Miss X produced a series of sounds which corresponded closely with the score of ‘Home Sweet

Home.’

b. Miss X sang ‘Home Sweet Home.’

According to Grice, the implication that the performance was terrible arises because the speaker has violated

the submaxim of Brevity. Horn notes that the conversational implicature here can be rejected by negation

just as in (29):

(31) Miss X didn’t produce a series of sounds which corresponded closely with the score of ‘Home

Sweet Home,’ dammit, she sang ‘Home Sweet Home,’ and a lovely rendition it was, too!

Implicatures associated with the order of conjunction (i.e. the correspondence of order to a time sequence

or to importance) can be cancelled, as well:

(32) a. They didn’t have a baby and get married, they got married and had a baby.

b. Mozart’s sonatas weren’t for violin and piano, they were for piano and violin.

Other examples show that the phenomenon is still more general, permitting the rejection even of

phonetic, morphological, and stylistic aspects of utterances, or the focus or connotation implicated by a

particular utterance.

(33) a. He didn’t call the [pólis], he called the [polís].

b. I didn’t manage to trap two mongeese, I managed to trap two mongooses.

(34) a. Now Cindy, dear, Grandma would like you to remember that you’re a young lady: Phydeaux

didn’t shit the rug, he soiled the carpet.

b. It’s not stewed bunny, dear, it’s civet de lapin.

(35) a. I’m not his daughter, he’s my father.

b. Ben Ward is not a black Police Commissioner but a Police Commissioner who is black.

Metalinguistic negation, then, constitutes “a formally negative utterance which is used to object to a

previous utterance on any grounds whatever” (p. 374).5 Unifying all these examples is a typical prosodic

5Horn’s later analysis appears to weaken this statement somewhat; he isolates a class of implicata that cannot be cancelled by
negation.
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contour — “contrastive intonationwith a final rise within the negative clause” — together with a continuation

in which the faulty implicatum, whether lexical, morphological, or phonetic, is rectified. Horn strengthens

his case for this analysis by showing that other logical operators have metalinguistic interpretations, as in:

(36) a. I can only very briefly set forth my own views, or rather my general attitudes. (From Sapir,

Language)

b. If you’re thirsty, there’s some beer in the fridge.

and that his analysis also applies to scalar implicatures, where metalinguistic negation is used “for discon-

necting the implicated upper bound of relatively weak scalar predicates” (p. 382):

(37) a. Around here, we don’t like coffee, we love it.

b. That wasn’t a bad year, it was a horrible year.

Finally, Horn describes a set of diagnostics for distinguishing descriptive from metalinguistic negation,

including the inability of incorporated negation to license a metalinguistic reading, the ability of metalin-

guistic negation to permit positive polarity items, and the “archetypal” not X but Y frame for metalinguistic

negation.

(38) a. The king of France is not happy.

b. The king of France is unhappy.

(39) a. Chlamydia is not “sometimes” misdiagnosed, it is frequently misdiagnosed.

b. #Chlamydia is not ever misdiagnosed, it is frequently misdiagnosed.

(40) a. It isn’t hot, but scalding.

b. Negation is ambiguous not semantically but pragmatically.

In positing a distinction between the logical and the implicated aspects of an utterance, Horn’s analysis

is very much in the same spirit as that of Karttunen and Peters. However, Horn argues that unlike their

account, his metalinguistic analysis is capable of handling not only objections to propositional content and

conventional implicatures, but also objections based on improper grammar, choice of register, phonetics,

and so forth. A similar point holds for analyses in which one reading of negation is taken to be a general

operator more or less equivalent to “it is not true that S.” Horn comments,

Metalinguistic negation, as we have seen, is used to deny or object to any aspect of a previous

utterance — from the conventional or conversational implicata that may be associated with it

to its syntactic, morphological, or phonetic form. There can be no justification for inserting an

operator TRUE into the logical form for a certain subclass of marked negative sentences, in order

for negation to be able to focus on it, if metalinguistic negation does not in principle have to do

with truth conditions. (p. 414)

Horn acknowledges that establishing a dichotomy between descriptive and metalinguistic negation opens up

an enormous formal problem:

One important question which I did not, and will not, directly address here is just how met-

alinguistic negation is to be represented within a formal theory of natural language discourse

. . . We must be content for now with the negative fact extracted from this chapter: some
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instances of negation in natural language are not formally representable in an interpreted propo-

sitional language. (p. 444)

Since category mistakes and metalinguistic negation are so closely related, this last comment of Horn’s

might lead a cynic to consign them to a black hole (the one containing all those “pragmatic” phenomena that

are deemed to be beyond formal treatment, at least for the next few centuries). In Section 3.4 I will argue

for a more optimistic view, to be developed in the remainder of the chapter. First, however, I will briefly

review the treatment of category mistakes in generative linguistic theory.

3.3 Selection Restrictions

3.3.1 Selection restrictions as lexical features

The phenomena discussed in the previous section appeared in the guise of “selection restrictions” in (Katz

and Fodor, 1964). Katz and Fodor proposed a decompositional theory of word meaning in which lexical

entries specified the features applicable to a particular lexical item. The classic example is the noun bachelor,

decomposed into four lexical entries of the following form:

(41) a. (Human), (Male), [who has never married]

b. (Human), (Male), [young knight serving under another knight’s standard]

c. (Human), (Male), [who has the first or lowest academic degree]

d. (Animal), (Male), [young fur seal when without a mate during the breeding time]

Features not encoded directly in the lexical entry were also taken to be part of a word’s meaning —

for example, something HUMAN is also ANIMATE — though specific mechanisms for accomplishing this

(inheritance, redundancy rules) are not relevant here. (The items in parentheses are semantic markers,

and elements in square brackets are “distinguishers.” Semantic markers are intended to be primary, with

distinguishers not constituting components of meaning per se; however, see (Fodor, 1977, Chapter 5) for

a critical discussion of this view. Kastovsky (1980) comments that Fodor and Katz’s distinction between

markers and distinguishers “was completely rejected later as untenable both on theoretical and empirical

grounds” (p. 86).)

For words that denote predicates, Katz and Fodor proposed that the arguments in their lexical entries

(properly, variables in argument position) be annotated with selection restrictions — that is, specifications

identifying the necessary and sufficient condition for a semantically acceptable argument. Such conditions

were represented as Boolean functions of semantic markers; for example, (42) gives their selection restrictions

on the arguments for the verb hit when used as in “The man hits the ground with a rock.”

(42) a. [SUBJECT] (Human) � (Higher Animal)

b. [OBJECT] (Physical Object)

c. [INSTRUMENTAL] (Physical Object)

Given a characterization of arguments as in (41) and of selection restrictions as in (42), the predicates

and arguments were combined straightforwardly: the cross-product of all possible combinations would be

taken over the senses associated with the component words in an expression, and selection restrictions would

rule out inappropriate readings from the resulting set. For example, suppose bachelor had the four readings

given above, hit had the reading in (42) plus one other (e.g. the reading in “the rock hit the ground with
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a thud”), and baseball had two senses (e.g. as a physical object and a game). Under these circumstances,

“The bachelor hit the baseball” would begin with sixteen (� 4� 2� 2) possible readings. However, some

of those readings would be ruled out: assuming that seals are not higher animals, the selection restriction on

the subject in (42) eliminates all readings in which that sense of hit takes (41d) as its subject. Similarly, the

interpretive procedure would discard all readings construing baseball as a game.

The theory presented by Katz and Fodor (1964) has a number of important features. First, it accounts

for the semantically anomalous character of selectional violations (i.e. category mistakes): if no sense of an

argument meets the conditions on an argument of the predicate, then the set of readings for an expression will

be empty. Second, it shows how selectional properties can be used in a positive way to constrain ambiguity,

since the cross-product of all possible readings is reduced by those that are selectionally inappropriate. And

third, it accounts, via decompositional lexical semantics, for the intuition that certain lexical combinations

are redundant or tautologous — for example, the lexical decomposition of bachelor specifies that bachelors

are unmarried, so the modifier in unmarried bachelor adds no new information when the two lexical entries

are combined.

3.3.2 Selection restrictions as syntactic features

Chomsky (1965) adopted a theory of selectional restrictions that was in many ways similar to Katz and

Fodor’s, but he located selectional features in the syntactic rather than the semantic-interpretive component.

Selectional constraints applied to lexical insertion, preventing anomalous predicate-argument combinations

from being inserted into deep structures. The presence of two contemporary formal mechanisms, one syn-

tactic and the other semantic, was complicated even further by the fact that Chomsky’s syntactic view of

selectional phenomena represented a shift from his semantic characterization in Syntactic Structures (Chom-

sky, 1957). Fodor (1977, p. 97) comments that “the treatment of selection at this stage was schizophrenic.”

Chomsky did not express a particularly strong commitment to the syntactic treatment of selection

restrictions; for example, he wrote:

Selectional rules play a rather marginal role in the grammar, although the features that they deal

with may be involved in many purely syntactic processes . . . One might propose, therefore,

that selectional rules be dropped from the syntax and that their function be taken over by the

semantic component. Such a change would do little violence to the structure of grammar as

described earlier. (Chomsky, 1965, p. 153)

However, he did argue forcefully that selectional features such as [Human] and [Abstract] could not be

excluded from the syntactic component, under the assumption that expressions like “the book who you read”

are deviant on syntactic grounds.

As for the status of selectional rules themselves, Chomsky’s arguments are neither particularly vehement

nor particularly convincing. The main point he makes seems to be a response to the observation that semantic

but not syntactic anomaly is acceptable in embedded contexts. He comments that although placing selection

in the syntactic component would require an account for such cases as (43a), some such explanation would

be necessary anyway, in order to account for the acceptability of embedded subcategorization violations as

in (43b):

(43) a. It is nonsense to speak of frightening sincerity.

b. It is nonsense to speak of elapsing a book.
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Thus at least one motivation for removing selectional rules from the syntactic component is not as strong as

it might be.

(Although (43b) certainly requires an explanation, it seems to me that embedded contexts are irrelevant

here. Rather the phenomenon seems to concern the question of how verb meanings and syntactic frames

productively interact — as, for example, in:

(44) a. Gepetto danced Pinnochio (across the table).

b. The shortstop looked the runner back to second base.

See (Fisher, Gleitman, and Gleitman, 1991) for discussion, and cf. Grimshaw’s (1993) suggestion that

diathesis alternations are the result of core verb meanings interacting with clausal structure.)

3.3.3 Selection restrictions as semantic constraints

The discussion of selection restrictions in syntactic terms seems for the most part to have ended in the

1970s, owing at least in part to the influence of critiques by McCawley (1968) from the perspective of

generative semantics. McCawley provides convincing evidence that selection involves at least semantics,

contra Chomsky (1965); and contra Katz and Fodor (1964) he finds severe problems with their analysis of

selectional phenomena based on a lexical decomposition theory of meaning.

As a first point against the lexical-features analysis of selectional phenomena, McCawley observes that

selection restrictions must be construed as applying not to lexical items, but to entire constituents. He points

out that the anomaly of (45a) cannot be attributed to the head noun of the subject, since (45b) is perfectly

fine.

(45) a. My buxom neighbor is the father of two.

b. My neighbor is the father of two.

Furthermore, McCawley argues, selection restrictions can take into account any piece of semantic information

about a lexical item, and not just some restricted set — he points out that many words have extremely specific

selectional restrictions, such as devein (a shrimp or prawn), diagonalize (a matrix), and benign (a tumor,

in medical usage). In addition, he claims that only semantic properties can serve as selectional features,

so that apparent cases of selection for syntactic features (e.g. mass vs. count nouns) are really cases of

selection for the semantic features with which they are correlated (e.g. whether or not the items referred to

are individuated). Notice, for example, that there are no verbs that select just syntactically feminine subjects

(e.g. in English, women and ships), but certainly some that select for the semantic feature FEMALE.6

Taken together, these points show that accounting for selection restrictions syntactically would duplicate

much of the work already being done by the semantic component. This is nicely illustrated by the following

example (given in (Fodor, 1977, p. 98)):

(46) a. This corpse admires sincerity.

b. This dead man admires sincerity.

c. This man that I proved that John was mistaken in believing to be alive admires sincerity.

Fodor notes that “the fact that the subject phrase of [46c] refers to a dead man is determined by the meanings

of prove, mistaken, believe, and alive and by the way in which these words are combined . . . in other

words, by the SEMANTIC content of the whole noun phrase.”

6For further debate, see (Katz, 1970; McCawley, 1971).
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Regarding Katz and Fodor’s use of selection restrictions in disambiguation, McCawley argues con-

vincingly that selectionally anomalous sentences must be assigned semantic representations, since, as noted

earlier, anomalous constituents can be part of non-anomalous sentences. As a result, Katz and Fodor’s

mechanism of identifying semantic anomaly with an empty set of readings is untenable.

McCawley also shows that the disambiguation mechanism proposed by Katz and Fodor leads to

unacceptable results. He notes that if king has just two readings, one related to monarchy and the other to

chess, then when (47) is interpreted,

(47) It is nonsense to speak of a king as made of plastic.

the monarch reading will be ruled out, leaving only the unintended reading, “It is nonsense to speak of a

chess piece king as made of plastic.”

In general, McCawley takes issue with disambiguation based only on a privileged set of semantic

markers identified with the meanings of words. He points out that the word priest has the semantic feature

MALE associated with it not as an element of meaning, but as a fact about the current state of the world,

since otherwise discussions about allowing women to become priests would necessarily concern sex-change

surgery (cf. allowing aunts to become uncles). On Katz and Fodor’s theory, MALE therefore cannot be a

semantic marker for the word, and thus can play no role in disambiguation. However, this is contrary to the

intuition that

(48) The landlord knocked the priest up.

is easily disambiguated, rejecting the “caused to become pregnant” reading in favor of the reading “The

landlord awakened the priest by knocking on his door.” 7

3.3.4 Selection restrictions and inference

McCawley’s position on (48) raises a difficult issue concerning the status of selection restrictions in linguistic

theory. Although he does not say so explicitly, it appears that he takes the disambiguation of this sentence

to be an application of selection restrictions — in this case, a selection restriction based on a property that

he has just identified as “based on factual information rather than purely on meaning” (McCawley, 1968,

p. 130).

Kastovsky (1980), discussing McCawley’s position, argues that this is indeed the case. He attributes to

McCawley the following contrast:

(49) a. My arm is bleeding.

b. The arm of the statue is bleeding.

and asserts that, similar to the priest example, the oddness of (49b) is based not meaning-related properties

but on “extralinguistic probabilities.” In particular, he says, “[–BLOOD] is not part of the inherent feature

specification of statue” (p. 74).

On the one hand, it seems to me that Kastovsky is not giving enough credit to the compositionality

of meaning and to inter-feature relationships: [–ANIMATE] is uncontroversially an “inherent” feature of

7This is a British usage: “If you knock someone up, you knock on the door of their bedroom or of their house during the night in
order to wake them” (Sinclair (ed.), 1987). The point still stands for American English, of course: with the feature MALE unavailable as
a selectional feature of priest, it would not be possible to account for the intuition that speakers of American English find the sentence
anomalous.
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statues, and inferring the absence of blood from the absence of animacy falls within the scope of whatever

mechanism permits the inference of ANIMATE from HUMAN, since blood is definitionally associated with

vertebrates and invertebrates, hence living things, at least according to the American Heritage Dictionary.

Thus an appropriate compositional interpretation of the arm of the statue would lead to a true selectional

violation in (49b). On the other hand, as Kastovsky points out, this may not be the desired result. A “minor

extralinguistic miracle” could render the sentence perfectly acceptable; indeed, people have been known to

establish shrines around statues of religious figures because they believed those statues, though inanimate,

were literally bleeding.

Kastovsky’s position leads to a fairly complicated state of affairs: how is one to determine which features

of meaning are “inherent” and which are not? For example, according to Kastovsky, (45b) stands in contrast

to (45a) because the feature MALE is inherently a part of father and presumably also because the feature

FEMALE is inherently a part of buxom. Yet one could imagine talk-show host Geraldo Rivera introducing a

guest in the following way:

(50) Now introducing John Smith, looking lovely after his breast-augmentation surgery. This

buxom father of two makes his living in Las Vegas as a female impersonator...

Similarly, if another “minor extralinguistic miracle” of the medical variety permitted Jane Jones to produce

sperm cells, Geraldo would almost certainly seek to have her on the show, and he might justifiably make the

following introduction:

(51) Jane Jones, former supermodel, is now a buxom father of two.

Examples like these would seem to suggest that notion of “inherent” features is not clear cut — and in fact

most predicates are likely to be even less clear than those involving features MALE and FEMALE.

The problem is not restricted to cases involvingmiracles of one kind or another. Drange (1966) illustrates

the difficulty in distinguishing ordinary false sentences from semantic anomalies with the following series

of sentences:

(52) a. Englishmen like coffee better than tea.

b. Squirrels like coffee better than tea.

c. Protozoa like coffee better than tea.

d. Bacteria like coffee better than tea.

e. Milkweed plants like coffee better than tea.

f. Stones like coffee better than tea.

g. Electrons like coffee better than tea.

h. Quadratic equations like coffee better than tea.

He comments,

[Perhaps] this difference is not so much a difference in kind as a difference in degree. Sentences

(a)–(h) seem to be arranged in a graded series in such a way that it is not at all clear where

a line is to be drawn to distinguish the “factually incorrect” sentences from the “semantically

incorrect” sentences (or the false from the meaningless). (p. 16)

Ultimately Drange argues that the difference is in fact a matter of kind — i.e. that one can draw a clear line

distinguishing false expressions from type crossings in (52). However, his criterion for where to draw the

line appeals to a notion he calls “unthinkability,” for which I find his arguments unconvincing.
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Drange acknowledges that even if (52) does illustrate a difference in kind, it may also illustrate a

difference in degree. He comments,

There are many properties which Englishmen share with things which like coffee better than tea

that are not possessed by quadratic equations, such as being a physical object, being alive, having

organs of taste, and so on. On the other hand, there are very few properties which quadratic

equations share with things which like coffee better than tea, and it seems that Englishmen have

all of them also. It is in this sense that the difference between (a) and (h) might be said to be

one of degree. (p. 17)

There are two things to note about this statement. The first is that property comparisons of the kind Drange

is discussing need not involve inherent or definitional properties — having organs of taste is neither a

definitional aspect of human beings, animals, etc. nor a necessary component of the verb likes. Indeed,

when Drange includes tastebuds in the discussion he is acting on a fact about the world, namely that a

preference for coffee over tea will be determined on the basis of taste and not, say, color.

The second thing to note is that the kind of property comparison Drange suggests, taken in its simplest

form, will be unilluminating. He points out that any concept possesses an infinite number of irrelevant

property descriptions of the following kind:

(53) a. The property of not being composed of exactly one stone.

b. The property of not being composed of exactly two stones.

c. The property of not being composed of exactly three stones.

Since any two concepts share an arbitrarily large number of properties, the notion of “fewer” or “more”

properties in common will not suffice.

The discussion thus far seems to suggest that selection restrictions may involve inference about factual

knowledge at least to some extent. A more forceful argument, in favor of viewing selection restrictions as

unequivocally inferential, is made by Johnson-Laird (1983), who writes that “the notion that it is possible to

formulate exhaustive and definitive selectional restrictions on the different senses of words turns out to be a

fiction” (p. 234). He supports this view using the following example:

(54) Alcock and Brown were the first to fly X from the USA to Ireland.

(55) a. Alcock and Brown were the first to fly an aeroplane from the USA to Ireland.

b. Alcock and Brown were the first to fly a bicycle from the USA to Ireland.

c. Alcock and Brown were the first to fly the Atlantic from the USA to Ireland.

Johnson-Laird notes that it is necessary to capture at least the three senses of fly illustrated here, which

suggest argument selectional restrictions along the following lines:

(56) a. x (human, animal, or machine) controls the path through the air of y (vehicle)

b. x (human) takes y (physical object) in an aircraft.

c. x (physical object) travels in the air over y (geographical region)

The problem, he points out, is that these restrictions fail to constrain the arguments properly, permitting a

sentence like (57a) to have interpretation (57b):
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(57) a. I saw the Azores, flying the Atlantic.

b. I saw the Azores as they were flying over the Atlantic.

It seems clear that ruling out flying islands by appealing to a more specific selectional constraint in (56c)

will be difficult. And, more to the point, doing so leads to a converse problem when the context supports

such an interpretation, as, for example, in a science fiction story about how the earth explodes.

The alternative that Johnson-Laird proposes relies on inferential processes involving factual knowledge.

He argues that the crucial question in interpreting (57a) is whether it is possible for the Azores to travel by

air over the Atlantic ocean, a question that “can only be decided by making an implicit inference based on

general knowledge.” That is, the question “hinges on questions of fact, as well as on a knowledge of the

meanings of words” (p. 235). The information Johnson-Laird has in mind is the following:

(58) a. An island is a land mass entirely surrounded by water.

b. Land masses are parts of the earth’s surface that are fixed relative to other such parts (barring

earthquakes).

c. An ocean is a body of salt water that covers a large and relatively fixed part of the earth’s

surface.

d. If x is a fixed part of y then x travels when y travels, but x does not travel with respect to y.

e. The Azores are islands in the Atlantic Ocean.

Notice that information about word meaning is not formally distinguished from factual knowledge; also note

how nullifying the second piece of information — e.g. in the context of a science fiction story — would

change the interpretation of (57b).

Although strictly semantic information is not formally distinguished from general world knowledge, one

could argue that some selectional restrictions make reference only to senses of expressions — for example,

the subject of love as human or animal. Johnson-Laird expresses skepticism about this claim, noting that “in

a context where the dish ran away with the spoon, there may be nothing anomalous about a chair’s falling

in love with a table” (p. 236). He suggests that what appear to be selectional constraints based on semantic

knowledge are, in fact, just cases of the more general process, with some inferences conventionalized because

of their frequency and predictability. The inferential mechanism is the same, he concludes, whether the

premises involved concern linguistic or factual knowledge.

3.4 Summary and Prospects

3.4.1 Properties of selectional constraints

On the basis of the discussion in the preceding two sections, I will characterize selectional constraints by

enumerating a number of properties for which I find the evidence convincing, and noting issues that seem to

me to remain unresolved.

The following properties seem adequately demonstrated:

1. Selectional constraints hold of constituents and not simply lexical items. This is demonstrated by the

contrast between neighbor and buxom neighbor, only the second of which would violate a requirement

for the feature MALE.
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2. Selectional constraints are not strictly syntactic. This is demonstrated, e.g., by the existence of

predicates selecting for semantic features (e.g. semantic rather than syntactic gender), and of verbs

like devein that refer to semantic classes (e.g. shrimp and prawns).

3. Selectional constraints are not restricted to a small, privileged feature vocabulary. Examples like

devein and diagonalize demonstrate that verbs can select for small, specific semantic classes rather

than large, abstract ones.

4. Selectional violations cannot be interpreted as meaningless in the strict sense of a total absence of

readings; first, because even selectionally deviant sentences generate entailments, and second, because

distinct anomalous constituents in embedded (especially report and belief) contexts lead to distinct

interpretations of the full sentence.

5. Selectional constraints are applied in a positive way to assist lexical disambiguation. This seems to

be convincingly demonstrated by Katz and Fodor, despite the flaws in their particular disambiguation

mechanism as noted by McCawley.

Other properties of selectional constraints seem unresolved. In particular:

1. Are selectional constraints restricted to “semantic” properties? Katz and Fodor’s treatment, Chom-

sky’s syntactic variant, the arguments of Drange and Kastovsky, and the bulk of the philosophical

literature reviewed by Horn all would seem to agree that selectional constraints have to do with (at

most) elements of meaning, and not general knowledge. McCawley seems to admit factual knowl-

edge at least into the discussion of disambiguation (e.g. the probable but not definitional maleness of

priests), and perhaps also into selectional constraints (this is Kastovsky’s interpretation, at least); Horn

groups negative category mistakes in with a pragmatic class of metalinguistic negations, but doing so

does not preclude the possibility that the categories involved in selectional phenomena may refer only

to elements of meaning. Johnson-Laird argues that selectional constraints should be viewed as part of

a general inferential framework, and that putatively semantic selectional properties cannot ultimately

be distinguished from factual constraints.

2. Are selectional constraints categorical or graded? Few of the authors explicitly discuss whether

or not the selectional status of an argument is an all-or-nothing matter. When selection is taken

to refer exclusively to semantic properties, the constraint usually takes the form of a categorical,

necessary and sufficient condition and no other alternative is considered. When factual properties are

discussed, there are some passing references to the probabilistic nature of such facts (e.g. Kastovsky’s

mention of “extralinguistic probabilities”), but it is not clear whether uncertainty, inferential support,

or other aspects of extralinguistic processing are intended to result in partial or graded satisfaction of

constraints. Of the authors considered here, only Drange explicitly discusses the apparent gradedness

of anomaly judgements. Whether or not the satisfaction of selectional constraints is a matter of degree,

the positive application of selectional constraints in interpretation (items 4–5, above) suggests that

arguments may interact with selectional constraints in a more flexible way than is usually supposed.

3.4.2 A dilemma

The unresolved issues present a dilemma to someone interested in elaborating an empirically adequate theory

of selectional constraints. Suppose, for the sake of argument, that one were to accept the view that selectional
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constraints represent necessary and sufficient conditions, phrased only within a semantic vocabulary; that

is, that they concern only senses of expressions and not any accompanying factual knowledge. Such an

approach seems clearly to be equivalent to adopting a decompositional, definitional theory of description for

mental categories. On such a theory, a category is completely defined in terms of (a Boolean combination

of) features such as ANIMAL, FLIES, HAS WINGS, and so forth — the only difference is that in the case of

selectional constraints the definition refers not to an independent category label (e.g. BIRD) but to applicability

conditions for the argument position of a predicate (e.g. x in blue(x)).

Definitional theories, however, suffer from some well known problems. Armstrong et al. (1983, p. 268)

report:

[The] definitional theory is difficult to work out in the required detail. No one has succeeded in

finding the supposed simplest categories (the features). It rarely seems to be the case that all and

only the class members can be picked out in terms of sufficient lists of conjectured elemental

categories. And eliminating some of the apparently necessary properties (e.g., deleting feathers,

flies, and eggs so as to include the down-covered baby male ostriches among the birds) seems

not to affect category membership. Generally speaking, it is widely agreed today in philosophy,

linguistics, and psychology, that the definitional program for everyday lexical categories has

been defeated — at least in its pristine form.

Johnson-Laird’s (1983, chapter 10) discussion of selection restrictions, described briefly above, is of course

also a critique of the definitional approach.

It is possible to adopt a decompositional theory without requiring necessary and sufficient conditions;

this is the usual interpretation of prototype theory (Rosch et al., 1976). However, Armstrong et al. (1983)

point out that, to the extent that a prototype theory makes use of features, it will have many of the same

problems as a definitional theory: “it is not notably easier to find the prototypic features of a concept than

to find the necessary and sufficient ones” (p. 272). Furthermore, in contrast to one of the main advantages

of definitional theories, adopting a theory of prototypes makes difficult (Armstrong et al.: “altogether

hopeless”) a compositional account of phrase and sentence meanings (Osherson and Smith, 1981).8

A review of the literature here would constitute too much of a side-trip, unfortunately; for a start

see (Fodor et al., 1980; Smith and Medin, 1981; Armstrong, Gleitman, and Gleitman, 1983; Smith and

Osherson, 1988),. The main point here is that even if constraints are not viewed as necessary and sufficient,

the identification of an adequate, exhaustive set of primitive selectional (more generally, semantic) features

seems on empirical grounds to be difficult if not impossible to sustain.

Now consider the alternative view, the position that selectional constraints are connected not with

semantic primitives and meaning but with inferences and factual knowledge. This is the line suggested

by Johnson-Laird, and it seems consistent with Horn’s classification of negative category mistakes within

a much broader set of pragmatic issues. A theory of selectional constraints on this view becomes equally

problematic, albeit for entirely different reasons. Where for a definitional theory the problem is not being

able to find a complete and adequate set of features within the confines of the semantic representation, for

a pragmatic or inferential theory the problem is that anything goes: it will be necessary to represent and

make inferences about not only word meaning proper but also other facts ranging from social mores to naive

8However, see (Kamp and Partee, in progress) for a defense of the prototype theory. They ascribe many of Osherson and Smith’s
criticisms concerning compositionality not to prototype theory per se but to the choice of fuzzy logic as a supporting mechanism, and
they propose an alternative formulation of prototype theory having a different probabilistic/semantic substrate that appears to resolve
many of the problems.
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physics. To say that such a theory is not within our current reach would be an exercise in understatement:

researchers in artificial intelligence sometimes call problems like this “AI-complete,” signifying that a

solution would be tantamount to solving the AI problem itself.

3.4.3 A proposal

The dilemma I have just described has to do with the vocabulary in which selectional constraints are

expressed: at one extreme the vocabulary consists of a relatively small set of semantic primitives, and at the

other extreme selectional constraints can bring in practically the entire representational arsenal of human

reasoning. I see no way to reconcile the two positions — if we unlock the door to conceptual rather than

than strictly semantic representations and processes, I see no principled way to avoid opening it to its widest

extent. Instead, I am going to propose a solution that avoids this difficult issue, and at the same time remains

well motivated and empirically sound.

Since there is no in-between position, I will accept a dichotomy between the semantic and inferential

viewpoints and focus on the latter. Although this may seem dismissive on the semantic side, I prefer to think

of the distinctionas analogous to the dichotomyHorn draws between descriptive and metalinguisticnegation:

a category mistake may be taken to have a simple truth value in descriptive terms, but the interesting part of

the action is outside the formal semantics.9

The proposal has two components.

1. The first component is a taxonomic representation of noun concepts of the kind discussed in Sec-

tion 2.4.1, in which the central relationships are hyponymy (IS-A) and synonymy. Although an IS-A

taxonomy can be interpreted in many different ways, recall that I grounded the formalization in a rela-

tionship that might be called “plausible entailment”: following (Lyons, 1961), the entailment relation

is based on the ordinary judgements of the language user, such that “one sentence implies another if

in saying the one we are prepared to say the other” (Sparck Jones, 1964, p. 54). The synonymy of

two words — properly, word senses — hinges on the existence of representative sentences in which

the words can be substituted while still preserving exactly the same set of plausible entailments. 10

This choice of representation will allow me to bypass the most serious unresolved issue, namely the

problem of how to coherently discuss selectional constraints in terms of general inference without first

understanding how to represent the knowledge behind such inferences. The notions of “features” or

“properties” have no place at all in the taxonomy: if two words are companions in a synonym set, then

by definition there is some set of representative sentences in which they are mutually substitutable

according to ordinary judgements. However, and this is the crucial point, the mechanism for making

those judgements is entirely irrelevant. What matters is that the taxonomy exist, not that the criteria for

individual classifications be fully specified. General inferential mechanisms may ultimately account

for the taxonomy, but the theory of selectional constraints I propose need not explain how.

9There may also be an analogy here to Kamp and Partee’s (in progress) proposal for integrating prototype theory with truth-theoretic
semantics: there, real-valued characteristic functions represent “constraints on the possible completions of a two-valued partial model”
(p. 27). In what follows, selection will constitute a probabilistic relationship over a space of conceptual classes; perhaps Kamp
and Partee’s proposal could be extended so that this probabilistic framework also serves as a constraint on relationships within a
truth-theoretic model.

10I have been deliberately vague about what I mean by “representative.” The best characterization I can come up with is another
appeal to ordinary judgements: a context is representative if an ordinary speaker would agree that the usage is not particularly creative
or unusual. Although this is unsatisfying, it is no worse than the admonition to interpret a sentence “literally” in order to identify the
reading on which it is anomalous (Drange, 1966, p. 12).
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Simply stated, then, my hypothesis is that a conceptual taxonomy of this kind implicitly encodes

(most of) the inferences needed to account for selectional constraints. This leaves open the possibility

that, although the taxonomy is a useful construct for present purposes (i.e. until a correct theory

of inference is available), people really do apply selectional constraints in the form of inferences

computed using factual knowledge. A stronger version of the hypothesis is that a taxonomy of this

kind is psychologically real, and that the “true” theory of selectional constraints really does involve

stored conceptual knowledge rather than on-line inferences.

Notice that this strategy accommodates Drange’s objection to property comparisons (Drange, 1966,

p. 17). He quite correctly observes that any two concepts will share an infinite number of properties

in common. A definitional theory provides one way out, by restricting the relevant properties to an

exhaustive, finite set of features. The strategy adopted here provides a different way out, via the

generally useful tactic of reducing infinites to a finite set of equivalence classes.11 Notice also that

although the taxonomy represents not “linguistic” but “factual” relations between words, it does so

in a minimal way, adhering to what Miller calls the “standard lexicographic line” in distinguishing

between lexical concepts and general knowledge (see footnote 14 in Chapter 2). As I have noted,

that such a minimal extension will suffice is admittedly no more than a hypothesis, but I hope the

remainder of this chapter will show it to be a plausible one.

2. The second component of my proposal concerns the formalization of selectional relationships within

the vocabulary of the taxonomy I have just described. One straightforward approach would be simply to

reformulate Katz and Fodor’s theory using the conceptual classes themselves as features. This option

would improve on their account of selection restrictions by greatly expanding the base of primitives,

in accord with McCawley’s arguments (see properties 2 and 3, above). However it must be rejected, I

think, since like the semantic theory it fails to account for the meaningful interpretation of selectionally

deviant utterances in embedded contexts, the partial meanings ascribed to selectional violations even

in matrix utterances, and the subtle effects of selectional constraints on lexical disambiguation (see

properties 4–5).

The alternative, which I will elaborate in the next section, moves away from idea of restrictions, and

toward a characterization of selectional phenomena in terms of preferred association.12 The way in

which an argument satisfies and fails to satisfy the preferences of a predicate will account for how it

is interpreted, whether or not the combined expression constitutes what would traditionally be called

a selectional violation. In order to accomplish this, some formal means of representing preferences

will be necessary. Having already moved away from traditional analyses by eliminating semantic

features, I will diverge still further in the next section by formalizing the preference relationship

probabilistically using the tools of information theory.

11To state this more precisely, let W be the set of word forms. On the theory proposed here, the set of properties may be infinite, but
the set of equivalence classes of properties is indexed by P�W� and therefore finite. (See Table 2.3.)

12This may parallel the relationship between selectional restrictions and “lexical solidarities” discussed by Kastovsky (1980).
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3.5 Selection as Information

3.5.1 Intuitions

The alternative view of selectional constraints I am proposing can be phrased as follows: rather than

restrictions or hard constraints on applicability, a predicate preferentially associates with certain kinds of

arguments, and these preferences constitute the effect that the predicate has on what appears in an argument

position. For example, the predicate blue does not restrict itself to arguments having a tangible surface

— the sky is blue, and so is ocean water even deep below any apparent surface — but its arguments are

still far from arbitrary. The effect of the predicate is that its arguments tend to be physical entities and to

have surfaces. Similarly, the verb admire, interpreted in the particular sense “to have a high opinion of,”

has an effect on what appears as its subject; these tend to be physical, animate, human, capable of the higher

psychological functions, and so forth, though it may well be that no Boolean combination of these properties

is both necessary and sufficient. In some cases the effect a predicate has on its argument is quite strong: one

is unlikely to find the (numerical) predicate even applied to anything but positive integers, though zero and

the negative integers are also fairly likely. In other cases — e.g. the predicate smooth — the effect is less

dramatic.

Expressions that fail to observe preferences are nonetheless interpreted in accordance with them. For

example, if someone told you in all seriousness that

(59) Milkweed plants like coffee better than tea,

you might think they were uttering something absurd, but you could legitimately expect them to believe that

milkweed plants are capable of feeling pleasure, expressing a preference, or some other property typically

expected of the subjects of like. Similarly, as McCawley (1968) points out,

(60) My aunt is a bachelor.

may raise an eyebrow, but it will nonetheless typically be interpreted as meaning that the aunt is unmarried.

Thus the violation of one expectation does not necessarily imply that others are not met. Incidentally, if the

speaker were just beginning to learn English, one might plausibly adjust one’s belief according to a different

preference if the context supported it; e.g., concluding that aunt was mistakenly used in place of uncle. This

is the kind of context dependence stressed by Johnson-Laird (1983).

Katz and Fodor’s (1964) use of selection restrictions in disambiguation can be recast as an inferential

process based on preferences. In the straightforward cases, its behavior is very much the same; for example,

in

(61) John hit the baseball.

the reading of baseball as a physical object will be a better match for the preferences of hit than its reading

as a kind of game. In addition, though, the inferential view makes sense of some of the problematic cases

that McCawley noted, such as (60), above, and

(62) It is nonsense to speak of a king as made of plastic.

In the latter case, what is crucial is that the applicability of the predicate MADE-OF-PLASTIC to king is ruled

out not locally by compositional semantics — leading erroneously to the interpretation “It is nonsense to
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speak of a chess piece king as made of plastic” — but as part of a global inferential process, which takes

into account the embedding of the proposition within the matrix predication “It is nonsense that S.”

I am not going to attempt a formal characterization of the inferential process I have been discussing,

though see (Johnson-Laird, 1983, chapter 11) for a theory of comprehension that is a good match for the

views presented here. The point I wish to stress is that the issues under consideration here are prerequisite to

any theory of interpretation. All the theories of category mistakes reviewed by Horn (1989) presuppose that

the question “can predicate P apply to argument x?” has a yes-or-no answer, and any theory consistent with

the discussion of examples (59) through (62) will require some way of answering the more general question

“what could P(x) mean?”

3.5.2 Formalization

Prior and posterior distributions

Rephrasing the problem in terms of preferences naturally suggests a probabilistic treatment. As a prerequisite,

however, it is important to be clear about two distinctions concerning the status of probabilities.

The first distinction concerns the “logical” versus the “empirical” view of probability. The theoretical

treatment here is based on the former conception — something like the probabilities one would find by

peering into the head of the language user. This stands in contrast to empirical view, in which probabilities

are defined in terms of what one would observe as the experimental sample grew infinitely large.13 Second,

one must always distinguish probabilities from statistical probability estimates based on observed samples.

If a fair coin comes up heads six times and tails four times, the probability p�heads� is still exactly 1
2 even

though the usual probability estimate in this case would be 3
5 .

Formally, letP be a random variable ranging over the set fp1� � � � � pmg of predicates under consideration,

and letC be a random variable ranging over the set fc1� � � � � ckg of classes in the taxonomy, withC be related

to P by a particular predicate-argument relationship, such as subject-verb, verb-object, or adjective-noun. 14

Given this probabilistic framework, the intuitive notion of “preference” can now be phrased more precisely

as the following question: what effect does the choice of a particular predicate p i have on the distribution of

C?

Figure 3.1 illustrates how this might work for a particular verb, grow, with respect to classes of direct

objects. The top of the figure represents what the distribution of argument classes might be regardless of

the particular predicate. As the figure shows, some classes are a priori simply more likely to be referred

to in direct object position, and some less likely; for example, absent any other information, animals might

be more likely to be mentioned in direct object position than legumes. However, given the particular verb

grow, this distribution changes to the one shown at the bottom of the figure: some classes (e.g. animals)

become much less likely, and others (e.g. legumes) become much more likely.

It is this relationship, the change between the prior distribution, p�c�, and the posterior distribution,

p�cjpi�, that constitutes selectional preference. On this account, the features or properties that govern

selectional constraints remain entirely hidden. Selectional relationships are characterized entirely by the

13There is a long history of debate concerning the inductive (or logical) view of probability as distinguished from empirical probability.
The first chapter of (Bulmer, 1967) contains one extremely brief but useful introduction to the distinction. See also (Bar-Hillel, 1964,
chapters 15 and 16) for discussion specifically with regard to information theory.

14I will only be considering predicates corresponding to surface syntactic relationships, but this is easily generalized. I will also
consider only one argument of a predicate at a time, which will lead to empirical difficulty in some cases. For example “The dinosaur
devoured the village” and “The mouse devoured the village” will differ in selectional status with regard to the direct object, owing to
the nature of the subject.
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<legume> <trait><animal>

<legume> <trait><animal>

p(C)

p(C | grow)

Posterior:

Prior:

Figure 3.1: Example of a prior distribution and a posterior distribution

probabilistic relationship between a predicate and the classes of its arguments. Since classes in the taxonomy

are defined in terms of “plausible entailment,” general inferential processes play a role in this characterization.

However, this role is an indirect one, and there is no need to presuppose that those processes are represented

or even representable.

Constraints and Information

The probabilistic characterization of selectional relationships just described relies on the notion of a “differ-

ence” between two probability distributions. This idea can be formalized using the tools of information theory

(Shannon and Weaver, 1949), providing not only a precise definition but also an illuminating interpretation

of what it means for a predicate to constrain an argument “weakly” or “strongly.”

Recall from the discussion in Section 2.2 that in information theory the entropy of a random variable is

a measure of how uncertain the outcome is, on average. For example, if X represents the possible outcome

of a fair coin flip, then its entropy H�X� will be high. If the coin is unfair — having, say, a 90% to 10% bias

in favor of coming up heads — then the entropy of X will be quite low. To take a more relevant example,

suppose W ranges over nouns in English, and that it corresponds to the next word given the introduction

(63) The cook basted the

The entropy of W in this case will be relatively low, since it is overwhelmingly likely that the next word

will be one of a small set of words such as turkey or roast. On the other hand, if W is introduced by

(64) The cook enjoyed the

then its entropy will be much higher, since any of an enormous number of completions is reasonably likely

— the chef might enjoy a book, the opera, or the company of the butler. (The use of entropy to measure the

predictiveness of contexts like these is discussed in (Treisman, 1965; van Rooij and Plomp, 1991).)
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In information theory, entropy or uncertainty is generally identified with quantity of information. To

understand why this correspondence makes sense, consider how the informational state changes when an

actual event occurs, if you already knew the underlying probability distribution. In the case of the heavily

biased coin, actual flips tell you little more than you already knew: it will tend to come up heads, which is

unsurprising, given the distribution, and therefore conveys very little information. On the other hand, the

fairer the coin, the less information you begin with: since you don’t have any idea what to expect, every flip

of a completely fair coin will be maximally informative. Examples (63) and (64) are analogous.

Formally, entropy (information) is defined as:

H�X� �
X
x

p�x� log
1

p�x�
� (3.1)

and the quantity of information obtained by observing a single x is equated with log 1
p�x� . Notice that,

consistent with the intuitive description just given, the more surprising (less probable) something is, the

more informative it will be.15 With that in mind, entropy can be seen as informativeness “on average”:

H�X� is a weighted average of information taken over all possible values for X. Since the logarithm is

conventionally taken to the base 2, the standard unit of information is the bit, short for “binary digit.” (I will

not elaborate on the reasoning behind the particular mathematical form in (3.1); see (Khinchin, 1957, pages

9–12) for a nice exposition of this point and (Cover and Thomas, 1991) for a very readable introduction to

information theory as a whole.)

Relative entropy is an information-theoretic measure of how two probability distributions differ, which

is precisely the question under consideration here. Given two probability distributionsp and q, their relative

entropy is defined as

D�p k q� �
X
x

p�x� log
p�x�

q�x�
� (3.2)

Like entropy, the relative entropy is a weighted average; moreover, rewriting equation (3.2) as

D�p k q� �
X
x

p�x��log
1

q�x�
� log

1
p�x�

� (3.3)

makes it clear that what is being averaged is the difference at each point between information according to

distribution q and information according to distribution p. A useful interpretation of the definition comes

from thinkingof probabilitydistributionsas models: relative entropy can be interpreted as the cost, measured

in bits of information, of using q as a model when the true distribution is p.

Notice that under this interpretation, it would not make sense for relative entropy to ever be negative:

any model q that is not exactly correct should incur a positive cost relative to the perfect model of p, namely

p itself. And this is, in fact, the case: an important theorem of information theory is that D�p k q� is always

greater than or equal to zero, and equal to zero if and only if p � q (Cover and Thomas, 1991, p. 26).

This fact can seem counterintuitive, since equation (3.2) shows that relative entropy is the sum of many

terms of the form �p�x� log p�x�
q�x� �, each of which may be positive (when p�x� � q�x�), negative (when

q�x� � p�x�), or zero. Although it might seem as if the positives and negatives could balance out even

when p and q are different, this turns out not to be the case. Consider two simple examples, supposing

15Since log 1
p�x� � � log p�x�, this is the same as the definition given in Chapter 2.
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Figure 3.2: Simple distributions to illustrate relative entropy

that x can take on only two values, x1 or x2. First, consider the case where p�x1� �
3
4 , p�x2� �

1
4 , and

where q�x1� �
1
4 , q�x2� �

3
4 (see Figure 3.2(a)). Here, the probability of x1 is lower in q than in p, and the

probability of x2 is higher by exactly the same amount. Although the two might therefore seem to balance

each other out, the relative entropy between the two distributions is positive; specifically,

D�p k q� �
X
x

p�x� log
p�x�

q�x�

�
3
4

log 3 �
1
4

log
1
3

�
3
4

log 3�
1
4

log 3

�
1
2

log 3�

As a second example, suppose that x1 and x2 have the same probability in p, and differ from that value in the

model q by equal but opposite amounts (see Figure 3.2(b)). In this case, although both x 1 and x2 have equal

weight in the “true” distribution, and their values in q change in equal and opposite directions, the relative

entropy nonetheless turns out to be positive:

D�p k q� �
1
2

log 2 �
1
2

log
2
3

�
1
2
�log 2 � log 2� log 3�

�
1
2
�log 4� log 3�

�
1
2

log
4
3
�

Working through further examples like these, it should become clear that, despite one’s intuitions, it is

impossible to “trick” the definition into balancing out for non-identical distributions!
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Relative entropy can be applied straightforwardly to the probabilistic treatment of selectional constraints.

The prior distribution of classes, p�c�, represents an “uninformed” model of what the distribution of arguments

looks like, one that does not take the predicate into account at all. The posterior, p�cjp i�, is the true

distribution of argument classes for a particular predicate p i. So, treating the former as q and the latter as p

in equation (3.2), the difference between the two distributions is quantified as:

D�p�cjpi� k p�c�� �
X
c

p�cjpi� log
p�cjpi�

p�c�
� (3.4)

In information-theoretic terms, equation (3.4) measures the information provided about a random variable

(C, the class of the argument) by an event (P � pi, i.e. observing the predicate). Smyth and Goodman

(1992) discuss why this measure, which they call the j-measure, is the appropriate one to use for that purpose.

At this point, I will try to heed the admonition of Bar-Hillel (1964, chapter 15) against confusing

various ideas of what information is. Although Shannon and Weaver (1949) explicitly tried to avoid

interpreting “information” in terms of semantic content, Bar-Hillel notes that their use of the term has

often not been carefully distinguished from the notion of meaning, with undesirable results. In the present

work, I have followed Bar-Hillel in adopting the logical view of probabilities for theoretical purposes,

though for computational purposes the theory is of necessity implemented using statistical probability

estimates. I think this succeeds in addressing one of Bar-Hillel’s concerns. The other major concern is to

adequately distinguish between the quantity of information and semantic content. To be perfectly clear, I am

identifying the selectional preference of a predicate with the overall difference (or “change”) between the

prior distribution of argument classes and the posterior distribution conditioned on the predicate. Although

quantitative, the definition preserves content — this is what I hope to have conveyed visually in Figure 3.1.

Equation (3.4) concerns quantity rather than content: it encapsulates the difference between the distributions

as a scalar, measured in bits of information, that I will call selectional preference strength.

Selectional preference strength is very much like the idea of selectional range — intuitively, some

predicates are selectionally more restrictive than others. However, since I have dispensed with explicit

features, it is no longer possible to identify selectional range extensionally as the set of arguments for which

a Boolean combination of features is true. Instead, on the model just proposed, the intuition that a predicate’s

selectional constraints can be narrow or wide, strong or weak, has an information-theoretic interpretation.

Consider a predicate that strongly constrains the nature of its arguments, i.e. one that would intuitively

be said to have a narrow selectional range. In this case, the posterior distribution — the distribution of

argument classes conditioned on the predicate — will be very different from the prior distribution, with

those classes that satisfy the predicate’s preferences increasing their share and classes that fail to satisfy it

decreasing in probability. As a result, the relative entropy will be high and the predicate will have a high

selectional preference strength. For a different predicate that places weaker constraints on its arguments, the

overall difference between the two distributions will not be as great. As a result, the selectional preference

strength will be low.

Perhaps most interesting, in this model the selectional preference strength of a predicate is not just a

number, but a number with a precisely specified meaning. As discussed above, relative entropy is measured

in bits of information, and can be interpreted as the cost of assuming that the distribution is q when the real

distribution is p. When p and q are assigned as in equation (3.4), this translates into the cost of assuming

the distribution is p�c� when it is really p�cjp i� — that is, the cost of not taking the predicate into account.

Therefore in a very direct way, the selectional preference strength of a predicate can be understood as the

amount of information that it carries about its argument. I will explore this interpretation further in Chapter 4.
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3.6 Predicted Behavior

Since selectional preference is now in some sense a relationshipbetween a predicate and the entire conceptual

space of arguments, it is no longer clear what it would mean for a particular argument to satisfy a selectional

preference, or to violate one. This is not surprising given the inferential view that being taken here, since,

as Johnson-Laird (1983) argues, the ability of an argument to appear with a predicate is less a yes-or-no

decision and more a function of how easily the predication can be accommodated given information about

word meanings and context. In addition, it is consistent with the intuition, noted by Drange (1966), that

judgements of selectional fit are a matter of degree rather than categorical. In accord with this view, rather

than attempting to define the notion of an argument satisfying a predicate, I will consider in the probabilistic

setting what the consequences are for interpretation when a predicate is applied to an argument.

I will assume, or rather continue assuming, that in the lexicon each noun is mapped to a set of concepts

in the taxonomy, corresponding to its different senses. For example, the noun baseball might be mapped

to two concepts, one which is a hyponym of the concept hballi (in the sense of a “round object that is

hit or thrown or kicked in games”), and the other of which is a hyponym of the concept hfield gamei. 16

A noun will be said to “belong to” any class in the taxonomy having one of its concepts as a hyponym,

directly or indirectly. Thus baseball belongs to not only the class hballi but also to others such as

hgame equipmenti, hartifacti, and hentityi, by virtue of its first sense; and by virtue of its second

sense it belongs to houtdoor gamei, hsporti, and hhuman activityi, among others. In addition, I will

assume that a compositional procedure exists for mapping noun phrase arguments to sets of concepts in the

taxonomy — such a procedure would, for example, yield different mappings for the arguments my arm and

the arm of the statue.

Unlike arguments, predicates will be treated simply as symbols. One might argue that they, too, fit within

a taxonomy, but this is not a point I will pursue further.

I will take for granted the existence of the prior and posterior probability distributions described above,

reminding the reader that these are theoretical (abstract, logical) probabilities rather than empirical probability

estimates. (I might also point out that the prior distribution is the same for all predicates, though for the

sake of discussion it is useful to talk about each predicate as having both a prior and a posterior.) Given

these distributions, the selectional preference of the predicate — that is, the difference between the two

distributions — can be seen as consisting of a data point for each class in the taxonomy, corresponding to

each term of the sum in equation (3.4). (The strength of preference is therefore merely the result of adding

all these points together.) For example, using Figure 3.1 as a model for the distributions for grow, three of

those data points are:

(65) a. p�hlegumeijgrow� log p�hlegumeijgrow�

p�hlegumei�

b. p�hanimalijgrow� log
p�hanimalijgrow�

p�hanimali�

c. p�htraitijgrow� log p�htraitijgrow�

p�htraiti�

Given a particular predicate and its distributions, I will call the data point corresponding to a class c the

selectional behavior of the class with respect to the predicate. This forms the basis for a measure that I will

16For the remainder of this discussion I am adopting labels from the WordNet taxonomy, as indicated by angle brackets.
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call selectional association:

A�pi� c� �
1
�i

p�cjpi� log
p�cjpi�

p�c�
� (3.5)

The selectional association of a predicate for an argument class is simply the “data point” just under

discussion, with the additional complication of a divisor that is constant given the particular predicate. The

divisor will simply be the selectional preference strength of the predicate, as defined in equation (3.4); that

is,

�i �
X
c

p�cjpi� log
p�cjpi�

p�c�
� (3.6)

It is included in the definition in order to obtain a measure of predicate-argument association on a scale that

is in some sense independent of how strongly or weakly the predicate selects overall.17

When a noun appears as the argument of a predicate, the relevant question is now clear: what is the

selectional behavior of the classes to which the noun belongs? For some of those classes, the predicate

determines little or no change between the prior and posterior distribution; in those cases, A�p i� c� will be

relatively small.18 For some classes, the posterior probability leaps up compared to the prior probability;

in those cases, the value of A�pi� c� will be positive and the class can be said to be “selected for” (to a

greater or lesser extent). Finally, a third set of classes will exhibit a marked drop between the prior and the

posterior probability; in those cases the class can be described as “selected against.” It should be noted that

since changes are weighted by the posterior probability, classes that are selected against will have less of an

overall influence on selectional preference strength than classes that are selected for.

What is particularly important here is that the selectional behavior must be considered not for any

particular class to which an argument belongs, but for each of those classes. This provides the basis for some

important observations about selectional behavior in cases that would traditionally be construed in terms of

an argument “satisfying” or “violating” the selection restriction of a predicate.

First, consider what happens when the argument satisfies the selectional restriction for a predicate with

intuitively strong selectional constraints (e.g., eat turkey). In such a case, there will clearly be some class

or set of classes that the predicate “selects for,” in the probabilistic sense just described. The good fit of

the argument to the predicate can be determined by its membership in a class for which the selectional

association is high.

Second, consider what happens when the argument satisfies the selection restriction for a predicate with

intuitively weak selectional constraints (e.g. enjoy movie). Here, the probabilistic behavior is similar to the

previous case, except that the selected-for classes are not marked as clearly by dramatic shifts between the

prior and posterior distribution. In this case, the noun is a member of at least one of the selected-for classes,

but the value of selectional association is comparatively low, though positive, for even the strongest of them.

Third, consider what happens when the argument violates the selection restriction of a predicate. If the

argument is selectionally inappropriate in the intended sense, but appropriate in another, unintended sense,

then it is the latter sense that will emerge on the basis of selectional association. For example, consider the

interpretation of

(66) The music is brown.

17Note that including �i does not result in 0 � A�pi� c� � 1, since the contribution of a class to selectional preference strength may
be either positive or negative. Clearly, however,

P
c

A�pi� c� � 1 for all pi.
18This is not perfectly accurate, since the change is weighted by the conditional probability p�cjp i�. For classes that are strongly

predicted given the verb, even relatively small differences between the prior and posterior may be magnified significantly.
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On the expected interpretation of music as a member of classes hsoundi, hsense experiencei, and so on,

this is a standard selectional violation, a fact that will be reflected in zero or negative selectional association

between brown and those classes. However, music can also be interpreted as a physical object, e.g. a

hcreationi or hartifacti. These classes fit the selectional restriction of the predicate, and thus they will

emerge as the classes for which selectional association is positive, with the magnitude being greater or less

according to how strong or weak the constraints are. As a result, the selectionally appropriate interpretation

of music as an argument for brown — its selectional profile, if you will — emerges from the predicate’s

association with selected-for classes to which the word belongs. (Cf. example (12) in Section 3.1.)

At first glance, there would seem to be a fairly direct analogy between the process just described and the

Katz-Fodor account of disambiguation based on selection restrictions. However, it must be stressed that

the present account locates selectional preference within the inferential component rather than within local

and strictly semantic interpretation. Thus other factors, such as the contextual appropriateness of alternative

senses of the argument, may certainly play a role. If the discourse or situational context preferentially

supports the interpretation of music in its physical-object sense — for example, if my friend has found

the libretto of The Mikado on my shelf and is now looking for the score — I can utter (66) and it will be

selectionally perfectly appropriate in its intended sense. And if the context makes unavailable the alternative

reading of music — for example, if I am listening to classical music on the radio — then (66) will sound

anomalous.19

In addition, considering another example makes it clear that what is going on is closer to the flexible

accommodation that McCawley describes in interpreting

(67) My aunt is a bachelor.

than to a disambiguation procedure based on the strict matching of selectional features. Although the word

aunt does not belong to the class hmalei, it certainly belongs to hpersoni, with which bachelor will also

be associated. Thus the selectional profile of aunt in the context of bachelor may support the successful

interpretation of (67), albeit not as strongly as uncle would have. Note, too, that adopting the account

of selectional preference proposed here does not preclude the encoding of necessary (or even definitional)

descriptions of predicates when they are available; thus (67) might be (to some extent) acceptable at the

selectional or inferential level, but at some other level ruled anomalous.

3.7 Empirical Behavior

3.7.1 Computational apparatus

I have explored the empirical behavior of the model by means of a computational implementation. The

implementation is fairly faithful to the theoretical model, with the exception of several simplifications that

are for the most part unproblematic.

The most significant modification, of course, is in the nature of the probabilities used. It is possible to

construct the theoretical foundations of a model according to the logical view of probabilities, but in practical

terms the probabilities of the model must be estimated statistically on the basis of some source of evidence.

As discussed in Section 2.2, I have adopted the statistical technique of maximum likelihood estimation, not

19I have not worked out the interaction of selectional preference with context. The most straightforward approach, I think, would be
to assume that there is some finite set Γ of relevant contextual features and to condition all the probabilities on � � Γ; e.g. to calculate
selectional preference strength as D�p�cjp i� �� k p�cj���.
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only for its simplicity, but also to avoid presupposing a solution to the problem of estimation from sparse

data; however, that concern is not relevant here. I am convinced that the behavior of this model is not

particularly sensitive to the estimation technique used, at least at a general level, since in earlier versions

of this work I computed probabilities using the Good-Turing estimate (Good, 1953) and obtained entirely

comparable results. (See Appendix A.)

The selectional relationship I have explored most thoroughly is the one that holds between verbs and

their direct objects. In the work I will describe here, estimates of verb-object co-occurrence probability were

arrived at by constructing a large combined sample from the following sources:

1. Associated Press (AP) news stories (1989)

2. The Brown corpus (Francis and Kučera, 1982), specifically the parsed version of the corpus appearing

in the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993)

3. The Wall Street Journal (1988-89), which can also be found in parsed form in the Penn Treebank.

4. Transcribed parental speech from the Child Language Data Exchange (CHILDES) database (MacWhin-

ney and Snow, 1985; Sokolov and Snow, to appear)

5. Verb-object norms collected from human subjects.20

In addition to verb-object relations, I have to some extent explored subject-verb relationships, using the

Brown corpus and the Associated Press samples; adjective-noun combinations, using the Brown corpus and

the Wall Street Journal; noun-noun modification, also using the Brown and Wall Street Journal corpora; and

preposition-object relationships, using the Brown and CHILDES corpora.

Using samples of naturally occurring text as the basis for probability estimates required two additional

simplifications. First, since I have no procedure for compositionally interpreting noun phrases, probabilities

were estimated from a sample containing verbs together with the head of the direct object noun phrase.

Although in principle this could lead to misleading results (you don’t buy soldiers, although you might buy

a toy soldier), modifiers rarely seem to have such a radical effect on the classes of the head noun. Second,

since text corpora are not lexically disambiguated in advance, I have treated predicates as atomic symbols,

which often conflates the selectional behavior of multiple senses. For example, the selectional behavior of

the verb play is influenced in this model by the fact that it appears not only with direct objects like baseball

and game, but also with piano and violin, and with role and part.

This second simplification is not as troublesome as it might first appear. When a verb has several very

different senses, its distribution of argument classes tends to have distinct “clumps,” that is, to appear multi-

modal. However, the existence of several stronglypreferred categories is not necessarily a problem, since the

interpretation of a single predicate-argument combination takes into account only those classes within which

the argument appears. So, for example, the classes hmusical instrumenti, hartifacti, and so forth

will have little bearing on the interpretation of play baseball, and the classes hsporti, hactivityi, and so

forth will have little bearing on the interpretation of play piano. Furthermore, the criteria for distinguishing

verb senses are at present so poorly understood that avoiding terms like “homonymy,” “polysemy,” and so

forth could be viewed as appropriately cautious rather than inappropriately simplistic. 21 Finally, assuming

20I am extremely grateful to Donald Hindle for making the AP data available to me, and to Annie Lederer for making available the
verb-object norms. Notice that all subcorpora except the last one contain naturally occurring data.

21This may be a classic instance of the computer programmer’s claim, “It’s not a bug, it’s a feature!” — but sometimes the
programmer is correct.
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that predicates were distinguished in advance would lead to a chicken-and-egg problem with respect to

language acquisition — for example, see (Gropen, 1993) for an argument that selectional constraints are a

necessary component in children’s acquisition of multiple senses for a single verb. (Also see Chapter 4.)

I have adopted WordNet (Beckwith et al., 1991) as a computational model of the noun taxonomy, as

discussed in Chapter 2. Although like any other dictionary WordNet has its idiosyncracies, in principle it

has been constructed according to the theoretical taxonomic model argued for here. I believe this makes it

unique among other dictionaries, certainly dictionaries that are available on line for computational purposes.

3.7.2 Traditional examples

I willorganize this discussion around examples that have occurred over the course of the preceding sections. 22

To begin with, consider some of the classic examples of category mistakes, such as:

(68) a. The number two is blue.

b. Socrates is even.

As it happens, both two and Socrates are included in the WordNet taxonomy, despite its understandably

limited coverage of numbers and proper names. Space precludes a detailed presentation of the entire

selectional profile for any predicate-argument combination, but in general looking at the single class that

maximizes selectional association will provide a good idea of how the model is behaving. This is what is

shown in the following table:

(69)
Predicate Argument Maximum Class

blue two -0.16 hmeasurei

even two 3.99 hnumberi

blue Socrates 2.66 hentityi

even Socrates 0.03 hpersoni

Clearly two is an inappropriate argument for blue, since even the most strongly associated class to which it

belongs is selected against (i.e. has a negative selectional association with the predicate). On the other hand,

the application of even to two is fine. Conversely, Socrates is in selectional terms an appropriate argument

for blue, by virtue of being a physical entity, though note the class hpersoni has a selectional association

of -0.13 (not shown in the table). When even is applied to Socrates, the resulting selectional association is

relatively indeterminate; I suspect that the marginally positive value results from noise in the sample from

which probabilities were estimated.

To take two of Chomsky’s best known examples,

(70) a. Colorless green ideas sleep furiously.

b. Sincerity may admire the boy.

the resulting selectional behavior is summarized as follows:

22In this section, I have multiplied all values of selectional association by 100 in order to avoid a needless proliferation of decimal
places, and as a matter of notation I will represent the application of predicate P to argument x as P x. Probabilities for the adjective-noun
and subject-verb relationships described in this section were estimated using the Brown corpus; for verb-object relationships I used the
collection of samples described above.
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(71)
Predicate Argument Maximum Class

sleep idea -0.26 hpsychological featurei

admire sincerity — —

In both cases, the subject-verb relationship fails to yield a positive value for selectional association. The

dashes arising from the predication admire sincerity indicate that the predicate never had as its subject any

member of any class to which sincerity belongs; I regard such cases as indicating a selectionally inappropriate

predication.

The behavior of the subject-verb model for

(72) a. Quadratic equations do not move in space.

b. Quadratic equations do not watch the Newmarket horse races.

c. Quadratic equations do not go to race meetings.

is captured in the following table:

(73)
Predicate Argument Maximum Class

move equation -0.07 hdeedi

watch equation — —

go equation 0.10 hcommunicationi

As predicted, a description of equations as moving or watching will be selectionally unacceptable. 23 How-

ever, the behavior of the predication go equation leads to an interesting observation. Treating the subject of

a verb as independent of the complement has led in this case to an unexpected result, for although equations

cannot go to race meetings, one should not conclude that they cannot go. For example, it makes perfect sense

to say that an equation should go at the top of the page. Thus, given only the limited information available to

the model, its assignment of (weak) selectional plausibility to the predication in (72c) is not inappropriate.

Having considered some examples of selectional violations, I will turn to some of the other effects of

selectional constraints. First, it must be reiterated that selectional constraints are viewed here as part of a

more general inferential system, in contrast to the Katz-Fodor treatment of selection restrictions as semantic

constraints on compositional interpretation. To take a concrete example of this, the verb-object combination

frighten sincerity is ruled selectionally inappropriate by the implemented model (i.e. no class to which

sincerity belongs has a positive selectional association with frighten), but this does not make

(74) a. It is nonsense to speak of frightening sincerity.

a selectional violation. I assume that the embedded predication would be evaluated in the context of the

matrix clause, confirming — at least in part on the basis of the selectional relationship — that “nonsense” is

an appropriate description.

A similar point holds true for a related example discussed earlier:

(75) It is nonsense to speak of a king as made of plastic.

23The “best” class is often not particularly meaningful if the selectional association is negative. Class hdeedi contains words that
denote completed actions; this includes equation in its sense as the act of making two things equal.
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Although according to the implemented model the predication plastic king does indeed favor interpreting

king as a chess piece (i.e., hartifacti), the matrix clause in a sense reverses the interpretive process. In

particular, an interpretive procedure, identifying conditions under which the sentence would be true, would

presumably rule the “chess piece” interpretation out because it is selectionally appropriate and therefore not

nonsense, at least on selectional criteria. On those same criteria,

(76) It is nonsense to speak of a king as being a monarch.

would be judged odd, since the acceptability of the predication in the embedded clause is inconsistent with

what is being asserted about it in the matrix sentence.

Turning to other cases of disambiguation, consider the interpretations of baseball as both a physical

object and as a game.

(77) a. I hit a baseball to John and he caught it.

b. I played some baseball yesterday afternoon.

c. I watched some baseball yesterday afternoon.

The verb-object relationships in these examples yield selectional relationships summarized in the following

table:

(78)
Predicate Argument Maximum Class

hit baseball 4.48 hobjecti

play baseball 2.73 hgamei

watch baseball 1.90 hdiversioni

As a direct object for the verb hit, the interpretation of baseball as a physical object rather than a game emerges

quite clearly. This becomes even more apparent in looking at the selectional profile for this predication; that

is, selectional association of the verb with all the classes to which the argument belongs:

(79)
Value Class containing baseball

4.48 hobjecti

4.27 hartifacti

2.25 hentityi

0.13 hballi

0.11 hgame equipmenti

0.07 hequipmenti
...

...

-0.00 hsporti

-0.00 hgamei

-0.01 hdiversioni

-0.01 hcontesti

-0.01 hcompetitioni

-0.27 hgroup actioni

-0.34 hactivityi

-0.85 hacti
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When the verb is play, the profile is more or less inverted, with the classification of baseball as a game or

competition emerging as the most strongly selected for by the verb. Interestingly, when the verb is watch,

the most strongly associated class turns out to be hdiversioni:

(80)
Value Class containing baseball

1.90 hdiversioni

1.33 hobjecti

1.26 hartifacti

1.23 hequipmenti

0.79 hcompetitioni

0.66 hcontesti

0.65 hacti
...

...

Interestingly, however, the selectional behavior of the predication, taken as a whole, shows quite a bit of

ambiguity, since the “physical object” interpretation of baseball is also supported by strongly associated

classes such as hobjecti and hartifacti. This accords with my intuitions, since I can imagine taking my

son to a park to watch baseball there, or (a few years from now) telling him to watch the baseball carefully

as he’s trying to catch it.24

The ambiguity of score, from the discussion of McCawley (1968) earlier, shows similar behavior in the

implemented model.

(81) a. John has memorized the score of the Ninth Symphony.

b. The score of the Ninth Symphony is lying on the piano.

The word score is highly ambiguous: it has six senses in WordNet other than its musical interpretation,

including among them a group of twenty things, a measure or abstraction (“the score is 2 to 1 in our favor”), a

psychological feature (score as a kind of evaluation or assessment; also “facts about the actual situation,” as

in “He didn’t know the score”), and an act or accomplishment (“He turns, shoots...score!”). Despite all those

senses, the selectional profile of the predication memorize score clearly favors the intended interpretation:

(82)
Value Class containing score

1.29 hmusical compositioni

1.04 hcreationi

0.89 hmusici

0.71 harti
...

...

-0.13 hmeasurei

-0.15 habstractioni

-0.15 hpsychological featurei

-0.17 hgroupi

-0.19 hacti

-0.74 hentityi

24Clearly the determiner also plays an important role in disambiguation— “hit the baseball” vs. “play some baseball” — but the main
point regarding selectional constraints stands regardless of whether additional evidence for resolving the ambiguity is also available.
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In contrast, when score appears as the subject of lie in (81b), the selectional constraints favor what would

appear to be entirely extraneous senses of the word.

(83)
Value Class containing score

0.76 hpsychological featurei

0.65 habstractioni
...

...

0.14 hobjecti

0.07 hmusici

0.07 hmusical compositioni
...

...

Looking at the sample of verb-object co-occurrences from which the model was constructed, this is easily

explained. Lie, when used in subject position, very often concerns features of mental life (84) and abstract

concepts (85):

(84) a. The only hope for West Berlin lies in a compromise which will bring down the wall and reunite

the city.

b. The artistic interest, then, lies in what the encounter may be made to represent...

c. Regardless of where personal sympathies may lie as between the parties, failure to recognize

these changed conditions would be to ignore the facts of life.

(85) a. The danger lay in the American delusion that nuclear deterrence was enough.

b. The cemetery slumbered just behind it, and the way lay through the village and close to the

sea.

c. Although he still didn’t speak to anyone, he grew fond of saying, “ The future lies in Asia,”

when the opportunity arose...

The situation is further complicated by the “tell a falsehood” sense of lie, and the fact that people can appear

as the subject for either sense.

All things considered, it is still worth noting that the sense of score as a physical object does nonetheless

win out over its sense as a musical composition in (83). In addition, the story changes considerably if score

is taken to be the object of either lie or lay (in some dialects the former can be used transitively to mean the

latter):

(86)
Predicate Argument Maximum Class

lie score 4.06 hobjecti

lay score 2.78 hobjecti

If John were to have laid the score of the Ninth Symphony on the piano, my example would have been

much cleaner, but overall I believe the preceding discussion supports the point of view for which I have been

arguing.

To take a final example, recall Drange’s (1966) series of examples, which seem to suggest a graded rather

than categorical distinction between empirical falsehoods and selectional violations.
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(87) a. Englishmen like coffee better than tea.

b. Squirrels like coffee better than tea.

c. Protozoa like coffee better than tea.

d. Bacteria like coffee better than tea.

e. Milkweed plants like coffee better than tea.

f. Stones like coffee better than tea.

g. Electrons like coffee better than tea.

h. Quadratic equations like coffee better than tea.

(I recommend that before continuing, the reader decide for himself or herself the answer to the following

question: if you were asked to divide these eight sentences into groups by drawing horizontal lines wherever

you wanted to, where would you draw the lines?)

The results in the verb-object model are as follows:

(88)
Predicate Argument Maximum Class

like Englishman 5.35 hpersoni

like squirrel 5.16 hlife formi

like protozoa 5.16 hlife formi

like bacteria 5.16 hlife formi

like milkweed 5.16 hlife formi

like stone 3.26 hentityi

like electron 3.26 hentityi

like equation -0.30 hcommunicationi

Looking at specific numbers, I am surprised by the strength of association between like and hentityi as

its subject; at present I have no explanation for this. On the other hand, looking only at the groupings, the

progression from people to life forms to entities to more abstract concepts strikes me as entirely reasonable,

though given the choice I might take a more anthropomorphic view of squirrels and a less anthropomorphic

view of milkweed plants. It seems to me that (88) is a thorough illustration of what I have been driving

at: a definitional model of selectional constraints could draw only a single distinction in the above table,

contrary to my intuition (and, I hope, the reader’s as well); furthermore, to my knowledge no inferential

model capable of making any more distinctions than that has been worked out in the necessary detail.

3.7.3 Argument plausibility

Another empirical test for the information-theoretic model of selectional constraints arises in the context of

research into on-line processes during sentence comprehension. A great deal of recent work suggests that

the plausibility of arguments plays a role in local syntactic disambiguation decisions: summarizing a review

of relevant psycholinguistic studies, Ferstl (1993, p. 31) concludes that “selection restrictions seem to have

an immediate effect in sentence processing.”

These effects are demonstrated using stimuli like the following, taken from (Holmes, Stowe, and Cupples,

1989):
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(89) a. The secretary read the article was already out of date.

b. The secretary read the fashion was already out of date.

(90) a. The scientist showed the sample was necessary for her project to succeed.

b. The scientist showed the travel was necessary for her project to succeed.

(91) a. The mayor recognized the author was worn out.

b. The mayor recognized the pocket was worn out.

Holmes et al. describe the distinctions in terms of (a) “plausible” versus (b) “implausible” objects, and

in general psycholinguistic researchers seem to commit only to a notion that might be called “pragmatic

plausibility,” “argument typicality,” or “local semantic fit,” rather than selection restrictions as traditionally

construed by linguists (see, e.g., (Boland et al., 1989; Tanenhaus, Garnsey, and Boland, 1991; Pearlmutter

and MacDonald, 1993; MacDonald, in press; MacDonald, in revision; Tabossi et al., in press)).

In general, the psycholinguists determine the plausibility or typicality of verb-argument combinations

by pre-testing. For example, Holmes et al. asked subjects to rate sentences like

(92) a. The tenant remembered the reply.

b. The tenant remembered the smoke.

on a 1-to-5 scale, and Tabossi et al. (in press) evaluated “agenthood” and “patienthood” by asking subjects

to answer questions like

(93) a. How common is it for a reporter to interview someone?

b. How common is it for someone to interview a reporter?

on a scale from 1 to 7. These ratings can be used simply to confirm that the data in plausible-argument and

implausible-argument conditions are in fact adequately distinguished, or they can be used as predictors of

some aspect of on-line processing, such as reading time in a self-paced reading task.

Psycholinguistic studies of this kind are clearly relevant to the model of selectional constraints I have

proposed. To the extent that plausibilityor typicality ratings reflect selectional constraints rather than on-line

inferential processes — and I think this may be to a great extent — judgements made by human subjects

represent empirical data against which the model can be evaluated. Furthermore, to the extent that this model

accurately reflects some aspect of human performance, it provides an important (and, I think, previously

unavailable) methodological tool, not only for experimental design but also for the implementation of full-

scale computational models of the psycholinguistic theories being proposed and debated. In this section I

will explore the first of these issues, namely the evaluation of the model against human ratings; I consider

the second in more detail toward the end of Chapter 4.

As a first step, I investigated the behavior of the implemented model using data from (Holmes, Stowe,

and Cupples, 1989, Appendix 2) concerning verbs that have a bias in favor of taking NP complements. These

consisted of sixteen pairs of sentences, three of which I have shown in examples (89)–(91). The verb-object

combinations were constructed according to the experimenters’ intuitions, and, as just mentioned, sentences

like (92) were then rated for plausibility on a scale of 1 (low plausibility) to 5 (high plausibility) by human

subjects. Holmes et al. report a mean rating of 4.5 for the sentences containing plausible objects, and a

mean rating of 2.2 for implausible objects.

In Table 3.1 I show the sixteen verb-object combinations, together with the maximum value for selectional

association in my implemented model and the class that achieved that maximum. As I noted earlier,

selectional goodness of fit between a verb and an argument is in principle a function of the entire selectional
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Plausible Implausible
Verb Object Max Class Object Max Class

see friend 4.42 hentityi method -0.02 hmethodi
read article 6.26 hwritten comm.i fashion -0.00 hfashioni
find label 0.06 hcommunicationi fever 2.35 hevidencei
hear story 4.63 hcommunicationi issue 4.63 hcommunicationi
write letter 7.85 hwritingi market 0.31 hartifacti
urge daughter 10.31 hagenti contrast 0.31 hrelationi
warn driver 10.66 hagenti engine 7.25 hentityi
judge contest 1.58 hcontesti climate 0.22 hstatei
teach language 1.96 hcognitioni distance 1.76 hpsych. featurei
show sample 2.07 hpsych. featurei travel 0.92 hhappeningi
expect visit 2.54 hacti mouth 0.06 hreplyi
answer request 5.14 hspeech acti tragedy 3.70 hcommunicationi
recognize author 0.62 hagenti pocket -0.00 hconcave shapei
repeat comment 6.02 hsocial relationi journal 6.02 hsocial relationi
understand concept 4.13 hpsych. featurei session 2.69 hsocial relationi
remember reply 0.00 hansweri smoke 7.49 hentityi

Table 3.1: Selectional association for NP-bias verbs

profile, not just the single “best” class, but taking the maximum provides a useful and frequently accurate

upper bound.

The values in the table are encouraging: mean maximum values for plausible and implausible objects are

respectively 4.3 and 2.4, and the difference is significant (t(15) = 1.9, p� .08).25 In general, the most strongly

selected-for class of a plausible argument represents an entirely reasonable interpretation among a typically

large number of classes — for example, the object in read article is interpreted as written communication

rather than as a grammatical term and the object in warn driver is interpreted as a person rather than as a

golf club.

Most of the mistakes in the table arise when an intuitively implausible object turns out to have some

unanticipated, plausible use with respect to the verb. For example, fever is classified as a symptom and

therefore as a form of evidence, and therefore plausible as the object of find — e.g.

(94) We brought Johnny to the doctor to find out why he’s been so cranky, and the doctor found a

fever together with a mild ear infection.

The word distance, as an object for teach, is being interpreted as a psychological feature, in the sense of

emotional distance. Although one can construct sentences where this interpretation is not implausible,

(95) At the finishing school, the girls were taught not only the fine points of etiquette, but also

distance and aloofness.

what is going on might be viewed as an undesirable overgeneralization. It arises because in Word-

Net 1.2, anything that is an instance of hknowledgei (e.g. history, science) is also an instance of

hpsychological featurei.

25The similarity of these numbers to the means obtained by Holmes et al. is purely accidental, of course; there is no relationship
between their ratings scale and the scale used here.
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Plausible Implausible
Verb Object Max Class Object Max Class

say phrase -0.00 hphrasei pencil 26.25 hentityi
know teacher 10.31 hentityi traffic 2.72 hgroupi
swear oath 0.61 hcursei exit 12.11 hentityi
argue point 0.68 hcontenti order 1.00 hacti
prove theorem 1.47 hpsych. featurei battery 1.28 habstractioni
forget outcome 1.46 hpsych. featurei weekend 0.93 htimei
deny charge 5.57 hspeech acti summer -0.08 htime periodi
claim victory 1.99 hwinningi library -0.00 hcollectioni
doubt sincerity 1.76 hattributei champagne 0.03 halcoholi
decide match 2.96 heventi award 0.19 htransferred propertyi
learn truth 1.55 hcognitioni trial 1.55 hcognitioni
realize mistake 3.22 hpsych. featurei vehicle 0.03 hconveyancei
confess fault 1.48 hacti brake -0.23 hartifacti
believe witness 13.11 hlife formi journey 0.23 hchangei
explain decision 5.14 hpsych. featurei audience 0.90 hsocial relationi
discover route 4.58 hobjecti opera 4.58 hobjecti

Table 3.2: Selectional association for clausal-bias verbs

In other cases, the word tragedy is quite unexpectedly interpreted in its sense as a dramatic composition,

and thus a form of communication, and, even more unusual, smoke is being interpreted as a physical object

meaning cigarette. This leads to the counterintuitive ratings in the last line of the table, since in the sample

from which probabilities were estimated, the direct objects of remember tend to be things having physical

reality (especially people) rather than forms of communication.

As a second test, I used the data on clausal-bias verbs from (Holmes, Stowe, and Cupples, 1989) —

that is, verbs that prefer a clausal rather than an NP complement. Table 3.2 shows the results: other than

two whoppingly wrong decisions (for say and swear), the trend is clearly for the model to assign greater

selectional plausibility to those verb-object combinations that were judged more plausible on intuitive

grounds. On inspection of the corpora used to estimate probabilities, it becomes apparent why the model

is so seriously misguided in those two cases. The AP sample of verb-object co-occurrences is, it appears,

heavily contaminated by what is probably a systematic misanalysis for verbs like say, report, swear, conclude,

etc., most likely when they appear inverted at the end of a clause, and perhaps also because they can introduce

embedded clauses without an intervening complementizer. For example:

(96) a. “I’m innocent,” swore the prisoner as he was led to jail.

b. “AAAARRRRGGGH!” said Charlie Brown.

(97) a. The warden swore the prisoner was guilty as sin.

b. Snoopy says Charlie Brown needs to lighten up.

Of the twenty most frequent objects for say in that sample, thirteen are members of the class hentityi; the

distribution is enormously skewed toward the most frequent object, which is a special token denoting proper

names (mapped to class hpersoni in the WordNet taxonomy, and therefore also a member of hentityi).

For swear fifteen of the top twenty objects are members of hentityi. It also cannot help that the word

thing, also a frequent object of say, is classified only as a physical entity in WordNet Version 1.2 (I believe
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this is corrected in later versions); as a result the class hentityi gets erroneous support from examples like

the following:

(98) a. The apostle Paul said the same thing...

b. One can make them say the same thing only by not listening to them very carefully and hearing

only what one wants to hear.

c. How can you say such a thing?

Other than those most obvious problems, I find the results for this second group of examples analogous to

the first experiment and therefore very encouraging.

A stronger result than what I have just described would be a correlation between plausibility ratings

assigned by human subjects and the values assigned by the implemented model. This was not possible to

test using the stimuli just described, since Holmes et al. reported only the average ratings for plausible and

implausible combinations. However, other authors such as Tabossi et al. (in press) and Trueswell (1993)

report the mean typicality rating for each of their test items, and I hope to use these data in future work.

3.8 Other Computational Approaches

Many computational approaches to selectional constraints have appeared in a form that is more or less

similar to the view proposed in (Katz and Fodor, 1964): in implemented systems, something analogous

to Boolean applicability conditions is often associated with each argument of a predicate. 26 For example,

Schank (1986, p. 172) describes using “simple world knowledge rules” tied to conceptual rules, so that “the

conceptual rule that actors can act would be modified by lists of what could do what according to semantic

categories, such as ‘animals can eat,’ ‘planes can fly,’ and so on.” Similarly, several of the natural language

interfaces developed at BBN (e.g. see (Ayuso et al., 1989)) have used variants of the KL-ONE formalism

to taxonomically represent world knowledge, implementing selectional constraints using that formalism’s

notion of “role restrictions” (Woods and Schmolze, 1991). It seems fair to say that a review of this approach

to selectional constraints in a computational setting would in fact amount to a review of most of the natural

language processing literature — this would no doubt raise a great many interesting issues (for example,

cooperative responses when a selectional constraint is violated), but it is an enterprise I think it best to avoid

here.

Of all the computational approaches with which I am familiar, Preference Semantics (Wilks, 1986; Wilks

and Fass, 1992) is the one to which the present proposal seems most similar. Preference Semantics abandons

the formalization of selectional constraints as restrictions — to use Wilks’s (1986) term, “stipulations” —

and instead interprets applicability conditions as preferences that can be satisfied or not satisfied and still

yield some interpretation. Wilks (1986, p. 199) writes:

It is very important to note that a preference is between alternatives. If the only structure

derivable does not satisfy a declared preference, then it is accepted anyway.

A crucial component of preference semantics is the notion of “semantic density”: the more preferences that

are satisfied, the more preferred is the overall interpretation. For example, the sentence

26Often the practical approach to selectional constraintsadopted in these systems is difficult to relate to formal semantic considerations
of the kind discussed in Sections 3.2 and 3.3, though for an interesting exception see the computational approach to presupposition and
entailment described in (Weischedel, 1986).
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(99) The big policeman interrogates the crook.

might have two possible interpretations initially, one in which crook is interpreted to mean a criminal, and

the other in which it denotes a shepherd’s staff. In both cases, there are satisfied preferences between big

and policeman, and between policeman and interrogates, but the latter interpretation has one fewer satisfied

preference than the former since interrogate preferably describes something done by humans to humans.

It is important to note that these preferences are encoded in lexical entries that are essentially decompo-

sitional, expressed in a vocabulary of 80–100 primitive semantic units. For example, Wilks (1986) gives the

following “semantic formula” for interrogate:

(100) ((MAN SUBJ) ((MAN OBJE)(TELL FORCE)))

This indicates a preference for humans as subject and object, and also indicates that the denoted action is

one of forcing, in this case forcing to tell something. It is also important to note that the interpretation of

sentences is accomplished by matching possible interpretation against abstract “semantic templates” that

encode the possible structures that messages can take; for example, MAN FORCE MAN. Interpretations for

which no matching template can be found are discarded — and as Wilks (1986, p. 197) points out, this

commits Preference Semantics to the hypothesis that there is a “finite but useful inventory of bare templates

adequate for the analysis of ordinary language; a list that can be interpreted as the messages that people want

to convey at some fairly high level of generality.”

The brief summary I have just given falls far short of an adequate description of Preference Semantics,

but I hope it will suffice in order to identify the major points of similarity and dissimilarity with the proposal

I have made in this chapter. The point of view I have adopted is to a very great extent consistent with the

Preference Semantics enterprise; in particular, selectional constraints are discussed in terms of preference

rather than restriction, and in Preference Semantics they are interpretable in quantitative terms via the notion

of “semantic density” (though Wilks (1986) distances himself from a probabilistic viewpoint). At a more

general level, the present proposal is in agreement with the stress in Preference Semantics on paying attention

to “words of a normal vocabulary, and with many senses of them, rather than with single senses of simple

object words and actions” (Wilks, 1986, p. 194).

There are also some important differences between the two approaches, most notably the question of

lexical decomposition. Although I recognize that selectional constraints are only one part of a more general

interpretive process, and therefore that some more elaborated representation of actions and participants will

ultimatelybe necessary, I am distrustfulof attempts to represent meaning exhaustively and decompositionally

using a small(ish) set of primitives. Although I offer no alternative solution at present, I am encouraged

in thinking that such a solution may be possible by the fact that the current model contains no explicit

“enumeration” of selectional properties. For example, the selectional profile of interrogate crook is:
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(101)
Value Class containing score

9.38 hpersoni

9.35 hagenti

9.21 hlife formi

6.33 hentityi

0.96 hwrongdoeri

0.95 hbad personi

0.44 hcriminali

0.09 himplementi

-0.02 harticle of commercei

-0.26 hartifacti

-0.37 hobjecti

which makes immediately apparent the correct reading of the direct object in (99). Although the disambigua-

tion here is accomplished using a taxonomic representation of noun meaning, the preference of interrogate

for its direct object argument is not an enumerated set of properties except in the sense that the prior and

posterior probability distributions range over the entire conceptual space.

Turning to corpus-based models, much of the recent activity in statistical methods for natural language

processing is related to the approach I have been pursuing, in the sense that any model involving lexical

co-occurrence probabilities is, appropriately construed, a model of selectional constraints. A more clearly

relevant subset is the set of probabilistic models involving word classes; these were the subject of the literature

review in Sections 2.3 and 2.4. However, only a few recent proposals make explicit reference to selectional

constraints. Grishman and Sterling (1992; 1993) have adopted a frequency-based approach: a relational

triple (e.g. [eat,subject,Fred]) is ruled out on selectional grounds if it did not appear in the training data

some minimal number of times. In their earlier paper, Grishman and Sterling used a manually-constructed

noun classification hierarchy to generalize the selectional patterns in the training corpus; however in more

recent work they have shifted to a smoothing technique based on a distributional measure of noun similarity

(see discussion in Section 2.3). A similar approach is taken by Sekine et al. (1992), who cluster words on

the basis of distributional similarity and use the clusters in identifying selectional patterns. A third approach

of this kind is seen in the work of Velardi and colleagues (Velardi, 1991; Velardi, Pazienza, and Fasolo,

1991; Basili, Pazienza, and Velardi, 1991; Basili, Pazienza, and Velardi, 1992) — they, too, focus on the

acquisition of relational triples, expressed using a relatively small set of semantic tags within a restricted

domain.

I think the proposal I have made in this chapter differs from previous corpus-based approaches in a number

of important ways. First, unlike most existing work on extracting selectional constraints from corpora, I have

committed from the outset to working with unconstrained data rather than limited subdomains; as a result,

the questions of how the proposal will “scale up” or how “transportable” it is are much less of a concern.

Second, my emphasis has been on redefining the notion of selectional preference, not extracting a catalogue

of selectional patterns from corpora. The latter, though an important problem, is more closely related to

the “traditional” view of selectional constraints, since associating a set of classes with the argument of a

predicate is equivalent to specifying a disjunctive (hence Boolean) applicability condition on that argument.

A third closely related point is that I have attempted to make sure that the model of selectional constraints has

a reasonably well-specified semantics, something that is not done in most computational proposals (though

see (Velardi, 1991) for an interesting discussion on the relationship between corpora and various forms of
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semantic knowledge). In particular, I have grounded the IS-A relationship in the “plausible entailment”

definition of synonymy and hyponymy, carefully distinguished the semantic characterization of selectional

constraints from the inferential characterization, and defined the central ideas of the proposal — selectional

preference strength and selectional association — in terms of relative entropy, an information-theoretic

relationship that is well understood and has a clear, intuitive interpretation.

3.9 Summary

To sum up the main points of this chapter, I reviewed the “semantic” and “inferential” views of selectional

constraints, finding empirical problems with the former and practical problems in formalizing the latter. As

an alternative, I proposed formalizing selectional constraints in inferential terms, but “hiding” the actual

inferential processes within the definition of a conceptual taxonomy by grounding the taxonomy in the

notion of “plausible entailment.” I then defined selectional constraints in terms of preference, using an

information-theoretic relationship between predicates and the taxonomic classes of arguments.

The rest of the chapter was devoted to a discussion of the expected behavior of the model, and a

demonstration of actual behavior by means of a computational implementation. Two sets of empirical data

were considered: the set of “traditional” examples from the literature that were introduced over the course

of the discussion, and stimuli containing “plausible” and “implausible” predicate-argument combinations as

determined using ratings tasks with human subjects.

In the chapters that follow, I will consider applications of this model. In Chapter 4, I demonstrate a

relationship between selectional preference strength and the argument realization properties of a class of

verbs in English, and sketch how the computational model I have proposed might fit into a model of verb

acquisition. In Chapter 5, I explore the application of the implemented model to the practical problem of

syntactic disambiguation in unconstrained text.



Chapter 4

Selectional Preference and Implicit
Objects

In this chapter, I investigate one application of the model proposed in Chapter 3, exploring

the relationship between selectional constraints and argument omissibility for verbs in English.

It has been observed that the ability of some verbs to omit their objects is connected with

the inferability of properties for that argument; I argue inferability can to a great extent be

identified with the selectional information carried by the verb. This hypothesis is supported

by a computational study: the first experiment demonstrates that verbs permitting implicit

objects tend as a group to select more strongly for that argument than obligatorily transitive

verbs; the second experiment demonstrates that the tendency in practice to drop the object of

verbs correlates with selectional preference strength; and a third experiment investigates the

inferability of direct objects for verbs that do and do not require a salient antecedent for that

argument in order for it to be omitted. I conclude the chapter with a discussion of some possible

implications of this study for accounts of verb acquisition by children.

4.1 Overview

In this chapter, I apply the definition of selectional preference proposed in Chapter 3 to a linguistic problem,

namely the question of how it arises that direct objects are optional for some transitive verbs in English and

not for others. I begin by defining the syntactic phenomenon of interest, which has sometimes been referred

to as intransitivization or object deletion. I restrict my attention to just those omissions that are licensed on

the basis of lexical properties of the verb — that is, I am concerned with object omission as a case of diathesis

alternation (Levin, 1989). After discussing the relationship between selectional constraints and properties

of implicit objects, I develop the hypothesis that strong selectional preference is in fact a requirement for

verbs that participate in implicit object alternations, and that strength of selectional preference is connected

with how easily properties of arguments can be inferred.

76
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4.2 Implicit Object Alternations

Diathesis alternations are variations in the ways that verbs syntactically realize their arguments. For example,

(102) shows an instance of the well-known dative alternation, and (103) shows an instance of the causative-

inchoative alternation (Levin, 1989):

(102) a. John gave the book to Mary.

b. John gave Mary the book.

(103) a. John opened the door.

b. The door opened.

Such phenomena are of interest because they stand at the border of syntax and lexical semantics: explaining

why a verb expresses its semantic content in a particular syntactic form is part of understanding the nature

of its lexical representation.

In this chapter, I focus on a particular set of diathesis alternations having to do with the optionality of

direct objects in English. Related terms in the literature include object deletion, intransitivizations, null

complements, implicit objects, and optional arguments (not to be confused with the implicit arguments of

(Roeper, 1987)). The goal of this section is to define precisely the phenomena with which I am concerned.

Intuitively, the focus is on transitive verbs for which the direct object, when omitted, is nonetheless

understood. I will call such omissions object-drop phenomena, and the verbs for which they are possible

object-drop verbs. I will refer to omitted (null, implicit) objects of such verbs as dropped or implicit objects.

In terms of traditional syntactic subcategorization (see, e.g., (Akmajian and Heny, 1975, p. 56ff)), these are

the verbs whose subcategorization frames specify an optional NP direct object:

(104) �
+V

+[ (NP)]

�
�

In descriptions based purely on phrase structure, these are verbs having both a transitive and an intransitive

expansion, as is the case for sing in the following fragment from (Gazdar et al., 1985, p. 110):

(105) a. VP 	 H�1�

b. die, eat, sing, run, � � �

c. runs

(106) a. VP 	 H�2��NP

b. sing, love, close, prove, � � �

c. prove the theorem

Crucially, it is the lexical representation of such verbs that is taken to license the omission of the

direct object. That is, it is important to distinguish between lexically conditioned phenomena, which are

relevant to this investigation, and non-lexically conditioned phenomena, which are not. This distinction is

inspired by the distinction that Fellbaum and Kegl (1989) draw between discourse-conditionedand lexically-

conditioned intransitivity. Their class of lexically-conditioned intransitivizations is essentially equivalent

to Levin’s (1989) indefinite object alternation, and I have extended it to include what Cote (1992) calls

the specified object alternation. The latter also appears to be lexically specified, but additionally requires

that the context provide a salient antecedent for the null object. (See Section 4.2.3 for details.) Since the
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specified object alternation interacts so strongly with discourse context, I have chosen to identify Fellbaum

and Kegl’s discourse-conditioned cases using the more neutral term non-lexically conditioned.

4.2.1 Non-lexically conditioned object omission

Let us consider the difference in more detail, beginning with non-lexically conditioned object omissions.

Although English is not noted for its ability to drop the arguments of verbs — as contrasted with Japanese,

for example, in which subject-drop and object-drop are both quite frequent — there are in fact many

circumstances in which a transitive verb in English may appear without its direct object. Non-lexically

conditioned intransitivizations frequently involve habitual, characteristic, or repeated activities or properties

of the subject:

(107) a. I thought you said your dog doesn’t bite!

b. That is not my dog.

(108) Pussycats eat, but tigers devour.

(109) Religion integrates and unifies. [From the Brown Corpus]

Contrasts or progressions also appear to license the omission of direct objects:

(110) a. You wash, I’ll dry.

b. It slices! It dices! [From a TV commercial for the Veg-O-Matic]1

c. ...the order to load, prepare for action and be on the alert. [From the Collins COBUILD

Dictionary]

(111) a. Driver to police officer: If I give you $50, will you ignore this traffic violation?

b. Police officer to driver: You pay, I’ll ignore.

Instructions also license this behavior:

(112) a. Lather. Rinse. Repeat.

b. Bake for an hour at 350�.

Phenomena of this kind do not appear overly sensitive to the particular verb: a context in which the direct

object is omissible can be constructed for just about any transitive verb, by creating a situation in which

the verb is interpreted within one of the above licensing contexts. This is what leads to the conclusion that

non-lexically conditioned phenomena are an issue of grammar (and discourse), and not a matter of lexical

representation.

4.2.2 Lexically-conditioned object omission

Even when lexically unconstrained syntactic or discourse processes are excluded from consideration, there

are still numerous ways in which transitive verbs in English can specify the optionalityof their complements.

These can be distinguished along three dimensions of the omitted argument: syntactic category, definiteness,

and semantic type.2

1Informants comment that “It slices! It dices! It devours!” would be equally good.
2Unlike (Grimshaw, 1979; Pesetsky, 1982), I will not be considering at all the more general case of predicates appearing without

their complements, as in
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The first dimension is syntactic: lexically-conditioned object-drop phenomena may involve the omission

of a sentential argument (113), an NP argument (114), or a PP argument (115):

(113) a. I knew that the money had been stolen.

b. I knew.

(114) a. I called my mother.

b. I called.

(115) a. I contributed ten dollars to the emergency fund.

b. I contributed ten dollars.

Fillmore (1986) distinguishes finer grammatical types such as indicative that-clause direct objects and

subjunctive that-clause direct objects — e.g. complements of know that... versus insist that... — but the

coarse three-way distinction according to constituent type suffices for present purposes.

Second, the dropped object may have an indefinite interpretation (117a) or a definite interpretation

(117b). In Fillmore’s terms, this is the distinction between indefinite null complements and definite null

complements.

(116) What did John do at noon?

(117) a. He ate (though I’m not sure what he ate).

b. He called (#though I’m not sure who he called).

Fillmore comments that a useful test for the distinction is “whether it would sound odd for a speaker to admit

ignorance of the identity of the referent of the missing phrase,” as is presumably the case for the questionable

continuation in (117b).

Third, the semantic type of the object can involve truth conditions, or it can involve an entity or entities.

(Roughly speaking, these correspond to the types t and e, respectively, found in model-theoretic semantics

— see, e.g., (Dowty, Wall, and Peters, 1981).) Arguments involving truth conditions may be interrogative

(118), exclamatory (119), or propositional (120) (Grimshaw, 1979):

(118) a. I wonder how fast Bill can run.

b. I wonder.

(119) a. I know how very fast Bill can run.

b. I know.

(120) a. I forgot that Bill is a runner.

b. I forgot.

Arguments involvingentities are usually expressed syntactically using noun phrases, as one would expect:

(121) a. Bill read a magazine.

b. Bill read.

Although the syntax and semantics of the dropped object seem closely related, Grimshaw argues con-

vincingly that they must be distinguished when specifying the selectional properties of a verb. She supports

her claim using the phenomenon of control by concealed questions. The decisive example is reproduced

here as (122) (from Grimshaw’s (113, 114)):

(a) It’s amazing how quickly Bill can run.

(b) It’s amazing.

Nor will I be considering a possible fourth dimension of variation, namely whether or not the null argument is projected at the level of
syntactic structure (see (Rizzi, 1986)).
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(122) a. Bill asked me the time, so I inquired.

b. Bill asked me the time, so I inquired what the time was.

c. *Bill asked me the time, so I inquired the time.

The concealed question in the first clause of (122a) controls the interpretation of the implicit argument in the

second clause. The contrast between (122b) and (122c) shows clearly that the control relationship holds at

the level of semantic type and not syntactic form: the direct objects of ask and inquire in (122c) are identical

with respect to syntactic form, and therefore, since the sentence is ungrammatical, it cannot be the case that

inquire selects its direct object on purely syntactic grounds.

Within this three-dimensional space, only a subset of the phenomena will be considered here. In terms of

the dimensions just defined, the behavior I will describe as “optionalityof direct objects” can be characterized

as follows:

� syntactic type NP

� either definite or indefinite

� semantic type e (entity or entities).

Though only a subset of the full range of null complements, this description still leaves a fair amount of

ground to cover; in addition, any progress made toward accounting for this subset of phenomena can serve

as a starting point in efforts to account for the rest. 3

From this point on, then, the term object-drop phenomena will refer only to those (lexically-conditioned)

phenomena that fit within the dimensions just given, and object-drop verb and non-object-drop verb should

be understood accordingly. The remainder of this section is concerned with diagnostics that determine

whether or not a particular verb should be considered an object-drop verb.

4.2.3 Diagnostics

The class of object-drop phenomena corresponds to the union of two diathesis alternations: the indefinite

object alternation (IOA) of (Levin, 1989), and the specified object alternation (SOA) proposed by (Cote,

1992). For present purposes, therefore, the linguistic diagnostics used by those authors to characterize the

alternations can be used to demarcate the boundary between object-drop verbs and non-object-drop verbs.

Cote suggests three diagnostics to determine when a verb participates in the indefinite object alternation.

First, the verb cannot have a null object when a salient antecedent is present.

(123) a. Did Cheetah eat all the bananas?

b. #Yes, he ate.

Second, the verb’s appearance with a null object can cancel apparent equivalence with an antecedent.

(124) a. Did Cheetah eat the bananas?

b. He ate, but not the bananas. He had mangos instead.

Third, the verb’s appearance with a null object can introduce a new entity into the discourse context.

3Pustejovsky (1991, footnote 13) briefly considers the case of dative PP omission, conjecturing that the omission of PP arguments
(as in Cordelia told the story) is related to the semantic “connectedness” of the verb-object combination, accounting for the contrast
between Cordelia told the story and *Cordelia told the secret. It may be possible to develop Pustejovsky’s conjecture further using the
argument presented here.
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(125) a. Did you cook today?

b. Yes, and it came out delicious.

As noted above, Fillmore (1986) suggests a diagnostic (also adopted by (Rispoli, 1992)) to distinguish

the indefinite object cases from the definite (specified) object cases: for the former, the speaker must be

understood to have a specific antecedent in mind, and it is infelicitous to indicate otherwise.

(126) a. When I peeked into John’s room he was reading;

b. now I wonder what he was reading.

(127) a. When I peeked into John’s room he was winning;

b. #now I wonder what he was winning.

A corresponding diagnostic for picking out verbs that can take specific null objects is to construct a discourse

context where the antecedent is clearly salient.

(128) a. Remember that game we were discussing?

b. Well, John won, and he bragged about it all night.

(129) a. Remember that door we were having trouble with?

b. *Well, John unlocked, and he promised to make me a copy of the key.

Such a context must be constructed with care, however, in order to avoid creating a discourse context that

supports non-lexically conditioned object-drop phenomena such as those discussed in Section 4.2.1. For

example, (130) should not be considered evidence that lift participates in the specified object alternation:

(130) a. John and Bill will go from bedroom to bedroom looking under mattresses for hidden money.

b. John will lift and Bill will look.

Because the judgements are sometimes subtle, it is helpful to use a dictionary as a point of reference.

I have used the Collins COBUILD English Language Dictionary (Sinclair (ed.), 1987), which has the

convenient property of organizing verb subcategorization information according to verb sense. Thus it is

possible to identify a verb as a likely participant in implicit object alternations simply by seeing whether

some (non-marginal) sense of the verb is annotated with both V and V+O; after which, of course, one can

apply further diagnostics. If no sense of a verb permits both the V and V+O frames in this dictionary, it can

reliably be excluded from consideration.

4.2.4 Properties of implicit objects

Although the participation of a verb in implicit object alternations is usually encoded simply as a set of

structural alternatives — as illustrated by (104) and (105) — it is clear that the alternation has implications

for interpretation, as well. In particular, when a verb’s object is dropped, the missing argument is taken to

have the properties of “prototypical” objects of the verb. For example, Levin (1989, p. 7) gives the following

example in characterizing the indefinite object alternation (her examples (17a,b)):

(131) a. Mike ate the cake.

b. Mike ate. (	 Mike ate something one typically eats),

and Ellen Prince points out that for many people, (132) is natural under a “washing dishes” interpretation,

(132) You wash and I’ll dry!
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but humorous in a situation where the speaker and listener are giving the baby a bath. 4

These property inferences are, in fact, very much like the inferences drawn when the argument position

is occupied but unspecific. Fodor (1977) comments that selection restrictions have been used not only to

predict semantic anomaly, but also to provide inferences of this kind, filling out the meaning of sentences

containing a pronoun in argument position.

(133) a. Sincerity admires John.

b. This one admires John.

She writes:

In [(133b)], the subject noun phrase is not specified for animateness, so there is no direct conflict

with the selection restriction on the verb admire which requires its subject to be animate (or

more precisely, to be capable of higher psychological functions). But the selection restriction on

the verb induces an interpretation of the subject as if it WERE an animate noun phrase. (p. 195)

This relationship between selectional constraints and omitted (or underspecified) arguments appears

in the discussions of a number of authors about lexical representations and how they might be used in

processing. Jackendoff’s (1990, p. 52) discussion of optional complements is one such instance. Within

his representational scheme, the lexical entry for a verb specifies (i) the syntactic form of its complement

— for example, a subcategorization frame — together with (ii) some expression of semantic selection for

that complement, (iii) a lexical conceptual structure having open argument positions, and (iv) an annotated

distinction between obligatory arguments and those that are optional. A selectional restriction is considered

to be a part of the verb’s lexical conceptual structure. For example, the lexical entry for drink includes

a selectional restriction on the direct object (more precisely, on the argument position within the lexical

conceptual structure) in the form of the conceptual annotation LIQUID.

Jackendoff suggests that in processing, selectional restrictions are enforced not by means of an inde-

pendent filter, but rather via a mechanism he calls argument fusion: when the lexical conceptual structure

associated with the verb is combined with an overt argument, the conceptual content of the argument is

combined with the (partial) conceptual content already found in the argument position. Should there be a

clash of types — for example, a non-liquid direct object for drink — this fusion cannot take place, and a

selectional violation results. Should an optional argument not be overtly specified, the empty argument of

the verb will nonetheless be attributed with appropriate “default” features by virtue of the partial conceptual

information within the verb’s lexical entry. Rizzi (1986, footnote 6), in a similar vein, suggests that optional

arguments correspond to thematic roles that are “saturated” in the lexicon rather than syntactically. Common

to these discussions is the idea that selectional information specified in a verb’s lexical entry is combined

with objects when they are overt, and is ascribed to those arguments when they are omitted.

The evident relationship between selectional constraints and property inferences suggests the following

hypothesis: verbs that permit implicit objects select strongly for that argument. This makes sense on intuitive

grounds — relevant properties of omitted arguments are clearly inferred somehow, and the verb seems the

most likely place to look for the relevant information. To state the hypothesis another way, if a verb does not

carry sufficient selectional information to permit the relevant object properties to be inferred, then it should

not permit that argument to be omitted.

The following examples make the intuition behind this hypothesis quite clear.

4Personal communication; she attributes the example to Gregory Ward.
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Figure 4.1: Selectional behavior of need and eat

(134) a. John ate something.

b. John ate food.

c. John ate cereal.

(135) a. John needed something.

b. John needed assistance.

c. John needed help with his homework.

In (134b), the direct object seems to contribute very little additional information over and above (134a).

In example (135b), the direct object seems to contribute more information; after all, John might need any

number of things (a ride to work, a haircut, a new computer password), only some of which are kinds

of assistance. One can imagine how a language might incorporate such informational differences into its

syntactic behavior. In cases like (134b), but not (135b), the direct object contributes so little information

that often it might as well be omitted entirely, and this behavior ultimately becomes incorporated into the

subcategorization of the verb.

The connection between inferability of the direct object and its omissibility is not a new one — similar

observations have been made by (Lehrer, 1970; Rice, 1988; Fellbaum and Kegl, 1989). However, the

formalization of selectional preference proposed in Chapter 3 provides a necessary link between inferred

information and selectional properties of the verb, and provides a new and formal interpretation of what

information is. Furthermore, unlike traditional characterizations of selectional constraints as sortal restric-

tions, the information-theoretic proposal makes it possible to discuss selection quantitatively rather than in

all-or-nothing terms. Rather than suggesting that need provides no selectional information at all about its

direct objects, one need only claim that the information provided is comparatively less than for some other

verbs.

This is illustrated in Figure 4.1, which shows the selectional behavior of the verbs need and eat as

determined experimentally from the Brown corpus, using the computational model proposed in Chapter 3.
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The taxonomic classes from WordNet have been laid out sequentially along the horizontal axis, with each

class taking the x-value corresponding to its unique numerical identifier in WordNet. 5 The vertical axis

indicates the magnitude of selectional association between the verb and each concept.6 As the figure shows,

the verb need (profile at left) does constrain its direct object to some extent, having a stronger selectional

association with some concepts than others, although the overall effect is relatively small in magnitude and

not conceptually specific. However, the selectional behavior of eat (profile at right) is markedly different:

qualitatively its pattern of selectional association is far more specific (the highest peak corresponds to the

WordNet class hfoodi), and quantitatively its overall selectional preference strength is much greater. The

ability to quantify selectional constraints in this way makes it possible to put a precise formulation of the

hypothesis under discussion to an empirical test.

4.3 Experiment 1: Selection and Optionality

4.3.1 Procedure

Several computational experiments were carried out in order to test the hypothesis that object-drop verbs

can be distinguished from non-object-drop verbs on the basis of selectional preference strength. The general

procedure was as follows:

� A sample of verbs was chosen, comprising a set of 34 verbs that occur frequently in parental speech

to children.7

� Each verb was classified as object-drop or non-object-drop. A verb was classified as object-drop only

if (a) some sense of the verb is annotated with both V and V+O in (Sinclair (ed.), 1987), and (b) that

sense is “close enough” to the central meaning of the verb, as opposed to an extremely specialized

sense. The latter criterion is a question of personal judgement: some sense of each verb in (136)

and (137) permits both subcategorizations, but in cases like (137) I decided the senses permitting the

alternation were too specialized to warrant categorizing the verbs as object-drop.

(136) a. John called (someone) at 3pm.

b. John packed (a suitcase) quickly before leaving.

c. John stole (some money) and was caught.

(137) a. John opened (a discussion) with a question.

b. John showed (a work of art) in New York.

c. The missile hit (a target) and exploded.

� For each verb, the selectional preference strength was calculated as described in Chapter 3. The

experiment was replicated using several different sources for verb-object co-occurrence frequencies;

see details below.8

� Statistical tests were carried out to see if the object-drop verbs did in fact have higher strengths of

selectional preference than their non-object-drop counterparts, as predicted by the hypothesis.

5These unique identifiers correspond to positions within a WordNet 1.2 data file; its size is about 4 megabytes.
6Values of selectional association have been multiplied by 100.
7I am grateful to Annie Lederer for providing this list.
8Recall from Section 3.7.1 that verb senses were not distinguished, although sense distinctions may be relevant (see discussion in

(Fillmore, 1986)).
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In using this procedure to test the hypothesis, the WordNet noun taxonomy is assumed to be a reasonable

representation of the conceptual taxonomy available to a language user. The psycholinguistic considerations

underlying the taxonomy are presented by Miller (1990a); among others, he includes the following:

1. Clinical observations of patients with anomic aphasia lend support to the isolation of nouns into a

separate lexical subsystem.

2. A hierarchical organization of the noun lexicon is supported by psycholinguistic evidence concerning

anaphoric nouns and comparative constructions. (E.g., He owned a rifle, but the gun had not been

fired; #A rifle is safer than a gun/#A gun is safer than a rifle.)

3. The noun hierarchy strongly reflects function. (Miller comments, “At least since Dunker (1945)

described functional fixedness, psychologists have been aware that uses to which a thing is normally

put are a central part of a person’s conception of that thing.”)

In (Miller et al., 1990), Miller makes the following general comment:

Beginning with word association studies at the turn of the century and continuing down to the

sophisticated experimental tasks of the last twenty years, psycholinguists have discovered many

synchronic properties of the mental lexicon that can be exploited in lexicography . . . Inasmuch

as it instantiates hypotheses based on results of psycholinguistic research, WordNet can be said

to be a dictionary based on psycholinguistic principles.

As a second assumption, the verb-object samples used in the experiment are taken to be representative

of actual usage. In order to ensure that this is the case, the corpora used were as balanced as possible. One

experiment used the Brown Corpus (Francis and Kučera, 1982), which, though smaller than some of the

text corpora now available (about a million words, total), is the largest readily available sample of English

text explicitly designed to be balanced across genres. A second experiment used parental speech from

the CHILDES corpus (MacWhinney, 1991), which is to my knowledge the largest and broadest sample of

parent/child interaction available. A thirdexperiment used data collected by Annie Lederer in an unpublished

study of verb-object norms.

It is very important to note that no statistics at all were collected concerning the frequency with which

verbs in the study do or do not appear with omitted arguments. Only overt verb-object co-occurrences go

into the estimation of selectional preference strength; therefore the independent measure is not tainted by

information about the property it is being used to predict.

4.3.2 Results

Brown Corpus. The first version of the experiment used a sample of 33,136 verb-object co-occurrences

extracted from the parsed version of the Brown Corpus in the Penn Treebank (Marcus, Santorini, and

Marcinkiewicz, 1993). The Treebank parses encode only surface objects, and since pronoun-antecedent

relationships are not encoded, pronouns in object position were ignored. In multiple-noun compounds, the

last noun (reliably the head of the NP) was taken to be the direct object. 9

9I am very grateful to Rich Pito for his TGREP utility, which made it possible to search for and and extract specific structural patterns
from the Penn Treebank.
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In this version of the experiment the object-drop verbs have significantly stronger selectional preference

strength than the non-object-drop verbs according to a Mann-Whitney U test (Milton, 1964) (N1=15,

mean1=2.97, stdev1=0.98, N2=19, mean2=1.73, stdev2=0.93, U=55, p � �001).

CHILDES. The second version of the experiment used a sample of 34,710 verb-object co-occurrences

extracted from parental speech in the CHILDES (Child Language Data Exchange System) collection of

parent-child interactions (MacWhinney and Snow, 1985; Sokolov and Snow, to appear). The CHILDES

data are not parsed, so in order to identify the direct objects of verbs, the parental turns from the CHILDES

data were extracted and run through a probabilistic part-of-speech tagger, and direct objects identified using

a simple heuristic procedure. Essentially the procedure looked to the right of the verb for either a noun, a

sequence of nouns (in which case the last one was identified as the head), or another part of speech such as a

preposition or adverb that would suggest terminating the search without identifying an object. Although this

procedure led to a noisy sample, I inspected a sub-sample by hand and judged the results to be reasonable;

in addition, an earlier version of the experiment applied the same heuristic to the Brown Corpus (before it

was available in parsed form) and the results were essentially the same as those just described.10

In this second version of the experiment, the object-drop verbs again have significantly stronger selec-

tional preference strength than the non-object-drop verbs, according to a Mann-Whitney U test (N1=15,

mean1=2.25, stdev1=0.94, N2=17, mean2=1.13, stdev2=0.64, U=37, p � �0005). (Verbs do and have were

excluded from the heuristic object-finding procedure owing to their use as both verbs and auxiliaries, hence

the experiment included 32 rather than 34 verbs.)

Human subject data. The third version of the experiment used a sample of 2,655 verb-object co-occurrences

collected in an unpublished norming experiment by Annie Lederer. Ten subjects were instructed to name

“the top ten things that you...” for each of the 34 verbs — something very much along the lines of the

“Family Feud” television game show. They were told to restrict themselves to one-word answers, and to list

fewer items if ten did not come to mind easily. In some cases, subjects gave two-word responses despite the

instructions (e.g. pour orange juice, open car door); in adapting the norms to the experiment reported here

those responses were excluded.

In this third version of the experiment, the object-drop verbs once again have significantly stronger

selectional preference strength than the non-object-drop verbs, according to a Mann-Whitney U test (N1=15,

mean1=2.17, stdev1=0.42, N2=19, mean2=1.66, stdev=0.42, U=57, p � �0025).

4.3.3 Discussion

The results of Experiment 1 confirm the hypothesis that verbs participating in the implicit object alternation

select more strongly for their direct objects than verbs that do not. Replications using several different corpora

to estimate verb-object co-occurrences lend the result additional credibility: the difference is apparently not

the result of some quirky statistical behavior in a particular corpus.

It is important to note, however, that there is no clear threshold separating the two groups of verbs. For

example, using the Brown Corpus data, the three “weakest” object-drop verbs are call, hear, and watch,

10All parental data available in CHILDES were merged; these included data gathered by the following researchers: Bates, Bernstein,
Bloom, Bohannon, Braine, Brown, Clark, Evans, Garvey, Gathercole, Gleason, Hall, Higginson, Howe, Kuczaj, MacWhinney, Sachs,
Snow, Suppes, Vanhouten, and Warren. See (MacWhinney and Snow, 1985) for details. I am grateful to Eric Brill for his assistance in
tagging the CHILDES data.
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with selectional preference strengths ranging from 1.52 to 1.97; the three “strongest” non-object drop verbs

are hang, wear, and open, with selectional preference strengths ranging from 2.93 to 3.35. The results using

other corpora show similar behavior. This might mean that selectional preference strength is being poorly

estimated in some cases, or it might mean that there are other factors involved in determining whether the

direct object is optional.

There is some evidence to suggest that usage biases may be leading to inaccurate models of verb selection

in some cases. For example, in the Penn Treebank parses for the Brown Corpus the direct object distribution

for the verb say is systematically contaminated by time adverbials, as in the following:

(138) a. He still [VP says [NP every day] again: “Let there be light”]!

b. Governor Notte [VP said [NP last night]...]

This is one likely explanation for the selectional preference strength of 2.82 for say as estimated from

this corpus. In addition, inappropriate word senses appear to be having undue influence for some low-

frequency verbs. For example, governor, head, official and tool together account for 6 of the 11 direct object

instances observed for the verb hang; these can all be grouped together under the heading hperson,3174i

if head is interpreted in its sense as CHIEF and tool is interpreted as PUPPET or SLAVE. If word senses were

disambiguated, the co-occurrence hang head would contribute probability to senses such as BODY PART and

tool would be associated with IMPLEMENT and the like, and the overall selectional preference strength would

be lower.

Despite these biases, I am inclined to take the latter position, namely that, even if the estimated values

for selectional preference strength were completely accurate, selectional preference would not completely

account for omissibility of objects. I take up other factors that might be involved in the general discussion.

4.4 Experiment 2: Selection and Frequency of Omission

The previous experiment investigated the hypothesis that optionality of the direct object is connected to

selectional preference, the rationale being that strength of selectional preference is, as formalized here, a

measure of how easy it is to infer or reconstruct necessary properties of the omitted object. Although the

results do not support a categorical distinction solely on the basis of selectional properties, they do show that

selectional properties are relevant to lexically-specific syntactic behavior.

Given that selection is relevant to lexical-syntactic properties — that is, lexical knowledge bearing

on syntactic competence — a natural question to ask is whether selectional preference affects syntactic

performance, as well. In particular, if selectional preference strength measures how much information a

verb carries about its object, then properties of omitted objects should in some sense be more easily inferred

for strongly rather than weakly selecting verbs.

Ease of inference is a subject for investigation by psycholinguistic rather than computational methods.

However, in performance, a speaker or writer is likely to be influenced by how easy it will be for the listener

or reader to arrive at the correct interpretation. In particular, one would expect that verbs for which the

object is readily inferable will omit that argument correspondingly more frequently than verbs for which the

object is not easily inferred. In a second experiment, therefore, I have again associated ease of inference

with strength of selectional preference, this time exploring the connection between selectional preference

and the omission of direct objects in actual performance.
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4.4.1 Procedure

In order to determine the frequency with which verbs omit their objects, I extracted from the Brown Corpus

a sample of 100 instances of each verb used in the preceding experiment (or as many instances as were

available, if fewer). For each instance, I used the full sentence in which the verb appeared, together with

the full preceding sentence, to decide whether or not this instance was an example of an implicit object

construction. The judgements were made on the basis of intuition, together with the linguistic diagnostics

discussed in Section 4.2.3.

(139) a. In the fullness of her vocal splendor, however, she could sing the famous scene magnificently.

b. Altogether fifteen virtually unknown Rodgers and Hart songs are sung by a quintet of able

vocalists.

c. Rouben Ter-Arutunian, in his stage settings, often uses the scrim curtain behind which Mr.

Cole has placed couples or groups who sing and set the mood for the scenes which are to

follow.

For example, (139c) was counted as containing an implicit argument instance for sing, and (139a) and (139b)

were not.

In this process, it was more convenient to use the original part-of-speech tagged Brown Corpus rather

than the parsed version found in the Penn Treebank, though the latter was still used for estimating selectional

preference strength. Since in the original Brown Corpus the uses of have as auxiliary and verb are not

distinguished, that verb was excluded from the sample, leaving the other 33 verbs from Experiment 1.

Selectional preference strength was determined for each verb in exactly the same fashion described earlier,

for each of the same three corpora.

4.4.2 Results

A correlation between selectional preference strength and object omissions emerged in each of the three

versions of the experiment: Brown Corpus (N=33, r=.48, F(1,31)=9.53, p � �01, p�F � � �005),

CHILDES (N=32, r=.36, p � �05, F(1,30)=4.33, p�F � � �05), human subject data (N=33, r=.58,

p � �001, F(1,31)=15.74, p�F � � �0005). Figure 4.2 shows a plot of the relationship using the human

subject data — Strength refers to selectional preference strength, and Implicit is the proportion (between 0.0

and 1.0) of instances appearing with an implicit object.

Although some verbs deviate by failing to omit their objects despite very strong selection for the

direct object, it is interesting to notice that the converse does not hold: verbs do not omit their objects

frequently unless they possess a high selectional preference strength. I would argue that this pattern reflects

an underlying hard requirement, namely that strong selection is a necessary condition for object omission.

Whatever other sources of information may be available for inferring properties of implicit objects, selectional

information carried by the verb is a prerequisite.

4.5 Experiment 3: Distinguishing Subclasses of Object-drop Verbs

In Experiment 1, verbs participating in the indefinite object alternation (IOA) and the specified object

alternation (SOA) were combined into a single group. One might predict, however, that the selectional

properties of verbs in the two subclasses might differ — if a verb requires that an antecedent be available
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Figure 4.2: Correlation between selection and implicit objects

IOA SOA

drink call
eat explain
pack hear
read play
sing pour
steal pull
write push

watch

Table 4.1: Subclassification of object-drop verbs

in the discourse context, the verb itself might not contribute as much information about the omitted object.

This prediction can be tested using the same procedure as in Experiment 1, replacing the object-drop and

non-object-drop groups with groups of verbs participating in the indefinite and specified object alternations,

respectively.

Table 4.1 shows the division of the object-drop verbs from the sample into those two subclasses. Testing

the predicted difference in selectional preference strength between the two classes yielded the following

results, organized, as before, according to the corpus according to which selectional preference strength was

estimated. (Group 1: IOA; group 2: SOA.)

Brown Corpus: N1=7, mean1=3.43, stdev1=0.75, N2=8, mean2=2.57, stdev2=1.02, U=13, p � �05.

CHILDES: N1=7, mean1=2.51, stdev1=0.80, N2=8, mean2=2.03, stdev2=1.05, U=14, p � �1.

Human subject data: N1=7, mean1=2.14, stdev1=0.54, N2=8, mean2=2.20, stdev2=0.33, U=26, n.s.
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Although these results might optimistically be interpreted as supporting the hypothesis, the difference

between the two groups has not been convincingly demonstrated. One likely explanation is that the the two

groups — respectively containing 7 and 8 verbs — are too small.

In the interest of obtaining results from a larger sample of verbs, I repeated the experiment using the verb

classification in (Lehrer, 1970). Lehrer divides verbs permitting “object deletion” into four types:

I. Verbs that imply highly specific semantic objects, with the identity of the object not affected by

discourse context (e.g. eat, read).

II. Verbs that imply two or more fairly specific objects; for these the discourse might have an effect on

how the missing object is interpreted.

III. Verbs that allow the object to be deleted in certain discourse contexts (i.e. when an antecedent is easily

identified) without loss of meaning. This group is mutually exclusive with type I, and overlaps with

type II.

IV. All remaining verbs that permit object deletion (e.g. steal, interrupt). These tend not to be associated

with a highly specific object, and “sometimes behave as type III verbs do, but less regularly.”

There seems to be a fairly clear correspondence between Lehrer’s Type I and the implicit object alternation

and between Type III and the specified object alternation (see Appendix B.7). Lehrer writes:

[Type III verbs] allow their objects to be deleted when the object has appeared in the preceding

discourse. Or, looking at the matter from an analytic point of view, the following verbs tend to

‘pick up’ objects from the preceding discourse.

Her types II and IV were excluded, since their status with regard to the indefinite/specified distinction is

unclear. Using the Brown Corpus to estimate selectional preference strength, Lehrer’s Type I verbs select

more strongly for their objects than the Type III verbs, according to a Mann Whitney U test (N1=34,

mean1=4.46, stdev1=1.75, N2=42, mean2=3.04, stdev2=1.29, U=356, p � �0001). However, although

there is a difference when the experiment is done using the CHILDES corpus, it is not significant (N1=27,

mean1=3.32, stdev=1.73 N2=31, mean2=2.86, stdev=1.49, U=359, n.s.). The empirical evidence is therefore

suggestive, but not conclusive. The difference between the behavior of the Brown Corpus and CHILDES

samples may result from the fact that they respectively contain edited text and spontaneous speech, but I

have not yet investigated this possibility in detail.

4.6 General Discussion

The experimental results confirm that there is an interaction between strength of selectional preference and

the optionality of direct objects. Experiment 1 shows that verbs permitting the omission of their direct

objects select for that argument more strongly than do verbs for which the object is obligatory. Experiment 2

lends support to the claim that this relationship is a causal one, showing that in actual performance there is a

correlation between selectional information and the frequency with which the reader or listener is expected to

infer an omitted object in practice. Finally, Experiment 3 investigated the claim that selectional information

is connected to ease of inference. It suggests that verbs with external sources of information — salient

antecedents in the discourse — may select less strongly than verbs for which that information is unavailable.



91

As I pointed out earlier, however, selectional preference information alone is not enough to provide a

categorical distinction between verbs that do and do not drop their objects. In the remainder of this section

I discuss several other factors that may be connected with the indefinite object alternation, among them

aspectual constraints and taxonomic relationships in the lexicon.

4.6.1 Aspectual constraints

The account of implicit object alternations presented here stands in contrast to the more common view

of diathesis alternations as being closely tied to some specific aspect of the verb’s semantic content. For

example, the dative alternation is related to the element of transfer.

(140) a. John gave the book to Mary.

b. John gave Mary the book.

(141) a. John told the story to Mary.

b. John told Mary the story.

As Pinker (1989) puts it,

Dativizable verbs have a semantic property in common: they must be capable of denoting

prospective possession of the referent of the second object by the referent of the first object

. . . verbs of communication are treated as denoting the transfer of messages or stimuli, which

the recipient metaphorically possesses. (p. 48)

Pinker goes on to discuss semantic constraints on a range of other argument structure alternations, including

causatives, locatives (spray/load), and passives.

Although verbs permitting implicit objects do not appear to be linked by any factor so tightly bound to

their semantics, there are some factors connected to aspect that are relevant. These are most easily described

in terms of Vendler’s (1967) aspectual classes, and their related time schemata. To describe these aspectual

distinctions very briefly, activities and accomplishments admit continuous tenses, whereas achievements and

states do not — the former but not the latter are processes, in the sense of “successive phases following

one another in time” (p. 99). Activities and accomplishments are distinguished by the notion of an end or

climax; achievements and states are distinguished by the determinacy of the time period involved. A fuller

discussion can be found in (Vendler, 1967); for present purposes, the following diagnostics for distinguishing

the four classes will suffice:

� Activity from accomplishment:

(142) a. For how long did he push the cart? [activity]

b. How long did it take him to write the letter? [accomplishment]

� Accomplishment from state:

(143) a. I am writing the letter. [accomplishment]

b. *I am knowing the answer. [state]

� State from achievement:

(144) a. How long did it take to recognize the painting? [achievement]
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b. *How long did it take to know the answer? [state]

� Achievement from activity:

(145) a. For how long did he push the cart? [activity]

b. At what time did he recognize the painting? [achievement]

� Activity from state:

(146) a. I am pushing the cart. [activity]

b. *I am knowing the answer. [state]

� Achievement from accomplishment:11

(147) a. I wrote the letter without interruption. [accomplishment]

b. *I recognized the painting without interruption. [achievement]

A generalization that appears to hold for verbs participating in the indefinite object alternation is that they

describe processes, specifically accomplishments, when used transitively. Most of Vendler’s diagnostics for

accomplishment verbs are captured concisely in (148):

(148) a. What was John doing?

b. John was drinking his coffee.

c. It took John ten minutes to drink his coffee,

d. and he drank it without interruption.

Furthermore, Mittwoch (1971; 1982) argues that verbs with omitted indefinite objects are interpreted as

activities. In (Mittwoch, 1971) she shows that when drink appears without a specified object, or with an

object of indefinite quantity, as in drank beer, the VP must be interpreted as describing an event that has not

necessarily been completed.

(149) a. John drank (beer).

b. *John drank up (beer).

c. John drank up the glass of beer.

(150) a. John drank (beer) for two hours.

b. *John drank (beer) in two hours.

This observation accounts for the exclusion from the alternation of verb phrases that have only a completed-

event reading. Since the particle up in phrases like drink up and eat up contributes the semantic feature

[+completive], it is incompatible with an unspecified interpretation of the “deleted” NP.

Mittwoch’s argument suggests a constraint excluding not only verbs appearing with completive particles,

but also verbs that carry the [+completive] feature themselves. Browne (1971) makes a similar point, phrased

in terms of goal-directness. He points out that a common feature of the verbs in (151), which are prohibited

from omitting their objects,

(151) a. *Bill devised.

11Vendler does not himself propose this diagnostic, but without interruption contexts do seem to capture what he has in mind. The
crucial point is even though an achievement can be described as taking a certain amount of time (“It took three hours to reach the
summit”), it does not imply that the described action (reaching the summit) took place at each moment during that period.
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b. *John consumed/devoured.12

c. *Fred debitted.

d. *Max halved (i.e. cut something in two)

e. *The FBI detected.

f. *Selma ignited (i.e. set something on fire)

g. *Moishe exploited.

is that they all presuppose “progress toward an end point at which an idea is existent, the drink is completely

gone, the object lies cleft, the FBI is in possession of information, etc.”

To summarize, it appears that verbs with indefinite implicit objects are accomplishments when an object

is included and activities when it is omitted; furthermore, the indefinite object alternation must not result in

a verb phrase that necessarily describes an achievement (completed action, end state).13 However, not every

verb meeting these criteria permits indefinite objects to be omitted. For example, record (in the sense of

recording sounds on tape) fits the aspectual criteria, but fails to omit indefinite objects.

With verbs permitting the omission of specified rather than indefinite objects, the connections to aspect

become less clear.

(152) a. Bill had absolutely no idea what the answer was.

b. John knew, because he’d just looked it up.

(153) a. The ACL conference was in Ohio this year.

b. About four hundred people attended.

For example, know is licensed in (152b) despite the fact that it denotes a state, is non-completive, and is not

in any sense goal-directed. In (153b), attend is, according to the diagnostics, an activity. However, Fillmore

(1986) comments that

[It] is particularly striking that the semantic role of Patient (or Theme) appears not to occur

among the definite omissibles. That is, we found no cases of [definite null complements] with

change-of-state verbs like BREAK, BEND, CREATE, DESTROY, MOVE, LIFT, and the like. (p. 104)

and it is interesting to note that, in addition to the common thematic role involved, all these verbs are

inherently completive.

As a final thought along these lines, aspect is only one of a number of the properties associated with

high transitivity that may be associated with failure to omit objects. Hopper and Thompson (1980) identify

degree of transitivity with set of parameters that includes aspect (telic or atelic), punctuality (whether or

not an action is inherently on-going), volitionality of the agent, affirmation (positive or negative), mode

(correspondence to an actual event), agency, and affectedness and individuation of the object. Their analysis

may be a useful starting point for an account of implicit object alternations that takes into account not only

lexical properties but also features of the discourse context.

12As it happens, the points about aspect made here would account for the classic contrast between eat and devour: the latter, but not
the former, entails a completed event of consuming the object. The first definition for devour in the American Heritage Dictionary,
“to eat up greedily,” brings in not just manner but also the completive particle. However, it worth noting that the claim made in this
chapter also applies. In an informal experiment, subjects who were asked to produce sentences containing the verb devour frequently
responded with non-food objects like book, opponent, and savings. If those informally gathered verb-object co-occurrence counts are
added to the verb-object norms, then devour turns out to have a much weaker selectional preference strength for its object than eat.

13This last constraint may suggest that steal, which I categorized with the IOA verbs, should be excluded from the IOA verbs.
Although (Sinclair (ed.), 1987) lists steal as permitting frames V or V+O in its core sense, the example they give (Children often steal)
clearly falls into the category of non-lexically-conditioned object omission.
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4.6.2 Taxonomic relationships

Fellbaum and Kegl (1989) adopt the aspectual analysis made by Mittwoch, describing her distinction as

one between telic and atelic interpretations. They go beyond aspect, however, to propose an account of the

indefinite object alternation phrased in terms of a taxonomic organization of verbs that is analogous to an

IS-A taxonomy of nouns.

Central to Fellbaum and Kegl’s account is a distinction between two different kinds of IS-A relationships

between verbs. They point out that although “nibbling is a kind of eating” and “dining is a kind of eating,”

the relationship in the former but not the latter case involves manner. An analysis of the set of verbs related

to eat leads them to conclude that there are, in fact, two different senses of eat in English. One of these, has

roughly the sense of “ingest food in some manner” and the other, roughly, “eat a meal.” Nibble and dine are

respectively hyponyms of (i.e. subordinate to) these two different senses. Furthermore, they claim that only

the “eat a meal” sense of eat permits indefinite objects to be omitted. For the manner-incorporating sense of

eat, the direct argument must be overtly realized. They write:

As Kegl and Fellbaum (1988) have argued, the presence of an obligatory adjunct always

requires the presence of a direct argument. This is the reason that these manner verbs, which

have absorbed the adjunct manner phrase, must have a d-structure direct argument that is overtly

realized at s-structure.

Given this sense distinction, they argue, the behavior of verbs related to eat falls out of which sense they

are subordinate to. Verbs that refer to manner of eating, like gobble, gulp, and devour, require overt direct

objects. Verbs like to breakfast, to dine, and to snack are intransitive because they have incorporated the

direct object, a kind of meal, into the verb itself. The “cross-category linking” of the paper’s title refers to

the parallel between the hyponyms of the canonical direct object meal — nouns breakfast, picnic, and so

forth — and the corresponding denominals that are hyponyms of the verb.

This account is appealing because it offers a clean, semantically-driven account for an interesting range

of data — not just eat and its relatives, but also drink (intransitive to booze vs. transitive to guzzle), play

(intransitive to drum vs. transitive to strum), and the like. However, it does appear to have a central problem.

Despite Fellbaum and Kegl’s argument to the contrary, eat does permit the omission of indefinite objects

even when they are not “understood as constituting some unit of food, i.e. a meal” (p. 97). For example,

they argue that (154b) is not an appropriate answer to (154a) because nibbling all day cannot be construed

as making up a meal.

(154) a. Have you eaten?

b. Yes, I’ve been nibbling all day.

However, I would argue that the oddness of (154b) arises less from this fact, and more from the question

it customarily implies — usually something to the effect of “Do you want to go get lunch?” Changing

the context makes it clear that the meal interpretation of the omitted object is in fact customary rather than

obligatory: as an exchange between a doctor and a patient, example (154) is perfectly natural.14 Similarly,

if your friend utters (155a) at an amusement park just as you get on the roller coaster, (155b) seems to be a

much more natural response than (155c).

(155) a. It’s a bad idea to eat before doing this!

14I am indebted to Dan Hardt and Jamie Henderson for this observation. As it turns out, the very same observation can be found in
(Rizzi, 1986, footnote 6).
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b. Uh oh, I’ve been munching pretzels all day.

c. No problem, I’ve been munching pretzels all day.

Salvaging the argument would require that the food referred to in (155b) be construed as a meal, a claim that

seems untenable. So, although it is true that verbs incorporating manner do not permit implicit indefinite

objects, it is not at all clear that the rest of Fellbaum and Kegl’s account can be made to work. In particular,

cross-category linking between verbs and nouns in the taxonomy cannot be the whole story, since eat accepts

implicit indefinite objects even when they are not construed as meals.

Where Kegl and Fellbaum attempt to trace the indefinite object alternation to a distinction between verb

senses in the lexicon, Rice (1988) would like to do away with the traditional lexicon entirely. She writes:

These differential usages [i.e., alternation between transitive and intransitive –PSR] do not arise

from separate lexical entries for polysemous verbs. I will suggest, instead, that elements in

the lexicon, if there is such a separate component of grammar, form natural categories that are

subject to prototype effects and that many factors other than intrinsic meaning influence lexical

insertion. (p. 202)

Later she asserts:

In short, whether or not a transitive verb can omit its object . . . cannot possibly reside in the

lexicon as a property of certain verbs because a lexicon with fixed lexical entries does not really

exist. The lexicon is truly a convenient fiction . . . [Lexical] knowledge is best thought of as

part of a dynamic interconnected network that can access sound, meaning, context, and speaker

intent simultaneously. (p. 211)

It is not clear whether the strong form of this argument can be supported: the most suggestive evidence

presented by Rice — cases where contextual influences license otherwise illicit omissions of the direct object

— largely coincides with Kegl and Fellbaum’s “discourse-conditioned” intransitivizations. One could claim

that these involve traditional lexical entries together with pragmatically-controlled rules rather than a more

holistic system.

Regardless of how the lexicon is construed, however, Rice posits a hypothesis about conditions for

intransitivization that is particularly interesting with regard to the hypothesis pursued in this chapter. In

addition to suggesting that a verb must have a “semantically neutral” or “basic-level” status in order to license

an omitted object (echoing Kegl and Fellbaum’s observations about manner incorporation), she comments

that the omitted objects themselves tend to be interpreted as basic-level entities, illustrating with examples

like (156):

(156) a. John smokes (*Marlboros/cigarettes/*smoking materials).

b. When he goes to Boston, John drives (*a Toyota/a car/*a vehicle).

A similar observation is made by Lehrer (1970), who distinguishes the “deletable object” from the selection

restriction — for example, identifying the deletable object of drive as car and its selection restriction as

VEHICLE.

However, this characterization seems to me to be too strong. Examples (157) and (158) make it clear

that when these verbs omit their direct objects, the inferences are better described at a higher level.
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Verb Class

drink hbeveragei
drive hvehiclei
eat hfoodi
read hwritingi
smoke hroll of tobaccoi

Table 4.2: Some verbs and their associated classes of direct objects

(157) a. John smokes.

b. Ah! Therefore, John smokes cigarettes!

c. No — he smokes cigars.

(158) a. When he goes to Boston, John drives.

b. Ah! Therefore, when he goes to Boston, John drives a car.

c. No — he drives a van.

The confusion arises, I think, because it is odd to use the label for a superordinate category in contexts

like (156) — a fact that arises more from conversational principles (Grice, 1975) than from inconsistency

with the expectations of the verb. (For example, saying “John drank a beverage,” implies that there is some

reason for being less informative than is customary about what he drank.) What is important is not that the

words “smoking materials” be natural in (156a), but rather that all the direct objects that are natural there be

a member of that conceptual category. (The traditional superordinate categories may be too broad for this

purpose — it might be odd to utter (156b) if what John drives to Boston is a snowplow, so perhaps the object

category inferred from drive is more along the lines of “four-wheeled passenger vehicle.”) So, although I

would argue that basic-level categories are not the appropriate level of description, I agree that indefinite

objects can only be omitted when the intended inferences about them can be captured at an appropriate

“medium” level of abstraction.

Now, although the selectional preference criterion proposed in this chapter is expressed in terms of

distributions over classes, rather than single categories, the measure of selectional association defined in

Chapter 3 produces the kind of behavior that has just been described. Table 4.2 shows several object-drop

verbs, each together with its single most strongly associated WordNet class.15 In each case, the most

strongly associated class fits intuitively as the “right level” of direct objects for the verb — a category that

would seem to contain all the direct objects one could felicitously omit, while excluding most others. For

example, write is more closely associated with the class of written materials than subordinates like hessayi

or superordinates like hcommunicationi, drive is associated with vehicles rather than with cars or general

conveyances (which would include trains and cargo ships), and smoke is associated with a class that includes

the more specific cigarettes and cigars but not such non-tobacco narcotics as opium.

This behavior arises naturally from the definition of selectional association between a verb v and a class c

(originally given in Chapter 3, equation 3.5):

A�v� c� �
1
�

p�cjv� log
p�cjv�
p�c�

�

15These examples were constructed using co-occurrence statistics from the Brown Corpus.
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Consider a single path through the taxonomy from a very specific class like hfettuccinei upward through

hthingi. As you move higher in the taxonomy, to hpastai, the superclass brings in additional objects of

eat, such as spaghetti and ravioli, and still more objects of eat are brought in by continuing on to hfoodi.

As a result, moving upward in the taxonomy increases the conditional probability p�cjv� and hence the

selectional association with the verb. However, continuing further upward in the taxonomy, for instance

from hfoodi up to hsubstancei, brings in many words like fuel and poison that do not appear with eat. As

a result, probability p�c� increases without a corresponding increase in p�cjv� and the score is driven back

down. Thus, as this example illustrates, the measure of selectional association tends to prefer classes in the

taxonomy that are general, but not too general.16

4.6.3 Summary

To summarize, a number of authors have investigated factors other than object inferability that might help

determine whether a verb permits its objects to be omitted. These to a great extent revolve around features

of meaning that may or may not be incorporated in to the verb, such as aspectual distinctions (whether or

not a verb phrase can be interpreted as an activity, whether or not it is inherently completive) and manner.

In several cases (Fellbaum and Kegl, 1989; Rice, 1988) underlying taxonomic relationships have been

hypothesized among verbs and categories of their arguments in order to account for differences in behavior.

These semantic factors appear to account for much of the variability not captured by strength of selectional

preference. For example, the strongest counterexamples to the selectional preference hypothesis — verbs

that select strongly but cannot omit their objects — appear to be verbs like catch, wear and say that are

difficult to interpret as activities when appearing intransitively. On inspection, at least, these aspectual

distinctions, taken together with inferability on the basis of selectional preference, appear to provide a

categorical distinction between verbs that do and do not permit implicit objects of the indefinite variety.

It makes sense that object realization depends on how much information is available. The proposal

made here is consistent with intuitive notions about explicit mention, brevity, and clarity, such as Grice’s

(1975) maxims of Quantity.17 In addition, the results, particularly in performance, are consistent with what

we already know about other arguments. For instance, psycholinguistic experiments show that instruments

(e.g. John stabbed Bill with a knife) are mentioned less frequently when typical for the given action (Brown

and Dell, 1987), and “plausibility” of verb-argument relationships, often construed in probabilistic terms, is

gaining increased attention in studies of on-line syntactic processing (Carlson and Tanenhaus, 1988; Mac-

Donald, in revision; Mauner, Tanenhaus, and Carlson, 1992; Pearlmutter and MacDonald, 1993; Tanenhaus,

Garnsey, and Boland, 1991; Trueswell, Tanenhaus, and Garnsey, 1993).

In contrast, although observations regarding aspect, manner, and taxonomy capture predictive general-

izations about which verbs will and will not participate in implicit object alternations, they do so without

providing an explanatory link between the relevant feature of meaning and the particular syntactic behavior

it is connected to. Whatever deep relationship there may be between these factors and argument realization,

an explanation of that connection will have to wait a better understanding of lexical semantics as a whole. 18

16For a discussion of other probabilistic measures and their relationship to basic levels, see (Hanson, 1990).
17“Make your contribution as informative as is required (for the current purposes of the exchange)” and “Do not make your

contribution more informative than is required.”
18I would conjecture that Grimshaw’s (1990) notion of aspectual prominence might be a useful place to start, since it provides a

direct link between aspect and argument realization.



98

4.7 Thoughts on verb acquisition

4.7.1 Plausibility considerations

The results in this chapter show that two aspects of lexical representation — selectional constraints and

optionality of an argument — can to a large extent be predicted on the basis of a corpus of text or transcribed

speech, together with a simple taxonomic organization of noun concepts. Given the simplicity of the

methods used here, a natural question to ask is whether the same ideas can contribute to a model of how

lexical representations of verbs are acquired by children.

A first point in favor of such an approach is the relatively small number of assumptions that are required,

and the psychological plausibility of those that are indispensible. To begin with the taxonomy, it is generally

agreed that noun acquisition precedes verb acquisition (Nelson, 1973), and there is evidence to suggest that

observation provides reliable evidence for learning how to map noun forms to noun concepts (Gillette and

Gleitman, forthcoming). Furthermore, children at least as young as three years old can classify pictures of

objects in the same manner as adults, at least for basic level categories such as TABLE and FISH, and sorting

objects into superordinate categories such as FURNITURE and ANIMAL reaches adult competence by around

the third grade (Rosch et al., 1976). So, although children’s taxonomic criteria may not match those of adult

taxonomies (much less the specifics of WordNet!), it is plausible to assume that they distinguish some form

of category membership for observed instances — for example, permitting a red apple and a green apple (or

a bunch of green beans, or a cookie) to be counted as instances of some class.19

The second element of the approach pursued here was observation of a sample of verb-argument co-

occurrences, which wouldseem to require a procedure for identifying the argument. There is an accumulating

body of evidence suggesting that children may be able to construct a skeletal parse on the basis of prosodic

information (Gleitman et al., 1988; Kemler Nelson et al., 1989; Kemler Nelson, 1989; Lederer and Kelly,

1991), which could provide the basis for such a procedure, and it appears that the statistical methods

demonstrated here are tolerant enough of noise to make do with very little parse information. For example,

in the experiments done using data from CHILDES (and in earlier pilot experiments using the tagged Brown

Corpus, done before the parses in the Penn Treebank became available), I found that a very unsophisticated

object-finding procedure — little more than “select the first noun to the right” — yielded a noisy sample,

but one for which the estimates of selectional preference and selectional association nonetheless yielded

sensible results.

Given these assumptions — that the child can map noun forms to noun concepts, organizes noun

concepts taxonomically, and can identify co-occurrences of verbs with noun arguments — the formalization

of selectional preference proposed in Chapter 3 can be interpreted as a psycholinguistic model, and the

algorithms involved in computing selectional preference from distributional evidence can be viewed as

constituting a model of how such preferences are acquired. Furthermore, the central linguistic result of this

chapter — that selectional preference is a predictor of object omissibility — represents a starting point for

investigating how that aspect of lexical representation is acquired. The present study demonstrated that the

predictive information is present in the child’s input (represented using parental speech in CHILDES); the

next necessary steps would be, first, to show that children attend to this information, and, second, to show

that they actually make use of it.

19Care is needed to avoid circularity here, since in identifying class relationships to a verb like eat the relevant generalization of
apples and cookies might turn out to be “things that you eat.” Crucially, however, that characterization rests on the concept of eating,
i.e. something like “things that you put in your mouth, chew, and swallow, etc.” and not “things that co-occur with the word-form
/eat/.”
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Figure 4.3: Schematic view of the verb mapping problem

4.7.2 Relation to bootstrapping

In addition to addressing the question of optional arguments, the model of selectional preference proposed

here may be able to provide a necessary element in the general discussion of how verb meanings are

acquired. Figure 4.3 illustrates one interpretation of the scenario confronting the language learner. At the

top are word forms (represented simply as words within slashes) and at the bottom are word meanings or

concepts (represented as words in uppercase). The child is assumed to possess a reliable mapping from

familiar nouns to the concepts they represent, hence the arrows from noun forms to noun meanings. Dashed

boxes represent higher-level concept classes — such as FOOD or SMALL SOLID OBJECT — which the child has

acquired on the basis of observed similarities of form, function, or behavior. Finally, solid lines represent

observed argument co-occurrences: at the top of the figure are observed co-occurrences between verb forms

and nominal arguments (with respect to a particular argument position), and at the bottom are links between

verb concepts and the classes containing noun concepts that have participated in the event (in a particular

thematic role). Of course, syntactic arguments must somehow be mapped to thematic roles, but this is an

issue that I will not attempt to address in detail. For the moment let us simply assume that the connection

can be made via (universal) linking rules of the kind discussed in (Pinker, 1989).

Notably missing from the diagram is a connection between verb forms and verb meanings — filling in

this link is one of the major problems the learner must solve. 20 In fact, there are really two distinct problems

that need to be considered. The first concerns the identification of a particular verb with a “syntactically

relevant semantic subclass” of verbs (Pinker, 1989, p. 107); that is, identifying aspects of a verb’s meaning

that concern its argument-taking properties and the kinds of syntactic alternations in which it can participate.

The second problem has to do with identifying aspects of verb meaning that do not concern argument

realization — for example, acquiring distinct meanings for verbs like melt and boil, or slide and roll, which

are indistinguishable from the perspective of grammatical behavior. Pinker separates the two using the

20Assuming that the verb concepts already exist (corresponding to a process Pinker (1989)describes as “event-category labeling”)
is undoubtedly too simplistic; a more complete model would also have to provide for the generation of hypotheses about what event
concepts to include in the lower left-hand corner of the figure.
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evocative term “color-blind conservatism”: the real-world color of a verb’s argument will not be relevant

for the first problem, though such cognitive distinctions may be crucial in solving the second one.

The first problem has been a source of some controversy, primarily concerning the sources of evidence

available to the child language learner. One plausible hypothesis is that the grammatically relevant features

of verb meaning can be learned by observing the co-occurrence of verb forms and events in the world; for

example, an utterance containing /eat/ coinciding with the activity of eating something. Such a process is

limited, however, by ambiguity in the interpretation of events: a child hearing the word form /pour/ as a

glass is being filled with water from a pitcher will not know whether to associate /pour/ with pouring or with

filling (or with holding the glass, tilting the pitcher, etc.). Pinker suggests that cross-situational analysis can

be used to resolve the ambiguity:

The ambiguity of what a verb means in a single situation, however, is eliminated by the behavior

across situations. Though a given instance of filling a cup may be ambiguous between pouring

and filling, pour but not fill will eventually be used when water is put in a glass up to the halfway

mark, and fill but not pour will eventually be used when a glass is left on a windowsill in a

rainstorm long enough to make it full. (p. 254)

Such a solution is intuitively appealing, and gains credibility from empirical evidence (see references

cited in (Pinker, 1989)) and from computational experiments showing that cross-situational learning can be

efficiently implemented and successfully applied in restricted computational settings (Siskind, 1992; Siskind,

1993b). However, Lila Gleitman and colleagues (Landau and Gleitman, 1985; Gleitman et al., 1988; Lederer,

1993) have argued that observation alone does not provide enough evidence to map verb forms to verb

meanings, especially in cases where the described event is closed to observation (i.e. events described by

mental verbs such as know and believe), or where an event supports hypothesized interpretations from multiple

perspectives, as is the case with chasing events (which also contain fleeing),buying events (which also contain

selling), and so forth. They take this to mean that learning via observation must be supported by additional

constraints, and suggest that such constraints are provided by evidence about syntactic subcategorization

available in the utterance. Evidence for this view comes from experiments showing that adults perform poorly

on tasks of guessing the verb given an observed scene (Lederer, Gleitman, and Gleitman, forthcoming), that

the syntactic context in which a novel verb is first presented influences children’s interpretation of a scene

described using that verb (Fisher et al., 1994), and that prosodic information in utterances can provide some

phrase structure information and that children attend to such cues (Lederer and Kelly, 1991; Jusczyk et al.,

1992).

An unresolved difficulty in these discussions is the absence of a precise characterization of what it means

for a form of context to constrain hypotheses about verb meaning. For example, a useful indication of how

constraining a context is, utilized by Lederer et al. (forthcoming) and Gillete and Gleitman (forthcoming),

is the percentage of “correct” responses given by subjects — that is, responses matching the verb uttered

during the scene.21 Of course, simply measuring percent correct can be misleading: if the target verb was

call and most of the incorrect responses to a scene were talk, surely the context should be judged more

informative than a case where the error rate is the same but the incorrect responses are evenly distributed

over a wide variety of other verbs. One way to avoid this difficulty, employed by the above-cited authors,

is to consider not the absolute percent correct, but the frequency with which incorrect guesses are in the

21Scenes were presented as videotape clips with the sound turned off.



101

“semantic neighborhood” of the target verb. (See (Fisher, Gleitman, and Gleitman, 1991) for detailed

discussion of how semantic neighborhoods are determined.)

The methods applied in this chapter suggest an alternative (or better, additional) measure of contextual

predictiveness, namely the information-theoretic measure of relative entropy. That is, if Y is a random

variable ranging over possible instances of a particular kind of context, and X ranges over events being

predicted, then the predictability of that form of context can be measured by

D�p�xjy�jjp�x�� �
X
x�y

p�xjy� log
p�xjy�
p�x�

�

Applied to the situation just described, Y might range over videotaped scenes, and X over subjects’ verb

responses. As discussed in Chapter 3, the relative entropy between a prior distribution p�x� and a posterior

distribution p�xjy� can be interpreted as how costly it would be, on average, to ignore the conditioning

context y. This would seem to be precisely the kind of measure needed in order to evaluate the extent to

which a form of context reduces the space of hypotheses about verb meanings.

Furthermore, using relative entropy makes it possible to consider different forms of context, and com-

binations of contexts, in a single unified framework where predictability is measured in bits of information.

The sole requirement of such a framework is that it be possible to arrive at probability estimates for the con-

texts of interest. Where those are observed scenes, estimates can come from responses generated by human

subjects, as in (Gillette and Gleitman, forthcoming; Fisher et al., 1994); where they are syntactic contexts

such as subcategorization frames, large corpus resources such as the Penn Treebank are an alternative to

experimental data.

Other forms of context can be considered, as well. In particular, the model in Figure 4.3 suggests

that constraints on hypotheses about an unknown verb’s meaning can be derived from knowledge about

characteristic participants in events described by the verb — even if those events themselves are not

witnessed by the learner. To consider an example, suppose that a learner is attempting to figure out what

events the verb form /eat/ denotes. Many events involvingeating also involve biting — a situation analogous

to the overlap between pour and fill discussed earlier. Cross-situational analysis offers one solution: /bite/

will be uttered in some observed situations involving biting but not eating. However, argument/participant

relationships reduce the reliance of such a strategy on the observation of scenes involving these actions: a

learner who hears references to biting such as (159) will have received evidence that it is possible to bite

things you don’t typically eat, even if the correct mapping of /bite/ is is still a mystery.

(159) a. Betcha I bite your nose off if you keep screaming at me.

b. “Why do you want to bite that cat?” [Read from a book]

Such predictive information is known to be useful: Lederer et al. (forthcoming) have shown that in adult

verb-guessing tasks, identifying the participants in an event provides useful predictive information, even if

the roles are obscured by listing the participants in alphabetical order. Furthermore, Gropen (1992; 1993)

has argued that children’s categorization of objects in the world plays an important role in acquiring the

meanings of polysemous verbs (i.e. verbs with multiple, related meanings, such as spread: spreading pots

and pans on the floor vs. spreading butter on toast). Gropen points out that distinguishing such meanings is

crucial for models of cross-situational analysis, since otherwise critical elements of meaning — e.g. forceful

contact for the spreading butter sense of spread — will be true in some events and false in others, leading

to their exclusion as core properties of the verb.
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The model of selectional relationships proposed in Chapter 3 and applied here represents one component

in an acquisition model that takes such information into account. Although such a model is not yet

fully developed, most of the necessary pieces are in place: corpus resources like the Penn Treebank and

CHILDES provide links between the word forms for verbs and their nominal arguments, and WordNet

provides a mapping from noun forms to noun meanings and the superordinate concepts of which they are a

part.

Another possible role for the present model of selectional relationships concerns elements of verb

meaning that are not grammatically relevant, elements that are are usually set aside under the heading of

cognitive distinctions by Pinker, Gleitman, Grimshaw, and others. For example, Pinker (p. 259) suggests a

way in which a child might infer from (160) that the meaning of the verb encodes the manner of motion of

the ball,

(160) The ball glipped into the room.

but is careful to distinguish this from inferring what the relevant manner of motion is. He writes:

A grammar can “see” the difference between smearing and pouring, or between shouting and

telling . . . because all of these distinctions can be stated in terms of the privileged semantic

vocabulary that is available to it. . . . However, a grammar cannot “see” the difference between

smearing and smudging, between shouting and whispering, between sliding and rolling, or

between coating and covering. (p. 277)

In many cases, elements of meaning such as manner of motion involve properties of participants in the

event — for example, rolling is associated with roundness. Therefore one could imagine that selectional

relationships might help reduce the space of hypotheses about what particular dimension of meaning a verb

encodes. Although the experiments done here are not particularly well suited to demonstrating this, since

neither WordNet nor the corpora used make it easy to isolate the relevant properties, the data gathered so far

provide one or two suggestive examples. Using co-occurrence frequencies from the CHILDES data, the class

of objects most strongly selected for by roll is hround shapei; on inspection of the lexical co-occurrence

data, it turns out that the two most frequent direct objects of roll are ball and barrel. Regarding whispering

and shouting, objects of shout in the Brown Corpus include abuse, bellicosity, and cry; objects of whisper

include secret and explanation. Browsing Roget’s thesaurus leads quickly to the discovery that secret is

a member of categories 528 (Concealment) and 522 (Interpretation), of which whisper and explanation

respectively are members; shout and cry are both members of category 411 (Cry; vociferation). So, although

observation of manner is still the most likely clue to the distinction between shouting and whispering, the

nature of their objects (observed cross-situationally) also appears to provide some collateral evidence.

In sum, selectional relationships represent a source of information likely to be used by children in

acquiring both semantically relevant and cognitively relevant aspects of verb meaning. Although ultimately

psycholinguistic methods must bear the burden of demonstrating what forms of evidence children do and do

not use, mathematical models of the kind proposed here serve an important purpose: they serve as testing

ground for existing proposals, and provide insights that might not be available without first adopting a

computational frame of mind.



Chapter 5

Semantic Classes and Syntactic
Ambiguity

In this chapter, I investigate a second application of the model proposed in Chapter 3, exploring

the use of the implemented model as a statistical method for resolving syntactic ambiguity in

processing unconstrained text. I argue that a number of “every way ambiguous” constructions

— in particular, prepositional phrase attachment, coordination, and nominal compounds —

can be resolved by appealing to conceptual relationships such as selectional preference and

semantic similarity, and that class-based, information-theoretic formalizations of these notions

provide a practical way to do so.

5.1 Overview

One of the most pressing problems facing large-scale natural language applications is the explosion of

analyses permitted by the grammar. Most parsers designed to cover large subsets of English produce an

uncomfortably large number of analyses for even simple sentences; for example, using the Xtag system

(Paroubek, Schabes, and Joshi, 1992), a sentence like (161a) will have on the order of ten to fifteen parses,

including two analyses in which Max meeting Ed is interpreted as a nominal compound. 1

(161) a. I saw the person that was annoyed by Max meeting Ed.

b. Ed identifies himself in terms of who he’s met with today. He had a meeting with Max this

morning so right now he’s calling himself Max meeting Ed.

Given only the grammar, such an analysis has to be permitted in order to cover cases like (161b), which,

contrived though it may be, illustrates a possible way in which Max meeting Ed could be interpreted as

a compound of three nouns. Church and Patil (1982) point out that perfectly natural sentences can yield

“hundreds, perhaps thousands” of parse trees. Furthermore, they show that the most serious ambiguity

problems are associated with some of the most pervasive constructions in natural language, including

coordinations, prepositional phrase attachment, and nominal compounds.

1This is true even when part-of-speech tagging is done first, since there is a strong tendency to prefer noun rather than verb tags for
gerunds. I am grateful to Beth Anne Hockey and Christy Doran for pointing out this example.
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Church and Patil suggest that until it has more useful constraints to resolve ambiguities, a parser

can do little better than to efficiently record all the possible attachments and move on. Acquiring such

constraints and using them is the subject of this chapter: I argue that syntactic choices can to a great extent

be constrained by such semantic/conceptual relationships as lexical (selectional) preference and semantic

similarity. I substantiate the claim by showing that class-based, information-theoretic formalizations of these

relationships help in making accurate disambiguation decisions.

The chapter is structured as follows: I begin in Section 5.2 with a brief summary of the major families of

strategies that have been proposed for resolving syntactic ambiguity. In Section 5.3, I consider a particular

instance of syntactic ambiguity involving coordination and nominal compounds, developing a collection

of disambiguation strategies that take advantage of different cues to the correct structure. The strategies

are evaluated in a disambiguation experiment using training and test material from the Penn Treebank. In

Section 5.4, I take a similar approach to the problem of prepositionalphrase attachment ambiguity, evaluating

the results in a computational experiment and comparing the method to other similar methods that have been

proposed.2 Finally, in Section 5.5, I briefly consider how techniques of this kind might be applied to the

problem of disambiguating nominal compounds.

5.2 Parsing Preference Strategies

There is a long history of research on the use of parse preference strategies for resolving syntactic ambiguity,

a literature too large to review here. The major approaches can briefly be summarized as follows:

� Structural strategies. The literature on parsing includes a number of strategies based on syntactic

structure that have been argued to account for human performance — and human errors — on

various forms of ambiguity. Among the most frequently cited are right association (Kimball, 1973),

a preference for constituents to attach to the lowest node to the right in the partial parse tree, and

minimal attachment (Frazier, 1979), a preference for choosing the attachment that would result in a

parse tree with the fewest nodes. Crucially, such strategies depend only on configurations within parse

trees, and not on extra-syntactic factors or even the identity of the lexical items involved.

� Referential strategies. Mark Steedman and colleagues (Crain and Steedman, 1985; Altmann and

Steedman, 1988) have demonstrated effects of referential context on human performance in resolving

syntactic ambiguities. They show that sentences usually inducing garden-path effects can often

be interpreted naturally in contexts supporting the non-obvious reading, and that sentences usually

interpreted without difficulty can be turned into garden paths by appropriate manipulations of context.

For example, the context set up by (162a) helps override the the usual garden-path effect created

by (162b).

(162) a. Two men on horseback decided to have a race. One man took his horse through the meadow,

and the other chose a shorter route near the barn.

b. The horse raced past the barn fell.

� Lexical preference strategies. Lexical items often have typical kinds of phrases with which they

associate — for example, the following dictionary entries illustrate a lexical association between the

2The work in this chapter on prepositional phrase attachment was done in collaboration with Marti Hearst.
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verb ask and prepositional phrases involvingof or for, between put and locative prepositional phrases,

and between win and prepositional phrases involving for.

ask: To request of or for; solicit.

put: To place in a specified location; set.

win: To receive as a reward for performance.

Lexical preferences of this kind can be used in resolving ambiguous attachments, by choosing to

attach a constituent at the site where preferences are best satisfied. Approaches along these lines have

been suggested by (Ford, Bresnan, and Kaplan, 1982; Wilks, Huang, and Fass, 1985; Dahlgren and

McDowell, 1986; Jensen and Binot, 1987).

An empirical study of these strategies by (Whittemore, Ferrara, and Brunner, 1990) shows that lexical

preference plays a predominant role in predicting prepositional phrase attachments: they observe that in

naturally-occurring data, lexical preferences (e.g., arrive at, flight to) provide more reliable attachment

predictions than structural strategies, though referential success is also a contributing factor. Unfortunately,

it seems clear that, outside of restricted domains, hand-encoding of preference rules will not suffice for

unconstrained text. Information gleaned from dictionaries may provide a solution, but the problem of how

to weight and combine preferences remains unsolved.

A more practical alternative may be the automated acquisition of lexical preference relationships using

large corpora, a topic investigated by (Hindle and Rooth, 1991; Hindle and Rooth, 1993; Weischedel et al.,

1989; Weischedel et al., 1991; Basili, Pazienza, and Velardi, 1991; Grishman and Sterling, 1992). Common

to these acquisition methods is the use of a robust syntactic analyzer to obtain lexical co-occurrences of

interest, together with some quantitative measure of association. Several of these investigations have also

made use of relationships based on semantic word classes. Since many of these approaches have been

applied to the problem of prepositional phrase attachment, I will defer a more detailed discussion until the

end of Section 5.4.

5.3 Coordination

5.3.1 Cues to the correct analysis

Coordinationis one of the most frequentlyoccurring phenomena in natural text, and ambiguous coordinations

are a common source of parsing difficulty. In this study, I investigated a particular subset of coordinations,

noun phrase conjunctions of the form noun1 and noun2 noun3. 3 Examples of these include the following:

(163) a. a (bank and warehouse) guard

b. a (policeman) and (park guard)

(164) a. John is a (business and marketing) major

b. John is an (athlete) and (economics major)

Such structures admit two analyses, one in which noun1 and noun2 are the two heads being conjoined (163a)

and one in which the conjoined heads are noun1 and noun3 (163b). A natural language system that

3All computational experiments in this chapter were performed using the earlier method for frequency estimation described in
Appendix A.
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analyzed (163b) according the structure in (163a) would be led to conclude that the noun phrase referred

to someone who guards parks and policemen; similarly, analyzing (164a) according to the model in (164b)

would lead one to conclude that John is a business. In each case, the “incorrect” analysis is one that is

licensed by the grammar and perhaps even by knowledge about what is possible in the world, but constitutes

at best a secondary reading.

As pointed out by Kurohashi and Nagao (1992), similarity of form and similarity of meaning are important

cues to conjoinability. In English, similarity of form is to a great extent captured by agreement in number:

(165) a. several business and university groups

b. several businesses and university groups

Semantic similarity of the conjoined heads also appears to play an important role:

(166) a. a television and radio personality

b. a psychologist and sex researcher

Here, it is intuitively obvious that the correct structure is connected with the fact that televisions and radios

have more in common than televisions and personalities, and that psychologists and researchers form a more

natural category than psychologists and sex.

Finally, for this particular construction, the appropriateness of noun-noun modification for noun1 and

noun3 is relevant:

(167) a. mail and securities fraud

b. corn and peanut butter

In general, phrases conjoining noun1 and noun2 are analyzed distributively, so that both are interpreted as

modifying noun3. In (167b) the noun-noun compound corn butter is rather odd, providing a cue that that

structure is inappropriate here.

5.3.2 Approximating the cues

Similarity of Form

In order to take advantage of the cues just described, it is necessary to approximate them in some computa-

tionally tractable way.

The first cue, similarity of form, is not difficult to approximate, since accurate reduction of nouns to

their root form is well within the reach of automated methods. I reduced nouns to their root forms by doing

a simple morphological analysis of suffixes in conjunction with lexical information from WordNet. Given

noun, the reduction procedure had the following steps:

1. See if noun is a plural on WordNet’s list of exceptional cases for noun pluralization (e.g. oxen, ox); if

so, return the corresponding singular form.

2. For each suffix replacement rule old 	 new,

(a) If old is a suffix of noun, strip it off and replace it with new to get noun �

(b) If noun� is a noun in WordNet, halt and return it as the root form.

3. If no suffix-replacement rule applied, return noun itself as the root form.
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Old New Example

ss ss glass glass
s  bucks buck
ses s glasses glass
xes x boxes box
zes z quizzes quiz
ches ch matches match
shes sh wishes wish
ies y bodies body
es e vases vase
es  tomatoes tomato

Table 5.1: Suffix rules for reducing nouns to root form.

Table 5.1 lists the suffix replacement rules, (taken from WordNet 1.2 source code and included here

with permission of the author);  indicates the empty string. Given the algorithm just described, a noun

can be considered plural if it differs from its root form, and singular otherwise. Naturally there are some

unclear cases (e.g. sheep will unconditionallybe labelled singular), but in general the simple suffix mappings,

together with WordNet’s large vocabulary and exceptions list, yield excellent results.

Similarity of Meaning

Many factors influence judgements of semantic similarity between two nouns; see, for example, (Cruse,

1986, Chapter 12) for an extensive discussion of considerations entering into judgements of synonymy.

In addition, as discussed in Chapter 2, a great many researchers are investigating techniques for deriving

measures of word similarity on the basis of distributional behavior. In the present investigation, I have opted

to use taxonomic relationships in WordNet as the basis for an information-theoretic similarity measure.

Like the formalization of selectional preference proposed in Chapter 3, this has the advantage of combining

inductive, quantitative methods with an existing broad-coverage source of lexical knowledge. Furthermore,

to the extent that relationships in WordNet can be given a formal semantic interpretation (see Chapter 2,

Section 2.4.1), the similarity measure proposed here can be viewed as both mathematically and semantically

well founded.

Before considering word similarity, it is helpful to consider the notion of class similarity in a taxonomy

like WordNet. Intuitively, two noun classes in an IS-A taxonomy should be considered similar when there is

a specific class that subsumes them both — if you have to travel very high in the taxonomy to find a class

that subsumes both classes, in the extreme case all the way to the top, then they cannot have all that much

in common. For example, hnickeli and hdimei are both immediately subsumed by hcoini, whereas the

most specific superclass that hnickeli and hmortgagei share is hpossessioni.

The difficulty, of course, is how to measure “specific.” Simply counting IS-A links in the taxonomy can

be misleading, since a single link can represent a fine-grained distinction in one part of the taxonomy (e.g.

hzebrai IS-A hequinei) and a very large distinction elsewhere (e.g. hcarcinogeni IS-A hsubstancei).

Counting other kinds of taxonomic links can be even more problematic; for example, (Morris and Hirst,

1991) point out that unbridled transitivity leads to spurious relatedness judgements through chains like

fcow,sheep,wool,scarf,boots,hat,snowg.
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Class c log 1
p�c�

hcoin,3566679i 13.51
hcoin,3566477i 12.52
hcash,3566144i 12.45
hcurrency,3565780i 11.69
hmoney,3565439i 11.27
htender,3562119i 11.27
hmedium of exchange,3561702i 11.21
hasset,3552852i 9.71
hpossession,11572i 8.17

Table 5.2: Superclasses for hnickel� 3567117i and hdime� 3567068i

An alternative to counting links is to consider the information content of a class as a way to measure

its specificity. Information content of a class is defined in the standard way as negative the log likelihood,

or log 1
p�c� . The simplest way to compute similarity of two classes using this value would be to find the

superclass that maximizes information content; that is, to define a similarity measure as follows:

sim�c1� c2� � max
ci

�log
1

p�ci�
�� (5.1)

where fcig is the set of classes dominating both c1 and c2, and the similarity is set to zero if that set is

empty. For example, classes hnickeli (in the sense of a coin) and hmortgagei have only the superclass

hpossessioni in common, with an information content of 8.17; classes hnickeli and hdimei have all the

common superclasses listed in Table 5.2, the most specific of which yields a similarity score of 13.51.4

One natural way to measure word similarity is to consider all the classes to which a word belongs — that

is, given two nouns n1 and n2, to compute their similarity as

sim�n1� n2� � max
ci

�log
1

p�ci�
�� (5.2)

where fcig is the set of all classes containing both n1 and n2.

Although there is not yet a standard way to evaluate computational measures of semantic similarity, one

reasonable way to judge would seem to be agreement with human subjects on some relevant task. In a

ratings task used by Miller and Charles (1991), subjects were given 30 pairs of nouns that were chosen to

cover high, intermediate, and low levels of similarity (as determined using a previous study), and asked to

rate “similarity of meaning” for each pair on a scale from 0 (no similarity) to 4 (perfect synonymy). In order

to get a baseline against which to evaluate the performance of the information-theoretic similarity measure,

I replicated Miller and Charles’s experiment, giving ten subjects the same 30 noun pairs, five in a random

order and the other five in the same random order reversed. The subjects were all computer science graduate

students or postdocs, and the instructions were exactly the same as used by Miller and Charles, the main

difference being that in this replication the subjects completed the questionnaire by electronic mail (though

they were instructed to complete the whole thing in a single uninterrupted sitting).

4Class probabilities in this case were estimated using a sample of nouns from AP newswire.
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n1 n2 sim(n1,n2) class

tobacco alcohol 10.84 hdrug,1062813i
tobacco sugar 7.76 hsubstance,5941i
tobacco horse 11.85 hnarcotic,1557422i

Table 5.3: Similarity with tobacco computed by maximizing information

The data from the experiment are given in Appendix C. On average, the correlation between the mean

ratings in Miller and Charles’s study and the the ratings of a subject in my replication was r � 0�88,

with a standard deviation of 0.08 (inter-subject correlation in the replication, estimated using leaving-one-

out resampling (Weiss and Kulikowski, 1991), was r � �90� stdev � 0�07). I evaluated the measure in

equation (5.2) by treating it as if it were a subject in the same experiment. Owing to nouns missing from

WordNet 1.2, it was possible to arrive at a rating for only 28 of the 30 pairs (93.3%); for that subset there

was a correlation of r � �77 with Miller and Charles’s means.5 The average human subject correlation

for those 28 stimuli was r � 0�88. As compared against that baseline, it seems clear that although there

is certainly room for improvement, the information-based similarity measure is an entirely reasonable first

approximation for human similarity judgements.

A problem with the similarity measure in equation (5.2) is that it sometimes produces spuriously high

similarity measures for words on the basis of inappropriate word senses. For example, Table 5.3 shows the

word similarity for several words with tobacco. Tobacco and alcohol are similar, both being drugs, and

tobacco and sugar are similar, though less so, since both can be classified as substances. The problem arises,

however, in the similarity rating for tobacco with horse: the word horse can be used as a slang term for

heroin, and so the similarity rating is maximized when the two words are both categorized as narcotics. This

is contrary to intuition.

The experimental evaluation using Miller and Charles’s study suggests that cases like this are relatively

rare. However, the example illustrates a more general concern: in measuring similarity between words, it is

really the relationship among word senses that matters, and a similarity measure should be able to take this

into account.

The most straightforward way to do so is to consider all classes to which both nouns belong rather than

taking just the single maximally informative class. This suggests redefining class similarity as follows:

sim�c1� c2� �
X
i

��ci��log
1

p�ci�
�� (5.3)

where fcig is the set of classes dominating both c1 and c2, as before, and
P

i��ci� � 1. This measure of

similarity takes more information into account than the previous one: rather than relying on the single class

with maximum information content, it allows each class to contribute information content according to the

value of ��ci�. Intuitively, these � values measure relevance — for example, ��hnarcotici� might be low

in general usage but high in the context of a newspaper article about drug dealers.

5Class probabilities in this experiment were estimated using noun frequencies in the Brown corpus.



110

Equation (5.3) leaves � to be specified externally — by a word sense disambiguation algorithm, perhaps,

or by whatever other means are available. Notice that if ��ci� is fixed at 1 for the single ci maximizing

log 1
p�ci�

and at 0 for cj� j �� i, then equation (5.3) simply reduces to the “global” measure in equation (5.1).

Appropriateness of noun-noun modification

Judging the “goodness of fit” between a modifier (nm) and a head (nh) is not unlike judging the goodness

of fit between a verb and its object — in both cases, the judgement can be made in terms of selectional

association between a selecting word and a class of nouns being selected for. In the case of nominal

modification, since both head and modifier are nouns, there are two selectional relationships that can be

considered: selection of the modifier for the head, and selection of the head for the modifier. That is, for a

particular class ch containing the head, we can define

A�nm 	 ch� �
p�chjnm� log p�chjnm�

p�ch�P
c p�cjnm� log p�cjnm�

p�c�

� (5.4)

Correspondingly, for a particular class cm containing the nominal modifier,

A�cm  nh� �
p�cmjnh� log p�cmjnh�

p�cm�P
c p�cjnh� log p�cjnh�

p�c�

� (5.5)

The “goodness” of a particular noun-noun compound nm nh can be evaluated by examining the strength

of selectional association between modifier and head, and vice versa. The simplest way to do so is to see

whether in either case selectional association exceeds a threshold, � . By inspection, � � 2�0 seems to be a

reasonable value for this threshold.

Consider, for example, the ambiguous coordinations in (168):

(168) a. They bought a new computer and telephone network for the office.

b. They bought a new computer and water cooler for the office.

Selectional association indicates that computer network is a reasonable nominal compound, since A�hcomputer,1277690i 

network� � 2�2, A�computer 	 hsystem,278118i� � 2�56� network � hsystem,278118i, but that com-

puter cooler is not, since A�c  cooler� � 2�0 for all classes c containing computer; A�computer 	 c� �

2�0 for all c containing cooler.

It is worth repeating the observation from Chapter 3 that selectional association between modifiers

and heads accomplishes a limited form of word-sense disambiguation. For example, consider the con-

straints that the modifier places on the head in the compound newspaper article: the selectional association

A�newspaper 	 hnews,2298043i� � 2�08, whereas A�newspaper 	 hfunction word,2216900i� �

0�55, in effect showing that in the context of being modified by newspaper, the “news” sense of ar-

ticle is more relevant than its grammatical sense. Head-modifier constraints behave the same way:

A�hmaterial,3886012i  article� � 0�95 and A�hpress,2200204i  article� � 2�27, where

hpress,2200204i is the WordNet class glossed as “printed matter in the form of newspapers or mag-

azines.” Thus as a nominal modifier for article, the word newspaper is better construed as printed matter

than as a kind of physical material.
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5.3.3 Experiment 1

I investigated the roles of the various cues to coordination by conducting a disambiguation experiment using

the definitions just discussed. Two sets of 100 noun phrases of the form [NP noun1 and noun2 noun3] were

extracted from the Wall Street Journal (WSJ) corpus in the Penn Treebank and disambiguated by hand, with

one set to be used for development and the other for testing.6 A set of simple transformations was applied

to all WSJ data, including the mapping of all proper names to the token someone, the expansion of month

abbreviations, and the reduction of all nouns to their root forms.

Similarity of form was determined as described above, and similarity of meaning was determined

“globally” as in equation (5.2) using noun class probabilities estimated from a sample of approximately

800,000 noun occurrences in Associated Press newswire stories.7 For the purpose of determining semantic

similarity, nouns not in WordNet were treated as instances of the class hthingi. Appropriateness of noun-

noun modification was determined as described above in equations (5.4) and (5.5), with co-occurrence

frequencies calculated using a sample of approximately 15,000 noun-noun compounds extracted from the

WSJ corpus. (This sample did not include the test data.)

Each of the three sources of information — form similarity, meaning similarity, and modification

relationships — was used alone as a disambiguation strategy, as follows:

� Form:

– If noun1 and noun2 match in number

and noun1 and noun3 do not

then conjoin noun1 and noun2;

– if noun1 and noun3 match in number

and noun1 and noun2 do not

then conjoin noun1 and noun3;

– otherwise remain undecided.

� Meaning:

– If sim(noun1,noun2)� sim(noun1,noun3)

then conjoin noun1 and noun2;

– if sim(noun1,noun3)� sim(noun1,noun2)

then conjoin noun1 and noun3;

– otherwise remain undecided.

� Modification:

– If A�noun1 	 noun3� � � , a threshold, or

if A�noun1  noun3� > � ,

then conjoin noun1 and noun3;

– If A�noun1 	 noun3� � � and A�noun1  noun3� � �

then conjoin noun1 and noun2;

6Hand disambiguation was necessary because the Penn Treebank does not encode NP-internal structure. These phrases were
disambiguated using the full sentence in which they occurred, plus the previous and following sentence, as context.

7I am grateful to Donald Hindle for making these data available.
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– otherwise remain undecided.8

In addition, I investigated several methods for combining the three sources of information. These

included:

� “Backing off”

Use the form strategy if not undecided;

otherwise use the modification strategy if not undecided;

otherwise use the meaning strategy if not undecided;

otherwise remain undecided.

� Voting

Tally the votes of the three individual strategies;

use the majority, if there is one;

otherwise remain undecided.

� Regression

Represent training instances as vectors of attributes;

represent the two bracketings as -1 and 1;

perform a linear regression;

classify test instances using the regression equation.

� Decision tree

Represent training instances as vectors of attributes;

represent the two bracketings as classes;

construct a decision tree classifier;

classify test instances using the tree.

The training set contained a bias in favor of conjoining noun1 and noun2, so a structural “default”

strategy — always choosing that bracketing — was used as a baseline. The results were as follows:

STRATEGY COVERAGE (%) ACCURACY (%)

Default 100.0 66.0

Form 53.0 90.6

Modification 75.0 69.3

Meaning 66.0 71.2

Backing off 95.0 81.1

Voting 89.0 78.7

Regression 100.0 79.0

ID3 Tree 100.0 80.0

Not surprisingly, the individual strategies perform reasonably well on the instances they can classify, but

coverage is poor; the strategy based on similarity of form is highly accurate, but arrives at an answer only

half the time. Of the combined strategies, the “backing off” approach succeeds in answering 95% of the time

and achieving 81.1% accuracy — a reduction of 44.4% in the baseline error rate. Although this confirms

that there is useful predictive power in the meaning and modification strategies, a caveat is in order: this

8Thresholds � and � were fixed before evaluating the test data.
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reduction in error may not be a thoroughly convincing demonstration of effectiveness since, on the basis of

the above numbers, backing off from form to the default strategy could theoretically be expected to have an

84% accuracy at 100% coverage. This concern was addressed by the experiment that follows.

5.3.4 Experiment 2

In order to better evaluate bottom-line performance, I investigated the disambiguation of more complex

coordinations of the form [NP noun1 noun2 and noun3 noun4], which permit five possible bracketings:

(169) a. freshman ((business and marketing) major)

b. (food (handling and storage)) procedures

c. ((mail fraud) and bribery) charges

d. Clorets (gum and (breath mints))

e. (baby food) and (puppy chow)

These bracketings comprise two groups, those in which the conjoined heads noun2 and noun3 (a–c) and those

in which the conjoined heads are noun2 and noun4 (d–e). Rather than tackling the five-way disambiguation

problem immediately, I used an experimental task of classifying a noun phrase as belonging to one of these

two groups, thus providing a closer parallel to Experiment 1.

I examined three classification strategies. First, I used the form-based strategy described above. Second,

as before, I used a strategy based on semantic similarity; this time, however, selectional association was used

to determine the �i in equation (5.3), incorporating modifier-head relationships into the semantic similarity

strategy. That is, given noun1 noun2 and noun3 noun4, the similarity of noun2 and noun3 was calculated as

sim�noun2� noun3� �
X
i

��ci��log
1

p�ci�
�� (5.6)

where fcig is the set of all classes containing both noun2 and noun3, and

��ci� �
A�ci  noun4�P
j A�cj  noun4�

� (5.7)

Notice that this similarity calculation takes advantage of more information than the “global” similarity.

Intuitively, equation (5.6) computes the similarity of the two nouns in the context of being modifiers to

noun4, where the role of context is determined in equation (5.7) on the basis of selectional association.

Similarly, in calculating the similarity between noun2 and noun4, it was possible to take advantage of

the additional information provided by noun3:

sim�noun2� noun4� �
X
i

��ci��log
1

p�ci�
�� (5.8)

��ci� �
A�noun3 	 ci�P
j A�noun3 	 cj�

� (5.9)

Here, the similarity of noun2 and noun4 must be considered in light of the fact that noun4 is modified by

noun3.

As a third strategy, I used “backing off” (from form similarity to semantic similarity) to combine the

two individual strategies. As before, one set of items was used for development, and another set (89 items)

was set aside for testing. As a baseline, results were evaluated against a simple default strategy of always

choosing the group that was more common in the development set.
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STRATEGY COVERAGE (%) ACCURACY (%)

Default 100.0 44.9

Form 40.4 80.6

Meaning 69.7 77.4

Backing off 85.4 81.6

In this case, the default strategy defined using the development set was misleading, leading to worse than

chance accuracy. However, even if default choices were made using the bias found in the test set, accuracy

would be only 55.1%. The results in the above table make it clear that the strategies using form and meaning

are far more accurate, and that combining them leads to coverage and accuracy that would not have been

possible using similarity of form alone.

The pattern of results in these two experiments demonstrates a significant reduction in syntactic mis-

analyses for this construction as compared to the simple baseline, and it confirms that form, meaning, and

modification relationships all play a role in disambiguation. In addition, these results confirm the practical

effectiveness of the proposed definitions of selectional preference and semantic similarity.

5.4 Prepositional Phrase Attachment

Prepositional phrase attachment is the paradigm case for discussions of syntactic ambiguity. Exam-

ples (170,171, 172), from (Church and Patil, 1982), illustrate both the explosion of analyses as the number

of prepositional phrases grows and the need for extra-syntactic constraints to select among them.

(170) Put the block [on the table].

(171) a. Put the block [in the box on the table].

b. Put [the block in the box] on the table.

(172) a. Put the block [[in the box on the table] in the kitchen].

b. Put the block [in the box [on the table] in the kitchen]].

c. Put [[the block in the box] on the table] in the kitchen.

d. Put [the block [in the box on the table]] in the kitchen.

e. Put [the block in the box] [on the table in the kitchen].

Resolving the ambiguity in this example seems to require information and inferences about the situation,

since nothing about the lexical items provides constraints on their possible relationships. If all attachment

ambiguities required that level of knowledge, life would indeed be difficult — Hindle and Rooth (1993,

p. 103) comment:

[One] recent proposal suggests that resolving attachment ambiguity requires the construction

of a discourse model in which the entities referred to in a text are represented and reasoned

about . . . We take this argument to show that reasoning essentially involving reference in a

discourse model is implicated in resolving attachment ambiguities in a certain class of cases.

If this phenomenon is typical, there is little hope in the near term for building computational

models capable of resolving such ambiguities in unrestricted text.



115

Fortunately, however, lexical relationships can provide a great deal of guidance in attachment decisions,

even in the absence of discourse context. As discussed earlier, a study by Whittemore et al. (1990) found

lexical preferences to be a strong predictor of attachment, as illustrated in (173) (their (4)):

(173) a. What is the round trip fare for Aer Lingus and for British Airlines from JFK on August 30 to

Dublin returning September 21?

b. What is the round trip [fare ... [from JFK] [to Dublin] ...]

The example shows that knowledge about preferred prepositions — in this domain, relationships like fare

from X and fare to Y — suffices to predict the correct attachments solely on the basis of the lexical items

involved.

5.4.1 Lexical association

As mentioned earlier, a critical obstacle to using this kind of information on a large scale is the difficulty

in acquiring a collection of lexical preference relationships. Hindle and Rooth (1991; 1993) propose to

overcome this obstacle using corpus-based lexical co-occurrence statistics.

The problem setting adopted by Hindle and Rooth is a sub-case of the general attachment problem,

involving a choice between just two attachment sites. An “instance” of ambiguous prepositional phrase

attachment in this setting consists of a verb, its direct object, a preposition, and the object of the preposition.

Furthermore, only the heads of the respective phrases are considered; so, for example, the ambiguous

attachment in (170) would be construed as the 4-tuple (put,block,on,table). Its elements will be called v, n1,

p, and n2, respectively.

The attachment strategy is based on an assessment of how likely the preposition is, given each potential

attachment site; that is, a comparison of the values p�pjn1� and p�pjv�. For (170), one would expect

p�onjput� to be greater than p�onjblock�, reflecting the intuition that put X on Y is more plausible as a verb

phrase than block on Z is as a noun phrase.

Hindle and Rooth extracted their training data from a corpus of Associated Press news stories. A

robust parser (Hindle, 1983) was used to construct a table in which each row contains the head noun of

each noun phrase, the preceding verb (if the noun phrase was the verb’s direct object), and the following

preposition, if any occurred. Attachment decisions for the training data in the table were then made using a

heuristic procedure — for example, given spare it from, the procedure would count this row as an instance

of spare from rather than it from, since a prepositional phrase cannot be attached to a pronoun. Not all the

data can be assigned with such certainty: ambiguous cases in the training data were handled either by using

statistics collected from the unambiguous cases, by splitting the attachment between the noun and the verb,

or by defaulting to attachment to the noun.

Given an instance of ambiguous prepositional phrase attachment from the test set, Hindle and Rooth

used a statistical test to assess the direction and significance of the difference between p�pjn1� and p�pjv�,

a procedure they call lexical association. In (Hindle and Rooth, 1991) they used the t-score (Church et al.,

1991) as their test, and in (Hindle and Rooth, 1993) they shifted to a log likelihood ratio. In both the earlier

and later versions of the work, the value produced by their test is positive, zero, or negative according to

whether p�pjv� is greater, equal to, or less than p�pjn1�, respectively, and its magnitude indicates a level of

confidence in the significance of this difference.

On a set of test sentences held out from the training data, the lexical association procedure used in (Hindle

and Rooth, 1991) (t-score) made the correct attachment 78.3% of the time. For choices with a high level of
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confidence (magnitude of t greater than 2.1, about 70% of the time), correct attachments were made 84.5%

of the time. Using the log likelihood ratio in (Hindle and Rooth, 1993), they obtained a correct decision

79.7% of the time; for high confidence choices (log likelihood ratio greater than 2.0) they obtained 88.7%

accuracy at 70.6% coverage.

5.4.2 Prepositional objects

The lexical association strategy performs quite well, despite the fact that the object of the preposition

is ignored. However, Hindle and Rooth note that neglecting this information can hurt in some cases. For

instance, the lexical association strategy is presented with exactly the same information in (174a) and (174b),

and is therefore unable to distinguish them.

(174) a. Britain reopened its embassy in December.

b. Britain reopened its embassy in Teheran.

Furthermore, (Hearst and Church, in preparation) have conducted a pilot study in which human subjects are

asked to guess prepositional phrase attachments despite the omission of the direct object, the object of the

preposition, or both. The results of this study, though preliminary, suggest that the object of the preposition

contributes an amount of information comparable to that contributed by the direct object; more important,

for some prepositions, the object of the preposition appears to be more informative.

Thus, there appears to be good reason to incorporate the object of the preposition in lexical association

calculations. The difficulty, of course, is that the data are far too sparse to permit the most obvious extension.

Attempts to simply compare p�p� n2jn1� against p�p� n2jv� using the t-score fail dismally, and there is no

reason to think the log likelihood ratio would fare any better. 9

We are faced with a well-known tradeoff: increasing the number of words attended to by a statistical

language model will in general tend to increase its accuracy, but doing so increases the number of probabilities

to be estimated, leading to the need for larger (and often impractically larger) sets of training data in order

to obtain accurate estimates. One option is simply to pay attention to fewer words, as do Hindle and Rooth.

Another possibility, however, is to reduce the number of parameters by grouping words into equivalence

classes, as discussed, for example, by (Brown et al., 1990). Figure 5.1 illustrates the intuition behind such

an approach. Resolving the attachment ambiguity in the figure, it does not really matter that the particular

city is Dallas — it could just as easily be any other city, and the attachment decision would be the same.

Similarly, the specific word staff is not crucial since a number of other related words would produce exactly

the same result. These intuitions suggest that the use of classes may be more than a useful engineering

solution to the problem of data sparseness — the relevant relationships really do seem to obtain not at the

lexical level, but at the level of classes or concepts.

5.4.3 Conceptual association

The preceding discussion suggests that class-based statistical relationships of the kind exploited in Sec-

tion 5.3 may also be useful for prepositional phrase attachment. One might call such a proposal conceptual

association: calculating a measure of association using the classes to which the direct object and object of

the preposition belong, and selecting the attachment site for which the evidence of association is strongest.

9I attempted this experiment using expected likelihood estimates, as in (Hindle and Rooth, 1991), with data extracted from the Penn
Treebank as described below.
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a. He flies two personal secretaries in from Little Rock to augment his staff in Dallas.

b. ...augment his

��������������������	

personnel
team
crew
group

organization
people

...


��������������������
in

������������	

Pittsburgh
Berkeley
Newark

Columbus
...


������������
.

Figure 5.1: Noun classes in prepositional phrase attachment

The use of classes introduces two sources of ambiguity. The first, shared by lexical association, is word

sense ambiguity: just as lexically-based methods conflate multiple senses of a word into the count of a single

token, here each word may be mapped to many different classes in the WordNet taxonomy. Second, even

for a single sense, a word may be classified at many levels of abstraction — for example, even interpreted

solely as a physical object (rather than a monetary unit), penny may be categorized as a hcoin,3566679i,

hcash,3566144i, hmoney,3565439i, and so forth on up to hpossession,11572i.

In the algorithm that follows, the simplest possible approach to these ambiguities was taken: each

classification of the nouns is considered as a source of evidence about association, and these sources of

evidence combined to reach a single attachment decision.

Algorithm 1. Given �v� n1� p� n2�,

1. Let C1 = fc j n1 � words�c�g

Let C2 = fc j n2 � words�c�g � fc2�1� � � � � c2�Ng

2. For i from 1 to N ,

c1�i � argmax
c � C1

I�c; p� c2�i�

3. For i from 1 to N ,

Ivi � I�v; p� c2�i�

Svi � freq�v� p� c2�i� I
v
i

Ini � I�c1�i; p� c2�i�

Sni � freq�c1�i� p� c2�i� Ini

4. Compute a paired samples t-test for a difference of the means of Sn and Sv. Let “confidence” be the

significance of the test with N � 1 degrees of freedom.

5. Select attachment to n1 or v according to whether t is positive or negative, respectively.
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Step 1 of the algorithm establishes the range of possible classifications for n1 and n2. For example, if

the algorithm is trying to disambiguate the example in Figure (5.1), the verb attachment augment in Dallas

can be construed according to the following various classifications of Dallas:

v p c2

augment in Dallas

hDallasi

hurban areai

hregioni

hgeographical areai

hcityi

hlocationi

In step 2, each candidate classification for n2 is held fixed, and a classification for n1 is chosen that

maximizes the association (as measured by mutual information) between the noun-attachment site and the

prepositional phrase. In effect, this answers the question, “If we were to categorize n2 in this way, what

would be the best class to use for n1?”

c1 p c2

staff in Dallas

...

hsocial groupi

hfacultyi

himplementi

hsymboli in hregioni

hbodyi

hmusical notationi

hpersonneli

hassemblagei
...

For example, if Dallas is categorized in class hregioni, then, of all the classes to which staff belongs,

the one maximizing mutual information would be chosen — in this case, hpersonneli. This is done for

each classification of n2, yieldingN different class-based interpretations for (n1,p,n2):

c1 p c2

staff in Dallas

hgatheringi in hdallasi

hpeoplei in hurban areai

hpersonneli in hregioni

hpersonneli in hgeographical areai

hpeoplei in hcityi

hpersonneli in hlocationi
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Steps 1 and 2 result in N different classifications of the 4-tuple according to WordNet classes. In Step 3,

each of these is given a score evaluating attachment to the verb and a score evaluating attachment to the

noun, producing a table like the following: 10

Classification Sv Sn

augment hgatheringi in hdallasi 45.54 38.18

augment hpeoplei in hurban areai 28.46 1200.21

augment hpersonneli in hregioni 23.38 314.62

augment hpersonneli in hgeo. areai 26.80 106.05

augment hpeoplei in hcityi 28.61 1161.22

augment hpersonneli in hlocationi 22.83 320.85

In the absence of sense disambiguation, there is no way to tell which classification of the nouns is most

appropriate: the best one can do under the circumstances is to ask whether one attachment tends to score

higher than the other across the different classifications. Step 4 implements an extremely brute-force way

of asking this question: a t-test for the difference of the means is performed, treating S n and Sv as paired

samples (see, e.g., (Woods, Fletcher, and Hughes, 1986)). In step 5 the resulting value of t determines

the choice of attachment site, as well as an estimate of how significant the difference is between the two

alternatives. (For this example, t�3� � 3�57� p � 0�05, yielding the correct choice of attachment.)

In addition to evaluating the performance of the conceptual association strategy in isolation, it is natural

to combine the predictions of the lexical and conceptual association strategies to make a single prediction.

Although better-motivated strategies for combining the predictions of multiple models do exist (e.g. (Jelinek

and Mercer, 1980; Katz, 1987)), a simpler “backing off” style procedure has been pursued here. The central

idea behind backing off is to use the model making the most accurate predictions first, even if its coverage is

poor; in cases where the more accurate model fails to apply (or makes a low-confidence decision), the less

accurate model can be used.

Algorithm 2. Given �v� n1� p� n2�,

1. Calculate an attachment decision using lexical association (t-score).

2. If confident (jtj � 2�1), use this decision.

3. Otherwise, calculate an attachment using conceptual association

10The score used here is quite similar, though not identical, to selectional association of the verb and noun for the prepositional
phrase. That would be computed as

A�c1; p� c2� �
freq�p� c2jc1�I�c1;p� c2�P

p��c2�
freq�p�� c2�jc1�I�c1;p�� c2��

�

whereas this score weights mutual information by the joint rather than the conditional probability (frequency) and does not normalize:

Sn � freq�c1� p� c2�I�c1; p� c2��

I used weighted mutual information primarily because it was more straightforward to implement, and because it can be viewed simply
as using mutual information together with an added factor to give more weight to higher-frequency (and hence more reliable) co-
occurrences. However, using selectional association would be more consistent with the rest of the dissertation and is a topic for future
study.
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4. If confident (p � 0�1), use this decision;

5. Otherwise,

(a) If confident decisions only are required, make no decision.

(b) If a decision is needed in every case, use the choice made in step 3.

(Note: in earlier work (Resnik and Hearst, 1993; Resnik, 1993), backing off was done from conceptual

association to lexical association, rather than vice versa, by analogy with backing off from bigrams to

trigrams. The poorer results reported in that work reflect the fact that, although conceptual association

gains information by paying attention to the object of the preposition, it sacrifices accuracy by abstracting to

classes.)

5.4.4 Experimental results

Quantitative evaluation

An experiment was conducted to evaluate the performance of the lexical association, conceptual association,

and backing off strategies. The corpus used was a collection of parses from articles in the 1988–89 Wall

Street Journal, found as part of the Penn Treebank. This corpus is an order of magnitude smaller than the

one used by Hindle and Rooth in their experiments, but it provides considerably less noisy data, since parse

trees have been produced automatically by the Fidditch parser (Hindle, 1983) and then corrected by hand.

A test set of 201 ambiguous prepositional phrase attachment instances was set aside. After acquiring

attachment choices on these instances from a separate judge (who used the full sentence context in each

case), the test set was reduced by eliminating sentences for which the separate judge disagreed with the

Treebank, leaving a test set of 174 instances.11

Lexical counts for relevant prepositional phrase attachments (v,p,n2 and n1,p,n2) were extracted from

the parse trees in the corpus; in addition, by analogy with Hindle and Rooth’s training procedure, instances

of verbs and nouns that did not have a prepositional phrase attached were counted as occurring with the “null

prepositionalphrase.” A set of clean-up steps included reducing verbs and nouns to their root forms, mapping

to lowercase, substituting the word someone for nouns not in WordNet that were part-of-speech-tagged as

proper names, substituting the word amount for the token % (this appeared as a head noun in phrases such

as rose 10 %), and expanding month abbreviations such as Jan. to the full month name.

When each strategy was required to make a choice, regardless of level of confidence, the results were as

follows:

STRATEGY ACCURACY (%) COVERAGE (%)

LA 81.6 100.0

CA 79.3 100.0

COMBINED 83.9 100.0

When each strategy was permitted to make a choice only when confident, the results were as follows:

11Of the 348 nouns appearing as part of the test set, 12 were not covered by WordNet ; these were classified by default as members
of the WordNet class hentity,2383i.



121

STRATEGY ACCURACY (%) COVERAGE (%)

LA 92.3 52.3

CA 83.9 67.8

BACKING OFF 88.5 79.9

The results at 100% coverage suggest that conceptual association alone is not taking full advantage of the

additional information it has as compared to lexical association; reasons for this are discussed below. When

levels of confidence are taken into account, it is evident that conceptual association increases coverage (by

about 30%) at some cost to accuracy (about 9%). Combining the two strategies appears to be a successful

way to offset the losses in this tradeoff: the loss of accuracy (about 4%) is a relatively small price to pay for

increasing coverage by more than half (53%).

Although it is difficult to make comparisons between experiments using different sets of training and test

data, it is worth noting that the performance of lexical association in this experiment is comparable with the

recent results reported in (Hindle and Rooth, 1993) — in particular, they report 92.3% accuracy with 54.3%

of the test cases covered. On their precision-recall curve, their coverage at 88.7% accuracy is 70.6%.

Qualitative evaluation

The quantitative results reported here could be considered equivocal: using class-based statistics appears to

provide significant improvements in the coverage/accuracy tradeoff, but only a marginal increase at 100%

coverage, at the cost of a fair amount of extra machinery. There are several reasons this may be the case.

The most obvious problem with conceptual association as implemented here is the cavalier way it handles

multiple class membership. Although the class for n1 is chosen with attention to the prepositional phrase

(step 2 of Algorithm 1), all possible classes to which n2 might belong are considered, and worse, weighted

together equally using the paired t-test. As a result, although abstraction to classes may be helping with data

sparseness, it is also throwing in a vast amount of noise, often so much that the relevant relationships are

overwhelmed.

(175) a. Another major trick in making a portfolio recession-resistant is choosing stocks in “defensive”

industries.

b. Big investments in “domestic” industries such as beer will make it even tougher for foreign

competitors to crack the Japanese market.

c. The people with a stake in Nevada’s gambling industry believe that they have barely tapped

the potentially huge family trade.

Consider example (175a). Although the prepositional phrase in industry never occurs attached to either

choose or stock in the WSJ training data, evidence from sentences like (175b) and (175c) provide evidence

that it can be attached to other nouns like investment and stake having something in common with stock —

something that is captured by the following scores:

v c1 p c2 Sv Sn

choose hasseti in henterprisei 19.85 839.44

choose hasseti in horganizationi 16.36 1084.75

choose hasseti in hsocial groupi 15.02 1184.62
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Unfortunately, the choice of attachment in this instance also ends up being influenced by a host of other

completely irrelevant senses of industry. These include interpretations synonymous with the quality of

industriousness, or with the activity of making goods rather than the organizations that engage in that

activity.

c1 p c2 Sv Sn

haccumulationi in hindustriousnessi 32.40 5.04

hasseti in htraiti 217.04 193.79

hchange of magnitudei in hgroup actioni 550.55 534.99

hchange of magnitudei in hattributei 1087.57 1072.66

hincreasei in habstractioni 1302.13 1291.68

Although in this case conceptual association makes the correct choice despite such interference, irrelevant

classes are having a significant impact on the experimental results.

A second undesirable effect of the paired t-test is the impact that the number of different class memberships

for n2 has on confidence. The significance of a given value of t is calculated according to the number of

degrees of freedom in the data — the larger the sample, the more degrees of freedom, and the lower t has

to be in order to achieve significance. As the previous example illustrates, irrelevant class memberships

already bring noise to the comparison between the two attachment sites; simply by virtue of their number

they also tend to inflate confidence.

Finally, the use of mutual information as an association measure, and the weighting of the mutual

information score in order to bias the computation in favor of large counts, warrant further consideration —

mutual information has been criticized for, among other things, its poor behavior given low frequencies, and

alternative measures of association may prove better.

On the positive side, it is clear that class information is providing some measure of resistance to

sparseness of data. As mentioned earlier, adding the object of the preposition without using noun classes

leads to hopelessly sparse data — yet the performance of the conceptual association strategy is far from

hopeless. In addition, examination of what the conceptual association strategy actually did shows that the

relationships being discovered are intuitively plausible — as for example in (175a), above, where stock,

stake, and investment could all reasonably be viewed as assets or resources. Similarly, although staff belongs

to 25 classes in WordNet — including hmusical notation,2332528i and hrod,1613297i, for instance

— a staff in Dallas is consistently interpreted as describing a group of personnel or people.

I would argue that the quantitative and qualitative facts, taken together, show that conceptual association is

a good starting point for further work on broad-coverage application of class-based statistical disambiguation

strategies. The central obstacle to improved performance appears to be ambiguity of class membership,

and determination of class membership is a topic that shows signs of yielding to broad-coverage statistical

techniques (Gale, Church, and Yarowsky, 1992a; Yarowsky, 1992; Yarowsky, 1993; Dagan and Itai, to

appear).
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5.4.5 Relation to other work

A number of other researchers have reached much the same conclusions presented here: there is a great deal

of advantage to be gained from combining corpus-based lexical relationships with a model of word class

membership. In the concluding part of this section I discuss several examples of such work being applied to

problems in ambiguity resolution.

Weischedel et al. (1989; 1991) have investigated the use of a hand-constructed, domain-specific tax-

onomy together with corpus data from the MUC (Message Understanding Conference) evaluations for

resolution of prepositional phrase attachment ambiguity. Their methodology has been to manually anno-

tate nouns and verbs in a training sample with semantic tags from the taxonomy — for example, given

“exploded at dawn,” to annotate dawn with htimei and explode with hexplosion eventi. Frequencies

of syntactically-mediated lexical co-occurrences, expressed as relational triples, are then estimated either

using parses in the Penn Treebank (Weischedel et al., 1989) or using partial parses produced by the MIT

Fast Parser (Weischedel et al., 1991). Given lexical frequencies, semantic annotations, and a domain taxon-

omy, conditional probabilities are calculated using a “backing off” procedure: the probability of attaching

a prepositional phrase P,O to attachment site X is calculated directly from the lexical frequencies, if any

fX,P,Og co-occurrences are available in the training sample, and otherwise generalizations of X and O in the

taxonomy are considered, with each generalization incurring a penalty. In addition, a probabilistic “closest

attachment” heuristic is implemented by computing the probability p�d� that dwords separate the head word

X from the phrase to be attached. On a test set of prepositional attachments not made by the partial parser,

Weischedel et al. report an accuracy of of 66% for the semantic model alone, 75% for the closest attachment

model alone, and 82% for the two combined (by simply multiplying probabilities of the two models). No

figures on the coverage-accuracy tradeoff are reported.

Although the work described by Weischedel et al. is very similar in spirit to the work described here,

there are a number of important differences in the details. First, the conceptual model used is one that was

designed specifically for the domain, and, though its size is not reported, is almost certain to be smaller and

probably less fine-grained than the WordNet noun taxonomy. A second difference is the method by which

words are mapped to classes in the taxonomy: manual annotation of each word with a unique semantic

tag effectively solves the word sense disambiguation problem in advance. This may be important, though

there is some reason to believe that within such a restrictive context the word sense problem would be

significantly more constrained in any case (Gale, Church, and Yarowsky, 1992b). A third difference is the

combination in their work of a lexical or conceptual preference strategy with a purely structural strategy, a

choice that appeared to have a significant effect on the results. This is something that should be considered

in future work on conceptual association, since even (Whittemore, Ferrara, and Brunner, 1990) found right

association to be useful as a fallback strategy when lexical preference was inconclusive.

Finally, and perhaps most interesting, is the question of finding appropriate levels of generalization

within the taxonomy. Weischedel et al. (1989) comment that, given their manual annotation of concepts,

“the critical issue is selecting the right level of generalization given the set of examples in the supervised

training set” (p. 30). As discussed briefly in Chapter 4, Section 4.6.2, the use of mutual information in the

context of an IS-A taxonomy has the interesting behavior of seeking a class that is general (increasing p�cjx�)

but not too general (or else p�c� will dominate). Thus using the measures proposed here, generalization to

an appropriate level of abstraction may be happening as a side-effect rather than as the result of an explicit

procedure designed for that purpose — notice, for example, the tendency to classify stock as hasseti

given the evidence in example (175) rather than its subordinate hworking capitali or the superordinate
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hpossessioni. It would be interesting to compare the results of such an “automatic” generalization process

with the adaptation of Katz’s (1987) backing off procedure that was used by Weischedel et al.

Grishman and Sterling (1992) report on the acquisition of “semantic patterns” using methods quite

similar to Weischedel et al.: they employed a robust parser to extract relational triples, and used a set of

manually prepared, corpus-specific word classes to generalize those triples under the assumption that each

word is mapped to a unique, most specific class. A direct comparison with (Weischedel et al., 1991) and the

work reported here is difficult, however, since Grishman and Sterling adopted different evaluation criteria.

In one evaluation, they used relational triples extracted from training data as a filter on triples from test

data; this permitted the computation of precision and recall for the filtered set as evaluated against human

judgements on the same data. In another evaluation, they used the extracted relational triples to filter parser

output, and compared the resulting parses against “correct” parses in the Penn Treebank. It is interesting

to note one qualitative similarity between Grishman and Sterling’s results and the results reported in this

chapter: they report that generalizing to classes yields higher recall, but decreases accuracy.

In later work, Grishman and Sterling (1993) have shifted their method of generalization from hand-

constructed semantic classes to a smoothing technique. (This was discussed in Chapter 2, Section 2.3.1.)

Their comparison of the new (smoothing) method with the old (class-based) does not show any conclusive

differences between the two.

(Chang, Luo, and Su, 1992) report on a model that combines semantically based co-occurrence proba-

bilities with syntactic and lexical probabilities in a single unified framework. Unlike Grishman and Sterling,

they do not localize relevant co-occurrences by extracting a set of relational triples; instead, they adopt an

annotated context-free formalism in which semantic co-occurrences are made local by percolating semantic

features up the tree.

(176) a. [VP(sta,anim) saw(sta) [NP(anim) the boy [PP(loc) in the park]]]

b. [VP(sta,loc) saw(sta) [NP(anim) the boy] [PP(loc) in the park]]

So, for example, the structure in (176a) would result in semantic features STA (presumably “stative”) and

ANIM (“animate”) co-occurring at the VP node, whereas the VP in structure in (176b) would be annotated with

a co-occurrence of stative and locative. In addition, the probabilistic model of information at a node is not

strictly context-free: it takes into account a limited amount of surrounding context, as well. (This appears

to be similar to the probabilistic model proposed in (Magerman, 1993).) Semantic features are taken from a

set of 104 semantic tags (22 of them for nouns), and each word was apparently given a single unique tag as

part of its lexical representation.

Chang et al. evaluated the contribution of semantic co-occurrences to ambiguity resolution by testing

their model with and without the semantic score, with the evaluation criterion being the frequency with

which the correct parse has the highest probability. Adding semantic scores to the syntactic model increased

the percentage correct from 43% to 58%, about a 35% improvement. It is worth noting that this test was

conducted on an extremely small sample, given the number of parameters in the model — they used 10-fold

cross-validation on a sample of 1000 sentences.
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(Basili, Pazienza, and Velardi, 1991) describe an investigation of prepositional phrase attachment in the

context of a more general research program on the combination of natural language processing and statistical

methods for lexical acquisition, an effort sharing many of the motivations of the present work (Velardi,

1991; Velardi, Pazienza, and Fasolo, 1991; Basili, Pazienza, and Velardi, 1992). Like Weischedel et al., their

method requires human intervention in order to augment a training corpus with annotations from a small,

largely domain-dependent set of semantic tags, and, like Grishman and Sterling, a robust syntactic analyzer

is used to extract tuples of lexical items co-occurring in a variety of syntactic relationships.

Judgements of prepositional phrase attachment are made using a measure that Basili et al. call “condi-

tioned mutual information”:

I�X�prep� C� � �
freq�X� prep� C�

freq�prep� C�freq�prep�X�
� (5.10)

(A comparison of this score with the standard information-theoretic definition of conditional mutual infor-

mation (Cover and Thomas, 1991, p. 22) makes it clear that � � freq�prep�, which is constant for any

given disambiguation decision.) Intuitively, the score measures the association of the attachment site X

and the class C, given that they are related by prep. This differs somewhat from the intuition followed in

Section 5.4.3, where the mutual information I�X; prep� C2� measures the association between an attachment

site and the prepositional phrase as a whole (not taking the preposition as given); more significantly, Basili

et al. do not generalize from words to classes for nouns serving as the potential attachment site, only for

the object of the preposition. Despite these differences in detail, the idea behind the association measure is

quite similar to the one that was developed independently here.

Results are reported for experiments in two different text genres, one in the commercial domain and

the other in the legal domain. Lexical association was adopted as a basis for comparison using a training

sample extracted from the Italian text by their shallow parsing method. 12 The results indicate that their

word-class association strategy is a useful one: in the commercial domain, an accuracy of 84% was achieved

as compared to 74% for lexical association, and in the legal domain, an accuracy of 68% was achieved

compared to only 49% for lexical association. There is no discussion on assessment of confidence or the

coverage-accuracy tradeoff.

To summarize, the work reported in this chapter bears some important similarities to its predecessors, as

well as a number of interesting differences. From a practical or methodological perspective, all the related

work described in this section is predicated on the idea that class-based (semantic) relationships can provide

a measure of robustness against sparse data, and, furthermore, that surface-structure parsing provides an

adequate level of analysis for collecting data about semantic co-occurrences. In addition, from a linguistic

standpoint, the authors discussed here seem to agree that the utility of lexical preference as a disambiguation

strategy arises not strictly from lexical relationships, but from the underlying semantic relationships they

encode. Finally, Basili et al. make use of an association measure quite similar to the one proposed here.

The investigation in this chapter differs from most related work in its commitment to broad-coverage

knowledge sources and its avoidance of restricted domains. Although WordNet is an imperfect knowledge

12Basili et al. do not say how they resolved ambiguous cases in the training data. However, on p. 7 they comment that the t-score
method “requires a domain-dependent morphologic lexicon augmented with syntactic expectations (complement structure of verbs)”;
this suggests that they viewed Hindle and Rooth’s disambiguation heuristics as part of the strategy and used them on the training data
in their own experiments.
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source, it does provide a great deal of useful word class information, and the techniques developed here

make use of them without requiring manual encoding in the lexicon (Chang, Luo, and Su, 1992; Grishman

and Sterling, 1992) or, worse, manual annotation of the training corpus (Basili, Pazienza, and Velardi,

1991; Weischedel et al., 1991). Furthermore, unlike most of the related methods, the mapping from words

to classes need not be a unique one, in terms of either word senses or levels in the taxonomy. Instead, as

noted earlier, the association score appears to accomplish something resembling sense disambiguation and

appropriate generalization in the taxonomy as a side-effect (though this requires further study). Finally, I

have attempted to provide a clear sense of how a class-based strategy affects the tradeoff between coverage

and accuracy, rather than simply reporting the percentage of correct responses. The conceptual association

strategy makes this possible by providing a measure of confidence along with its guess as to the correct

choice.

5.5 Nominal Compounds

5.5.1 Syntactic bias and semantic preferences

Nominal compounds are another kind of “every way ambiguous” construction that appears repeatedly in most

samples of unconstrained text. The phrase water meter cover adjustment screw has 14 possible bracketings,

and it is not difficult to come up with enough additional modifiers (Penn engineering building basement

water meter cover adjustment screw) to produce a not-unnatural phrase with an entirely staggering number

of analyses (1430, in this case!). Furthermore, it is often difficult to make confident judgements about

what analysis is correct for compound nominals — the Penn Treebank avoids the problem by not encoding

NP-internal structure.

In this last section I will briefly develop a proposal from (Marcus, 1980) for resolving complex nominal

compounds using a combined syntactic and semantic strategy. At the heart of Marcus’s proposal are two

hypotheses: first, that there is a syntactic bias in favor of immediately combining adjacent nouns, and second,

that complex compounds can be handled iteratively looking at no more than three nouns at a time. The

algorithm he proposes is quite simple; I reproduce it here in its entirety.

� Given a noun phrase consisting of two nouns n1 and n2:

– If [n1 n2] is semantically acceptable, then build [n1 n2]

� Given three nouns n1, n2, and n3:

– If either [n1 n2] or [n2 n3] is not acceptable,

then build the alternative structure;

– Otherwise, if [n2 n3] is semantically preferable to [n1 n2],

then build [n2 n3];

– Otherwise, build [n1 n2].

The intuition behind the algorithm is to combine nouns according to semantic relationships when possible,

but to use the syntactic bias when the semantic preferences are inconclusive. Examples worked through by

hand seemed to support this intuition, but Marcus was unable to go any further: at the time he proposed the

algorithm, there was no way to measure the relevant semantic preferences. He wrote, “Because I know of



127

no technique which can answer the necessary semantic questions, this procedure has not been implemented”

(p. 251).

5.5.2 Implementation

The selectional association between nominal modifiers and their heads, used in Section 5.3, provides

a possible solution to the problem Marcus encountered. Equations (5.4) and (5.5), repeated here for

convenience, are intended precisely to answer the semantic questions asked in Marcus’s algorithm.

A�nm 	 ch� �
p�chjnm� log p�chjnm�

p�ch�P
c p�cjnm� log p�cjnm�

p�c�

� (5.11)

A�cm  nh� �
p�cmjnh� log p�cmjnh�

p�cm�P
c p�cjnh� log p�cjnh�

p�c�

� (5.12)

The following auxiliary definitions are also helpful:

A�n1 	 n2� � max
ci

A�n1 	 ci� (5.13)

A�n1  n2� � max
cj

A�cj  n2�

A�n1� n2� � max fA�n1 	 n2��A�n1  n2�g

That is, the selectional association between two nouns is based on the maximum word-to-class selectional

association, taken in either direction over all possible classes. Given this definition, selectional association

provides “subroutines” for Marcus’s algorithm:

� A phrase [n m] is semantically not acceptable if A�n�m� � 0, and semantically acceptable otherwise.

� A phrase [n m] is semantically preferable to [m k] if A�n�m��A�m� k� � � , where � is a parameter.

With these subroutines serving to answer the semantic questions, Marcus’s algorithm is easy to implement

and evaluate.

5.5.3 Quantitative Evaluation

As a preliminary attempt at evaluating Marcus’s algorithm, I extracted a sample of 200 noun-noun-noun

compounds from the Wall Street Journal corpus in the Penn Treebank, and assigned one of the two possible

bracketings to each, using the sentence the compound appeared in and the previous and following sentences

as context. I omitted five of the cases, either because I simply could not arrive at a judgement or because a

three-noun compound was not the correct syntactic structure. The a priori bias in the test set was 64.1% in

favor of combining the first two nouns.

Selectional association was estimated using the same sample of noun-noun co-occurrences used in

Section 5.3; this sample is disjoint from the test set, since noun-noun compounds were taken from noun

phrases containing exactly two nouns, and noun-noun-noun compounds were taken from noun phrases

containing exactly three. The results were as follows:
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Coverage (%) Accuracy (%)

� � 0�0 80.5 65.6

� � 1�0 80.5 66.2

� � 2�0 80.5 68.2

� � 3�0 80.5 72.6

� � 4�0 80.5 70.1

The coverage figure (157 of 195 examples) is constant because the algorithm in effect defaults to the

syntactic strategy in the absence of other information; the only time there was no answer was when one

of the nouns was unknown or when both bracketings were semantically unacceptable. Unknown words

are by far the biggest culprit, with 18.5% of the examples containing a noun not covered by WordNet

Version 1.2 — in general, the unknown word is either a hyphenated compound (recall that I have restricted

my attention to single nouns even though WordNet does include compounds), a gerund, or a piece of

specialized terminology.

(177) a. college-bowl type competitions

b. real-estate loan portfolios

(178) a. bank consulting firm

b. proprietary operating system

(179) a. female hormone diethylstilbestrol

b. retinoblastoma suppressor gene

In order to provide a baseline against which to evaluate these results, I had the test set (without contexts)

bracketed by an independent judge, and in each case had the judge include a measure � of confidence in the

choice on a scale from 0 (not at all confident) to 4 (very confident). These compared to my judgements as

follows:

Coverage (%) Agreement (%)

� � 0 100.0 80.0

� � 1 96.4 80.9

� � 2 90.8 81.4

� � 3 65.6 83.6

� � 4 15.9 100.0

As in the case of prepositional phrase attachment, the quantitative results are equivocal. On the one hand,

the best performance of the algorithm is only a 13% improvement over simply guessing the first bracketing.

On the other hand, this is fully half the way to the 26% improvement realized by the human judge, if a

generous attitude is taken about unknown words.

5.5.4 Qualitative Evaluation

A qualitative evaluation of the algorithm is quite informative. Table 5.4 shows the test examples that the

algorithm mistakenly bracketed as [n1 n2] n3 when they should have been n1 [n2 n3]; Table 5.5 shows the

converse, examples that were mistakenly bracketed as n1 [n2 n3] rather than [n1 n2] n3. (These are errors

when � � 3�0.)
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Example A�n1� n2� A�n2� n3� ∆
bankers acceptance rate 38.02 2.53 -35.49
state law enforcers 5.43 0.07 -5.36
sports cable channel 4.70 3.98 -0.71
winter ski season 3.42 2.72 -0.70
exchange trading practices 2.97 2.41 -0.56
estate investment trust 3.44 3.08 -0.36
management information system 2.63 2.32 -0.30
investment trust funds 3.08 2.82 -0.25
executive dining room 0.15 0.04 -0.11
world business competition 2.86 2.76 -0.10
adult trade books 2.45 2.51 0.06
oil maintenance schedule 2.49 2.55 0.06
merchandise trade deficit 4.12 4.37 0.25
% sales tax 1.49 1.88 0.38
sample leave policies 2.27 2.95 0.67
college entrance examination 1.88 2.61 0.73
state housing prices 0.88 1.70 0.81
bank trade associations 1.69 2.51 0.81
takeover stock traders 1.58 2.44 0.85
farm price index 1.21 2.09 0.87
home fitness equipment 0.50 1.65 1.15
business trade groups 1.96 3.32 1.36
world oil markets 0.65 2.08 1.43
% sales boost 1.49 3.07 1.57
performance plastic materials 0.46 2.22 1.76
record trade deficit 2.46 4.37 1.90
state securities group 1.81 4.65 2.83
market interest rates 5.35 8.22 2.86

Table 5.4: Incorrect bracketings of [n1 [n2 n3]]
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Example A�n1� n2� A�n2� n3� ∆
bone marrow transplants 0.00 3.19 3.19
beauty product line -0.06 3.16 3.23
shareholder rights plan 1.52 5.29 3.76
education services company 1.40 5.26 3.86
cash interest bill 1.59 5.61 4.01
motor vehicle maker 4.20 9.02 4.81
chief executive officer 11.96 16.80 4.83
semiconductor marketing arm 2.95 7.84 4.89
insurance brokerage agency 5.22 10.21 4.98
restaurant franchise system 2.31 7.37 5.06
farm income records 1.21 7.58 6.36
golf club makers 1.69 9.02 7.32
printer marketing arm 0.00 7.84 7.84
commodity brokerage firms 0.02 12.20 12.17
state loan guarantees 0.56 16.57 16.00

Table 5.5: Incorrect bracketings of [[n1 n2] n3]

The general pattern that emerges is one in which the general direction of the algorithm is correct, but

subtleties are missed. For most of the cases in Table 5.4, there is in fact a semantic preference for [n2 n3], but

the difference is not great enough to pass the threshold. For many of these, the [n1 n2] combination is entirely

plausible — e.g. oil maintenance, farm price, home fitness. In Table 5.5, the pattern is strikingly different.

In general the [n2 n3] combination overwhelms [n1 n2], and in many cases this appears to be justified —

for example, loan guarantees, brokerage firms, income records, marrow transplant, and product line are all

tight collocations. The lesser association of the [n1 n2] combinations in these cases — state loan, commodity

brokerage, farm income, bone marrow, beauty product — tends to arise because the collocations have low

frequency in the corpus, even when class membership is taken into account. In some cases, inappropriate

classes are coming into play: income and record associate so strongly because hrecordi IS-A hdocumenti

IS-A hpossessioni, and collocations like income return, income security, and income tax lead to a very

high value for A�income 	 hpossessioni�.

There is a good chance that many of these problems will disappear when larger corpora are used and

when word senses are taken into account. However, inspection of the incorrect choices also exposes some

deeper problems. Consider the phrase winter ski season. The training data contain a number of instances for

which a nominal modifier of season is a sporting activity — baseball season, hunting season, skiing season

— and the association measure captures this generalization, since in each of these cases the highest scoring

class for the modifier is hsporti. However, interpreting ski as a modifier in this category requires inferring

the relevant relationship between ski and skiing, something that may be possible in this case (perhaps via the

relationship between a sport and its equipment?) but would probably not be straightforward to do in general.

As a second example, consider the set of nominal modifiers for the head product. The modifiers of

product in the training set fall, with few exceptions, into the following rough groupings:

� X product � product made from or consisting of X:

basket carbon chemical cocoa cosmetic dairy drug egg film food hardware insulin life-insurance
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mainframe oil paper petroleum plastic polystyrene semiconductor sheet software steel storage-case

system tape textile tissue tobacco underwear

� X product � product used in activity X:

biotechnology buildingbusiness communicationcontrol dialysis health-care home-improvement information-

processing investment packaging plant-science skin-care storage telecommunication

� X product � product used to produce condition X:

animal-health fitness

� X product � product used in location X:

farm home household hospital office

A difficulty with using selectional association to assess semantic preference is that there may not be a direct

mapping between groupings of this kind and classes in the taxonomy. Using selectional association, the

first group of modifiers tends to be categorized as hobjecti, which seems to be a reasonable fit, but no

single class predominates in this way for the other groups. For example, in the second group words that

can be interpreted both as activities and as objects (e.g. building, business, control) get lumped in with

hobjecti, and the remainder scattered among relatively weakly scoring classes like hcommunicationi and

hactivityi.

The problem is reflected in the algorithm’s error on beauty product line. Although under a suitable

interpretation, beauty could be interpreted as a member of the third group — a condition caused by the

product — no such interpretation is available on the basis of the classes to which beauty belongs. Indeed,

the error would remain even if beauty were a member of class hconditioni: even though health and fitness

are both members of that class, the selectional association A�hconditioni  product� is quite low.

What appears to be needed here, then, is an understanding of the semantic connection underlying the

modifier-head relationship. This is something that it is difficult to imagine ascertaining automatically

(though see (Basili, Pazienza, and Velardi, 1991; Velardi, 1991) for some discussion of partially automating

the process). To echo the quote from (Hindle and Rooth, 1993) at the beginning of Section 5.4, if deeper

semantic relationships of this kind are necessary in general, then it is hard to see how computational models

are going to be able to solve this problem in unrestricted text any time soon.

Fortunately, this may not be the case. In the current example, although beauty product line is bracketed

incorrectly, three other items in the test set are bracketed correctly — cement products company, food

products concern, and forest products company. Although further experimentation is necessary, these

examples encourage me to believe that the syntactic head-modifier relationship, mediated by conceptual

classes, will suffice more often than not.



Chapter 6

Conclusions

6.1 Contributions

The core of the dissertation, in Chapter 3, is a new formalization of selectional constraints in information-

theoretic terms. I think the proposal to treat selectional constraints from an inferential point of view, but to

“hide” inference within the semantics of a taxonomic representation, is a novel one. In addition, I think that

the time is right to have revived the question of how “information,” in the sense of Shannon and Weaver

(1949), is related to semantic content, as discussed by Bar-Hillel (1964), and to the process of interpretation.

The main contribution of Chapter 4 is a new account of one particular kind of diathesis alternation,

an account that, unlike most discussions of verbal diathesis, focuses on the verb-argument relationship

rather than on a particular semantic property of the verb. The computational experiments in that chapter

suggest that the model of selectional preference proposed here captures important aspects of inferability

for argument properties; in that sense I think it lays the groundwork for a new set of mathematical and

computational proposals about on-line processing, consistent with discussions of processing in terms of

probabilistic constraints. (See also the discussion of argument plausibility in Chapter 3.) I think this model

may also shed new light on the process of verb acquisition, since bootstrapping proposals are increasingly

coming to recognize the importance of argument properties in that process.

In Chapter 5, I think I have demonstrated the utility of using knowledge-based classes in syntactic

disambiguation by statistical methods. Furthermore, unlike most statistical approaches, disambiguation

relies not on just any statistical test, but on an association measure that was independently motivated and

justified in the previous chapters. Admittedly this may not be of great concern in practical applications, but

at the very least I have provided a starting point, and a set of initial results, for statistical approaches that

make use of a broad-coverage taxonomy in unconstrained text.

Finally, the underlying premise of this work has been that the information-theoretic view of language

as a stochastic phenomenon and the linguistic view of language as a cognitive phenomenon, though often

characterized as being in opposition to each other, are not fundamentally incompatible. I believe that the

results in the preceding chapters support this conclusion, and I hope the thesis as a whole will contribute to

making it more widely accepted.
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6.2 Thoughts on Future Work

Speculating about possible future directions is extremely easy, since I have done my best to relate this work

to many different areas of intellectual pursuit. In this section, therefore, I will just briefly mention three

directions that strike me as particularly interesting.

Word sense disambiguation. One issue that came up repeatedly throughout the thesis was word sense

disambiguation — both with regard to the training data, and with regard to the use of selectional constraints

as a way of identifying the most plausible reading of a word in its context as the argument of a predicate.

One straightforward thing to do would be to abandon the uniform distribution of credit among noun classes

— e.g., observing drink wine and incrementing hcolori and hbeveragei by equal amounts — and instead

to use an existing word-sense disambiguation technique to obtain a better approximation of how credit

should be distributed. An alternative, suggested to me by David Magerman, would be to construct a hidden

model in which observed predicate-word co-occurrences provide the data for re-estimation of predicate-class

probabilities using the EM algorithm.

The relationship between selectional constraints and lexical disambiguation has been in evidence at

least since (Katz and Fodor, 1964), and the behavior of the implemented model suggests that selectional

association in many cases provides strong evidence for a particular sense. This finding is consistent with

Yarowsky’s (1993) claim that local collocational relationships provide a reliable source of evidence for sense

disambiguation when such relationships are present. Yarowsky suggests that class-based collocations may

help resolve some of the problems his method encounters with low recall, and the integration of the present

approach with his technique seems well worth pursuing.

Basic levels. A difference between typical word-sense disambiguation methods and selectional asso-

ciation is that, where senses are typically selected from a “flat” set, the classes under consideration in the

present work are part of a multi-level taxonomy. It has been widely noted that the selection of an appropriate

level of abstraction is a difficult problem — for example, Velardi et al. (1991, p. 164) comment, “The most

difficult task . . . is to define at the appropriate level of generality the selectional restrictions on conceptual

relations.”

A small but significant contribution of the thesis is that the measure of selectional association locates an

“appropriate” level within the taxonomy automatically, by trading off a marginal class probability (which

goes up as you go higher in the taxonomy) against a conditional class probability (which decreases if you

go too high). In future work I would like to investigate this property of the measure further, and to explore

the possibility that it is related to the notion of basic level categories.

Underlying semantics. Although in Section 2.4.1 I attempted to provide a reasonable discussion of

the semantics behind the taxonomy, and particularly its relationship to inference, further work on this topic

is needed. Steve Abney points out some necessary elaborations to the notions of “plausible entailment”

and “representative sentence” — at a minimum, the discussion should be expressed in terms of open

propositions rather than open sentence frames (e.g. �f ��x�f�x�&sawed-in-two�j� x��� rather than “John

sawed a in two”); the notion of “representative sentence” needs to be formulated so as to exclude such

cases as �f �member-of�f� ff1� f2g�� (otherwise my criteria would let any pair of senses be synonyms); and

there needs to be a clearer characterization of what would be excluded as a “plausible entailment” of a

proposition (to prevent the criterion for synonymy from being too strict). The challenge in this task is to

make the definitions more formal while at the same time not requiring a complete formalization of human

inference.



Appendix A

Notes on Probability Estimation

A.1 Unit Credit Assignment

Although equation (2.14) represents the correct formalization of joint class-based probabilities, in earlier

versions of this work (Resnik, 1992a; Resnik, 1992c; Resnik, 1993; Resnik and Hearst, 1993) and in

Chapter 5 I used the following frequency estimate:

freq�x� c� �
X

w�words�c�

freq�x�w�� (A.1)

That is, the joint frequency with x was increased by a unit rather than a fractional amount for each class to

which w belonged. This is technically incorrect as far as the probabilistic model is concerned, since it leads

to p̂MLE�v� c� not being a probability function — notice how the marginal probability of x will be inflated

for those x that tend to appear with nouns belonging to many different classes.

In the next section, I describe in detail how probability estimation was actually carried out in the work

using that frequency estimate, in particular the use of the Good-Turing estimate rather than MLE. In the

section that follows, I work through a simple example to illustrate how frequency and probability estimates

are done now.

A.2 Good-Turing Estimates

Together with the frequency estimate in (A.1), in earlier experiments I used the Good-Turing (GT) estimator

of probabilities (Good, 1953). The GT estimate is calculated by organizing observations in the sample

according to frequency, so that bin nr represents the number of items that were observed exactly r times;

for example, n2 is the number of items that were observed exactly twice. If k is the maximum number of

times any item was observed, then

kX
r�1

rnr � N� (A.2)

where N is the total size of the sample. In order to estimate the probability of something that occurred r

times, the maximum likelihood estimator would simply use the normalized frequency, i.e.

p̂MLE �
r

N
� (A.3)
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Zipf with Averaging
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Figure A.1: Example of smoothing in Good-Turing probability estimation

but in contrast, the Good-Turing estimate is calculated by first computing an adjusted frequency r �:

r� � �r � 1�
nr�1

nr
� (A.4)

It is this adjusted frequency that is then normalized in order to estimate the probability. That is, the estimated

probability for something that occurred r times in the sample is given by

N� �
kX
r�0

r�nr (A.5)

p̂GT �
r�

N�
� (A.6)

In practice, it is necessary to smooth the nr — notice that if by chance no item in the sample had an

observed frequency of exactly r, the denominator in equation (A.4) would be zero. Having observed that

a plot of lognr versus log r was very nearly linear, I experimented with smoothing the nr by fitting the

observed data to the equation

lognr � �m�log r� � b� (A.7)

As it turns out, this is equivalent to saying that

nr �
1
rm

� (A.8)

which is to say that the class distribution follows Zipf’s law. 1 Figure A.1 shows an example of how frequency

estimates were smoothed.

In the interest of fidelity to a probabilistic framework, I have redone most of the experiments in this thesis

using the frequency estimate in equation (2.14); this permits a true information-theoretic interpretation of

the proposal made in Chapter 3. (Maximum likelihood is used unless otherwise noted.) In the next section I

1I am grateful to Ken Church for pointing this out; for further smoothing subtleties see (Church and Gale, 19xx, pp. 8-9).
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fa�b�cg fc�fg

C FB

fbg fcg ffg

E

Figure A.2: A simple taxonomy

work through a small example to illustrate exactly how the frequency estimation is carried out and how the

probability estimates are related to the structure of the taxonomy.

In future work, I may shift from MLE to the Cat-Cal estimator proposed in (Church and Gale, 19xx), since

it requires fewer statistical assumptions than Good-Turing and is better equipped to dealing with fractional

counts. However, I should note that changes in probability estimates do not appear to lead to any great

differences in the reported results. I have found that experiments produce comparable results regardless of

the probability estimator used.

A.3 Frequency Estimates Using the Taxonomy

As mentioned in Section 2.4.2, the structure of the taxonomy plays a role not in the formalization of the

sample space, but in the estimation of the probability function. In order to examine this in a bit more detail,

I will work through a simple example.

Consider the taxonomy in Figure A.2. Capital letters represent the set of class labels, fA,B,C,D,E,Fg,

and the sets below each label represent the extension of each class, words represented in lowercase. Notice

that each link in the taxonomy corresponds to a subset-superset relationship between those extensions.

Suppose that what is observed is a 4-word sample: a, b, c, f. Since word a belongs to two classes, A

and E, each of those two classes will have its frequency incremented by 1
2 . Similarly, when b is observed,

classes B, A, and E will each be incremented by 1
3 . The entire sequence leads to the following summary of

frequency assignment:

a b c f

A 1
2

1
3

1
4

B 1
3

C 1
4

D 1
4

1
3

E 1
2

1
3

1
4

1
3

D 1
3

This results in the following frequency and probability estimates:
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Frequency MLE

f(A) = 13
12 p(A) = .2708

f(B) = 1
3 p(B) = .0833

f(C) = 1
4 p(C) = .0625

f(D) = 7
12 p(D) = .1458

f(E) = 17
12 p(E) = .3542

f(F) = 1
3 p(F) = .0833

As expected, since there are six classes in the taxonomy, the probability space can be viewed as describing a

six-sided die — on any roll of the die, there is for example a 0.1458 probability of coming up with D. Unlike

a die, however, the possible outcomes are in fact related: as you move up in the taxonomy from subsets to

supersets, the probability necessarily increases.

Admittedly, there is something counterintuitive about assigning class C a different probability than

classes B and F, given that b, c, and f were each observed once. The uniform distribution of credit among

classes for word observations is at best a brute-force method; in general, the question of how probability

should be assigned to classes in a taxonomy warrants further attention than it has been given here.



Appendix B

Experimental Data from Chapter 4

B.1 Experiment 1, Brown Corpus

Object-drop verbs Non-object-drop verbs
Verb Strength Verb Strength

pour 4.80 hang 3.35
drink 4.38 wear 3.13
pack 4.12 open 2.93
sing 3.58 say 2.82
steal 3.52 like 2.59
eat 3.51 hit 2.49
push 2.87 catch 2.47
pull 2.77 do 1.84
write 2.54 want 1.52
play 2.51 show 1.39
explain 2.39 bring 1.33
read 2.35 put 1.24
watch 1.97 see 1.06
hear 1.70 find 0.96
call 1.52 take 0.93

get 0.82
give 0.79
make 0.72
have 0.43
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B.2 Experiment 1, CHILDES

Object-drop verbs Non-object-drop verbs
Verb Strength Verb Strength

explain 4.41 open 2.41
pack 3.71 hang 2.03
sing 3.15 wear 2.02
read 2.58 show 1.83
drink 2.38 catch 1.67
write 2.33 hit 1.31
pour 2.30 give 1.18
steal 2.28 say 0.94
play 2.13 like 0.89
push 1.77 bring 0.88
hear 1.67 make 0.77
pull 1.55 take 0.74
watch 1.44 find 0.71
eat 1.15 want 0.70
call 0.95 see 0.48

put 0.40
get 0.28

B.3 Experiment 1, Norms

Object-drop verbs Non-object-drop verbs
Verb Strength Verb Strength

drink 2.83 say 2.56
play 2.64 wear 2.30
sing 2.63 do 2.21
pour 2.57 hang 1.96
eat 2.47 catch 1.92
call 2.39 hit 1.91
pull 2.22 open 1.88
explain 2.20 give 1.81
write 2.18 want 1.71
push 1.98 make 1.58
watch 1.86 see 1.54
read 1.81 show 1.42
pack 1.75 put 1.34
hear 1.71 like 1.30
steal 1.34 find 1.30

take 1.28
have 1.23
get 1.17
bring 1.04
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B.4 Experiment 2, Brown Corpus
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B.5 Experiment 2, CHILDES Corpus

o

o

o

o

o

o

oo o
o

o

o

oo

o
o

o

o

o
o

o

o

o
o

o

o

o

oo o o

o

CHILDES

Strength

Im
pl

ic
it

1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4



141

B.6 Experiment 2, Norms
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B.7 Experiment 3, Verbs from Lehrer’s (1970) Verb Classification

Type I: babysit, bale, breathe, conceive, cook, dance, date, draw, dream, drink, drive, eat, fly, hear, hum,

iron, kick, marry, nod, paint, plow, print, read, reap, shrug, sing, smell, sow, spell, spit, swallow, think, type,

wave, weave, write, yell

Type III: answer, approach, approve, attend, bid, build, call, change, choose, continue, discontinue, copy,

cut, endure, enter, fail, follow, gain, govern, grab, guess, hoard, judge, know, lead, leave, lose, obey, disobey,

order, pack, pass, pay, play, pour, promise, recall, refuse, remember, resist, spill, wash, waste, watch
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B.8 Experiment 3, Brown Corpus

Type I verbs Type III verbs
Verb Strength Verb Strength

dance 9.36 guess 5.89
spit 8.50 endure 5.41
yell 7.44 disobey 5.09
shrug 6.80 fail 5.02
reap 5.93 discontinue 4.98
sow 5.86 bid 4.86
date 5.86 pour 4.80
weave 5.48 refuse 4.40
hum 5.46 obey 4.20
type 5.09 pack 4.12
spell 5.04 waste 3.89
breathe 4.99 answer 3.60
plow 4.87 wash 3.47
iron 4.71 resist 3.35
cook 4.48 grab 3.32
drink 4.38 recall 3.31
swallow 4.07 judge 3.30
fly 3.99 attend 3.22
nod 3.76 promise 3.12
conceive 3.72 approve 3.08
kick 3.70 pay 2.85
smell 3.65 cut 2.79
wave 3.64 govern 2.67
sing 3.58 lead 2.56
eat 3.51 continue 2.52
marry 3.44 play 2.51
print 3.25 build 2.49
drive 3.12 remember 2.37
paint 2.94 order 2.35
think 2.56 choose 2.19
write 2.54 gain 2.17
read 2.35 approach 2.15
draw 1.95 change 2.05
hear 1.70 pass 2.01

watch 1.97
enter 1.81
know 1.61
follow 1.54
call 1.52
leave 1.48
lose 1.47
spill 0.00
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B.9 Experiment 3, CHILDES

Type I verbs Type III verbs
Verb Strength Verb Strength

dream 8.64 discontinue 6.97
shrug 6.85 continue 5.87
plow 5.24 gain 5.37
iron 5.09 approach 5.32
type 4.92 lead 4.42
spit 4.64 answer 3.90
nod 4.39 pack 3.71
wave 3.84 pay 3.58
fly 3.81 judge 3.35
smell 3.27 copy 3.05
drive 3.23 order 3.02
yell 3.20 choose 2.99
sing 3.15 waste 2.79
marry 2.85 pass 2.68
read 2.58 build 2.67
kick 2.40 promise 2.56
dance 2.40 guess 2.55
drink 2.38 follow 2.50
write 2.33 spill 2.37
spell 2.32 change 2.35
swallow 2.27 pour 2.30
paint 2.22 play 2.13
cook 2.01 grab 1.90
hear 1.67 wash 1.80
draw 1.60 cut 1.50
think 1.26 watch 1.44
eat 1.15 lose 1.33

remember 1.23
know 1.17
call 0.95
leave 0.81



Appendix C

Word Similarity Data from Chapter 5

The following table gives the data from Miller and Charles’s (1991) study, followed by their subjects’ mean

rating, the mean rating in my replication, and the similarity value calculated using equation (5.2).

Word Pair Miller and Charles Replication sim

car automobile 3.92 3.9 11.98
gem jewel 3.84 3.5 18.34
journey voyage 3.84 3.5 12.27
boy lad 3.76 3.5 11.79
coast shore 3.70 3.5 15.09
asylum madhouse 3.61 3.6 20.08
magician wizard 3.50 3.5 17.49
midday noon 3.42 3.6 16.80
furnace stove 3.11 2.6 5.90
food fruit 3.08 2.1 5.47
bird cock 3.05 2.2 13.06
bird crane 2.97 2.1 13.06
tool implement 2.95 3.4 9.96
brother monk 2.82 2.4 5.74
crane implement 1.68 0.3 5.74
lad brother 1.66 1.2 5.90
journey car 1.16 0.7 0.00
monk oracle 1.10 0.8 5.74
cemetery woodland 0.95 0.6 n/a
food rooster 0.89 1.1 4.65
coast hill 0.87 0.7 10.72
forest graveyard 0.84 0.6 0.00
shore woodland 0.63 0.7 n/a
monk slave 0.55 0.7 5.74
coast forest 0.42 0.6 0.00
lad wizard 0.42 0.7 5.74
chord smile 0.13 0.1 6.24
glass magician 0.11 0.1 4.65
noon string 0.08 0.0 0.00
rooster voyage 0.08 0.0 5.49
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The following plot illustrates the relationship between the Miller and Charles means and the calculated

similarity value:
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