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Abstract— Spiking neural networks (SNNs) receive trains of1

spiking events as inputs. In order to design efficient SNN systems,2

real-valued signals must be optimally encoded into spike trains3

so that the task-relevant information is retained. This paper4

provides a systematic quantitative and qualitative analysis and5

guidelines for optimal temporal encoding. It proposes a method-6

ology of a three-step encoding workflow: method selection by7

signal characteristics, parameter optimization by error metrics8

between original and reconstructed signals, and validation by9

comparison of the original signal and the encoded spike train.10

Four encoding methods are analyzed: one stimulus estimation11

[Ben’s Spiker algorithm (BSA)] and three temporal contrast12

[threshold-based, step-forward (SW), and moving-window (MW)]13

encodings. A short theoretical analysis is provided, and the14

extended quantitative analysis is carried out applying four types15

of test signals: step-wise signal, smooth (sinusoid) signal with16

added noise, trended smooth signal, and event-like smooth signal.17

Various time-domain and frequency spectrum properties are18

explored, and a comparison is provided. BSA, the only method19

providing unipolar spikes, was shown to be ineffective for20

step-wise signals, but it can follow smoothly changing signals21

if filter coefficients are scaled appropriately. Producing bipolar22

(positive and negative) spike trains, SW encoding was most23

effective for all types of signals as it proved to be robust and easy24

to optimize. Signal-to-noise ratio (SNR) can be recommended as25

the error metric for parameter optimization. Currently, only a26

visual check is available for final validation.27

Index Terms— Signal processing, spike encoding, spiking28

neural networks (SNNs), stimulus estimation, temporal contrast.29

I. INTRODUCTION30

IN a spiking neural network (SNN), information travels31

between the processing units in the form of binary spiking32

events. SNN systems are thus inspired by the information33

processing solutions of the biological brain. Real world mea-34

surements provide analog (continuous or discrete) real-value35

temporal signals; therefore, it is necessary to implement an36

encoding method to convert the analog values to spike events37

to provide input to such systems. This analog-to-spike encod-38

ing can compress the data size of the signal considerably [1]39
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since the spike train is a binary value series. In turn, this binary 40

signal provides fast processing, especially using purpose-built 41

hardware, e.g., SpiNNaker [2]. Ultimately, a correct spike 42

encoding could lead to better information preservation along 43

with input data reduction and compression [1], [3]–[6]. 44

It is extremely important to generate the spike train input 45

to the SNN such that the task-relevant information content of 46

the signal is preserved. The issues here are what information 47

is lost and what is preserved and thus how effective was the 48

encoding. One approach is not to evaluate the effectiveness of 49

the encoding separately but for the whole SNN application, 50

e.g., the chosen encoding is deemed effective if the output 51

of the whole SNN system yields good results, such as good 52

classification accuracy [1]. Another approach is to try and 53

optimize the encoding step by itself. However, the comparison 54

of original and encoded signals is nontrivial: how to compare a 55

binary event series with a continuous signal or calculate some 56

error metric of the differences? At best, one can apply the cor- 57

responding decoding algorithm and compare the reconstructed 58

signal with the original. 59

Each encoding method has a different way of extracting 60

information from the input signal. Selecting the specific encod- 61

ing method depends on signal characteristics, such as the pres- 62

ence of relevant information in the time or frequency domain, 63

the presence of noise in the data, can the data be shifted or 64

scaled. It is also necessary to understand how the encoding 65

changes the signal characteristics, e.g., does it cut into the 66

frequency spectrum, and can it suppress noise. Furthermore, 67

the type of SNN to be utilized also has to be considered, 68

i.e., what type of input it can accept. After choosing the encod- 69

ing algorithm, the optimization of the encoding parameters 70

also has to be done to ensure that meaningful spike trains 71

are generated and consequentially, and this meaningfulness 72

needs to be validated. This paper provides a quantitative and 73

qualitative analysis into different temporal spike encoding 74

methods and aims at providing guidelines to the process of 75

selecting and optimizing the spike encoding method. The 76

analysis covers both time and frequency domains as well. 77

A. Overview of Temporal Spike Encoding Methods 78

Spike encoding can be based on firing rate [instantaneous 79

average firing rate (AFR)] [7], population rank coding (relative 80

firing time of a population of neurons) [8], or temporal coding 81

(exact timing of individual spikes) [9]. Firing rate encoding 82

resembles biological systems in that cortical electric activity 83
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typically has an oscillatory nature. In population rank coding,84

neurons each have corresponding receptive fields, and they fire85

in the order of to what extent an input value belongs to their86

respective receptive field. Temporal encoding methods utilize87

the exact timing of each spike which marks a change in the sig-88

nal value. It is thought that biological neurons apply spike tim-89

ing as information encoding [3]–[6], [10]. At the same time,90

temporal encoding is well suited for streaming data encoding91

and fast processing such as magneto/electroencephalography92

and electrocardiogram. In this paper, only temporal spike93

encoding methods are further considered.94

As a brief overview, existing temporal encoding methods95

belong to two groups that take two distinct approaches:96

temporal contrast [3]–[6], [11] and stimulus estimation [12].97

Temporal contrast algorithms track the temporal changes in98

the signal, and the exact timing of spikes represents these99

changes, similar to the artificial retina [3], [11]. In principle,100

the next consecutive signal value is compared to an interval101

and if the value is outside of the interval, a positive or102

negative spike is generated accordingly. Temporal contrast103

encoding was first developed as a hardware implementa-104

tion to allow for the fast visual information processing and105

was inspired by the human retina [3]. Temporal contrast106

methods implemented in the NeuCube SNN framework [13]107

are threshold-based representation (TBR), step-forward (SF)108

encoding, and moving-window (MW) encoding. These three109

methods are analyzed in this paper. Another such encod-110

ing method that resembles momentum-like algorithms has111

been presented recently in [14]; however, the corresponding112

decoding algorithm has not been demonstrated yet. Temporal113

contrast algorithms produce a bipolar spike sequence (positive114

and negative spikes, plus zero).115

Stimulus estimation encoding is inspired by the response116

function of the biological neuron and employs a linear filter117

to find a unipolar (only positive one and zero) spike train118

that represents the signal [15]. An analog signal can be con-119

structed from a spike train by convolution with a finite-impulse120

response (FIR) filter, an idea called spike interval information121

coding. The analog-to-spike encoding is, therefore, an inverse122

problem, finding the spike train that when reconstructed to123

analog values gives a close approximation of the original124

signal. This inverse process is a “deconvolution” by the same125

filter; a prominent early implementation of which is the Hough126

Spiker algorithm (HSA) [15]. To overcome some of the dis-127

advantages of HSA, a modified HSA (mHSA) algorithm had128

been implemented in the CAM-Brain Machine as presented129

in [12]. A further improved solution of the inverse problem130

was implemented as Ben’s Spiker algorithm (BSA) [12]. BSA131

calculates two error terms that would result from emitting or132

not emitting a spike at a time point and makes the decision133

to spike comparing these errors to a threshold. Of these134

algorithms, this paper considers only BSA, since it was already135

shown to perform better than HSA and mHSA [12] and BSA136

encoding had been implemented in SNNs and successfully137

applied to EEG data [16], [17]. Stimulus estimation encoding138

produces a unipolar spike sequence (positive spikes and zero).139

Temporal contrast and stimulus estimation encoding differ140

not only in their mechanisms but also in the polarity of141

the spike sequence produced (bipolar and unipolar, respec- 142

tively). Unipolar SNN architectures support only unipolar 143

spike sequences, i.e., the presence or the absence of a fir- 144

ing event at a time point which is transmitted through an 145

excitatory (positive) or inhibitory (negative) connection. Bipo- 146

lar SNN architectures can support bipolar spike sequences, 147

i.e., positive spikes, negative spikes, and no firing [13]. For 148

example, this can be implemented as changing the state 149

(membrane potential) of the input neuron(s) according to the 150

spike sign. Another approach is that the positive spikes are 151

fed to one input neuron while the negative spikes are fed to 152

another and these neurons are then connected to the rest of 153

the network through positive or negative connections. 154

B. Related Works on Temporal Spike Encoding Optimization 155

General studies on SNNs start with the assumption that the 156

encoded spike train is already available as the input to the 157

system. Little has been published on the specific effects of 158

encoding methods on the spike train information content and 159

the reconstructed signal, or in fact on the rationale behind the 160

selection of a particular encoding algorithm. In many cases of 161

application-related studies, the efforts to optimize the encoding 162

are tied to the performance of the whole SNN. For example, 163

the parameters for the chosen encoding method were included 164

in the grid search performed on all other SNN parameters 165

and were evaluated based on the total system performance, 166

e.g., classification accuracy [18]. In this way, the extracted 167

information content was determined by the machine learning 168

process itself without the influence of expert knowledge on 169

the data generation process. 170

Few are the studies that considered optimizing the encoding 171

step separately. In the seminal paper that introduced BSA [12], 172

the applied FIR filter was a “cleaned-up,” normalized, quan- 173

tized version of a filter that was found through genetic search 174

algorithms in [19]. The threshold was then optimized for 175

the signal-to-noise ratio (SNR) between the original signal 176

and the noise (i.e., the encoding error between original and 177

reconstructed signals). In [20], BSA was applied to normalized 178

EEG signals; filter design parameters were sought by trial 179

and error, while the applied threshold was found through 180

minimizing the normalized absolute error between original 181

and reconstructed signals. As validation, the signals were 182

compared visually. 183

Another framework for spiking data encoding related to 184

stimulus estimation was formulated in [21] which aims at 185

maximizing information content while minimizing spike den- 186

sity, i.e., AFR to achieve better data compression. The idea 187

is that if existing knowledge is available about how the data 188

was generated in the examined system, this should be taken 189

into account (via “knowledge injection”) when the optimal 190

encoding method is sought. For stimulus response encoding, 191

the applied convolution function is created based on a model 192

of the signal generation [21]. For example, in fMRI data 193

encoding, a hemodynamic response function can be used 194

to biologically model how neural activity generates fMRI 195

signals [1]. This response function can be modeled as a 196

gamma function that can be employed for stimulus estimation 197
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Fig. 1. Proposed encoding workflow.

encoding and the filter itself is learned from the data through198

genetic algorithms (GAGamma). Parameters are optimized199

simultaneously while imposing practical limits on them and on200

spike density as well; the optimization was evaluated based on201

the root-mean-square error (RMSE) between the signals [21].202

As the literature above show, the SNN community has not203

settled on any encoding method selection and optimization204

methodology with regards to temporal data.205

The rest of this paper is organized as follows. Section II206

introduces the proposed encoding methodology, and207

Section III introduces the encoding methods (note the208

algorithms in the Appendix) that are employed in this209

investigation. Section IV details the investigative methods,210

and Section V presents the results and offers discussions.211

Finally, Section VI offers concluding remarks.212

II. PROPOSED ENCODING METHODOLOGY213

AND AIM OF STUDY214

This paper sets out to provide an analytical background for215

encoding method selection and optimization in and of itself,216

utilizing a signal reconstruction approach as generated by217

the corresponding decoding algorithm. Comparing the original218

and reconstructed signals can employ different error metrics,219

based on which the encoding parameter(s) can be tuned.220

A comparison in time or frequency domain can verify to221

what extent the encoding method preserved the information222

in the original signal. This is important for classification tasks223

where we may have prior knowledge about the nature of useful224

information in the signal, e.g., task-specific response signals225

or a frequency band of interest. For prediction tasks, decoding226

the spike train to real-value signals is crucial in interpreting227

the output of the SNN.228

Based on these remarks, a three-step encoding workflow is229

proposed (Fig. 1). First, the encoding method is selected based230

on signal characteristics. Second, the encoding parameters231

are optimized based on error metrics between reconstructed232

and original signals (verification in the time domain). Third,233

the encoding is validated by comparing the spike train to the234

original signal in the time/frequency domain.235

The aim of this paper is to provide guidelines for these236

three steps, i.e., selection, optimization, and validation of237

encoding methods. This warrants an investigation utilizing238

well-defined and characteristic test signals as inputs to the239

encoding algorithms in question. Specific properties and the240

possible optimization of the encoding methods are explored on241

test signals, and the implications are discussed. An overview242

is provided to aid in the selection of method according to the243

signal characteristics.244

III. ENCODING AND DECODING 245

ALGORITHMS INVESTIGATED 246

IN THIS RESEARCH 247

The following encoding and corresponding decoding algo- 248

rithms are studied here for the selection and optimization of a 249

suitable spike encoding method and its optimized parameters 250

for a given task: TBR, SF, MW, and BSA. The algorithms are 251

described in the following, and pseudocodes are also presented 252

in the Appendix. 253

A. Threshold-Based Representation 254

The simplest implementation of temporal contrast encoding, 255

TBR [3], [22], is based on tracking temporal changes in the 256

signal as demonstrated in the artificial retina [3], [11]. The 257

absolute value change between consecutive signal values is 258

compared to a threshold; if large enough, a positive/negative 259

spike is emitted (based on the sign of change). To calculate 260

this threshold, the whole sample length is taken into account. 261

The first derivative is calculated; then, the standard deviation 262

of this derivative is multiplied by a factor to obtain the 263

encoding threshold (see Algorithm 1 in the Appendix). The 264

only parameter of this encoding is this factor which is inde- 265

pendent of the signal amplitude but is determined by the signal 266

characteristics. Decoding of the signal is straightforward: the 267

reconstructed signal is given by a summation of positive 268

and negative spikes multiplied by the encoding threshold 269

(see Algorithm 5 in the Appendix). The initial reconstruction 270

value should match the initial signal value. 271

B. Step-Forward Encoding 272

The SF encoding [13] utilizes an interval around a mov- 273

ing baseline with a set threshold (see Algorithm 2 in the 274

Appendix). The initial baseline equals the initial signal value. 275

If the next signal value is above/below baseline ± threshold 276

value, a positive/negative spike is registered and the baseline is 277

moved to the upper/lower limit of the threshold interval. The 278

set threshold is signal amplitude dependent and is the only 279

parameter of this encoding. The decoding process is essentially 280

the reconstruction of this moving baseline, similar to TBR (see 281

Algorithm 5 in the Appendix). 282

C. Moving Window 283

The MW encoding [13] uses a moving baseline with a set 284

threshold value, where the baseline always equals the mean of 285

the preceding signal values in a time window (see Algorithm 3 286

in the Appendix). Thus, the moving baseline is essentially the 287

application of a moving average filter. If the signal value is 288

above/below baseline ± threshold value, a positive/negative 289

spike is registered. MW thus has two parameters: the threshold 290

and the window size. Decoding is essentially the same as 291

for TBR or SF (see Algorithm 5 in the Appendix). At this 292

point, an additional moving average filter could be applied 293

to make the reconstructed signal smoother, in which case the 294

encoding–decoding corresponds to a two-pass (twice applied) 295

moving average filter. 296
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D. Ben’s Spiker Algorithm297

An analog signal can be constructed from a spike train298

by convolution with an FIR filter. BSA is an algorithm for299

producing the spike train from which the original signal can300

be reconstructed well [12] (see Algorithm 4 in the Appendix).301

BSA works only for positive-valued signals. First, an FIR302

filter is created. Then, two error terms are calculated at303

each time point: one that results from subtracting the filter304

coefficients from the subsequent signal values, and one that305

results from not changing the signal (no subtraction). If the306

subtraction error is smaller than the unchanged signal error307

term minus a threshold, a positive spike is generated and the308

filter coefficients are subtracted from the signal. Decoding is309

straightforward since it was kept in mind during the encoding:310

a convolution of the spike train with the filter coefficients gives311

the reconstructed signal (see Algorithm 6 in the Appendix).312

BSA encoding results in a unipolar (only positive) spike train.313

The original BSA encoding requires input with [0, 1]314

limits. However, BSA can be applied to any positive-valued315

signal if the filter coefficients are scaled up such that they316

appropriately match the signal boundaries. Therefore, a simple317

signal shift above zero is sufficient. The recommended scaling318

of coefficients is discussed in Section V. (part E/2).319

IV. METHODS OF INVESTIGATION320

A. Test Signals Used for Quantitative Analysis321

A number of signal types were considered as test signals,322

such as purely step-wise signals, smooth (sinusoidal) signals,323

signals with trends, and event-like signals. These signal types324

can model a wide variety of important behaviors such as325

sudden or smooth changes, slopes and plateaus, trend effects,326

different amplitude events, and important frequency spectra.327

The rationale behind using sinusoidal signals is that from a328

modeling standpoint, measured EEG signals are comprised329

a mixture of sinusoidal waves plus multisource Gaussian330

noise [23]. The signal parameters were randomly generated,331

and to analyze noise effects, random white noise was added.332

The following test signals were constructed with the length333

of 1000 samples to test the properties of encoding methods:334

1) step-wise signal with increasing step size without noise335

[Fig. 2(a)];336

2) smooth signal with sine components continuously rang-337

ing from 2 to 20 Hz with random power, combined with338

random phase lags plus white noise [Fig. 2(b)];339

3) trended signal, the same smooth signal as before multi-340

plied by an exponential saturation trend plus white noise341

[Fig. 2(c)];342

4) event-like signal, resembling EEG signals during343

perturbation-evoked potential events [24] plus white344

noise [Fig. 2(d)].345

B. Properties to Investigate346

In order for the analysis to allow a comparison between347

the encoding methods, the following behaviors/properties were348

investigated for each encoding method (where applicable):349

Fig. 2. Test signals used for analysis. (a) Step-wise signal. (b) Smooth signal.
(c) Trended smooth signal. (d) Event-like signal.

1) ability to follow various test signals, and offset 350

and scaling error in time domain (qualitatively and 351

quantitatively); 352

2) false encoding at start and/or end of signal; 353

3) frequency characteristics such as noise suppression, arti- 354

facts, white noise, and spink noise introduced during 355

signal reconstruction; 356

4) parameter dependencies; 357

5) optimization curves, robustness, and methods. 358

It is important to note that both time and frequency domain 359

effects were included in the analysis because in many applica- 360

tions although the signal is in the time domain, the important 361

information is in the frequency spectrum, even if it is not the 362

spectrum that is to be encoded per se. 363

C. Error and Indicator Metrics 364

The optimization criterion considered here is the accurate 365

recovery of the signal; minimizing the difference between 366

original and reconstructed signals serves as the objective 367

function. There are multiple candidate error metrics since 368

there is no consensus on which one to use. In this paper, 369

the following optimization criteria were used: 370

1) SNR; 371

2) RMSE; 372

3) coefficient of regression (R-squared). 373

SNR is defined here as the signal-to-noise ratio where the 374

difference between the original (s) and reconstructed (r) signal 375

is considered as “noise” [12]. SNR is to be maximized and is 376

calculated as 377

SNR = 20 · log
Power(s)

Power(s-r)
[dB]. (1) 378

A negative SNR means that the error introduced through 379

the encoding is more substantial than the information content 380

itself; SNR of 0 dB means equality between the two. 381
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RMSE is to be minimized and is defined classically as382

RMSE =

√

∑N
t=1(rt − st )2

N
(2)383

where s is the original and r is the reconstructed signal and384

gives a summation of the modeling errors.385

The R-squared, although classically used for measuring386

regression fit, in a broader sense is a measure of modeling387

fit in general and it is employed here in this capacity. The388

R-squared gives a relation between the variance unexplained389

by the modeling (SSres) and the variance of the original input390

(SStot) data391

R2 = 1
SSres

SStot
(3)392

SSres =
∑N

t=1
(rt − st )

2 (4)393

SStot =
∑N

t=1
(st − s̄t )

2. (5)394

R-squared is to be maximized. Note that in this case,395

R-squared can assume negative values as well; a negative396

R-squared means that the fit is worse than substituting the397

mean of the signal (in which case R-squared equals 0).398

As an indicator metric, AFR shows how saturated the spike399

train is and is calculated as the quotient of all spikes (sp) in400

a given spike train and the number of total time points401

AFR =

∑N
t |spt |

N
. (6)402

V. QUANTITATIVE, QUALITATIVE, AND COMPARATIVE403

ANALYSIS OF DIFFERENT ENCODING METHODS AND404

OPTIMIZATION OF THEIR PARAMETERS405

A. Numerical Performance of Encoding Methods406

To present numerical performance for future reference, best407

error metric values that could be achieved by the optimization408

of each encoding method are presented in Table I for the test409

signals. In the following sections, results from the individualAQ:4 410

encoding methods are analyzed.411

B. Threshold-Based Representation Encoding412

TBR registers large enough signal changes only; thus, it is413

expected that small, gradual changes are not represented.414

In addition, tracking only signal change causes that sudden,415

step-wise changes will be poorly represented (Table I) since416

the step size of the reconstruction is uniform as it equals417

the threshold. Dynamics of smoothly changing signals are418

followed (Table I); however, the uniform steps introduce a419

scaling error which is prominent in the case of trended420

signals [Fig. 3(a)]. For small and large amplitude events,421

the selected encoding threshold determines the captured event422

type [Fig. 3(b)]; there is clearly a tradeoff between represent-423

ing small and large events. Since the whole sample length424

is considered for threshold value calculation, this encoding425

can be disadvantageous for long samples where there may426

be amplitude differences between events of different parts of427

the sample. As an advantage, there are no falsely registered428

TABLE I

NUMERICAL PERFORMANCE EVALUATION OF THE STUDIED ENCODING

METHODS WITH OPTIMIZED PARAMETERS FOR THE TEST SIGNALS

values at the start or end of neither the spike train nor the 429

reconstructed signal. 430

TBR reduces white noise to a certain extent by applying 431

the threshold to small perturbations in the signal. At the 432

same time, it is sensitive to the presence of strong white 433

noise in the signal, since the spurious signal changes due to 434

white noise cover the more gradual changes. As observed, 435

the presence of white noise causes TBR to introduce strong 436

1/ f noise (“pink noise”) during reconstruction; strong low- 437

frequency artifact components appear. For longer signals, this 438

may cause the reconstructed signal to drift away. Parameter 439

optimization is not straightforward for TBR because typically, 440

multiple minima and wider plateaus can be observed due to 441

different amplitude events, even in the case of a continuous, 442

not event-specific signal (Fig. 4). Selecting a certain threshold 443

results in an encoding that better represents events having 444

amplitudes that correspond with the threshold. As observed, 445

all three metrics give similar optimization curves (remember 446

that SNR and R-squared are to be maximized) (Fig. 4). 447

In summary, TBR encoding had been developed to quickly 448

process streaming, online data; the computation is simple 449

and fast. In contrast, the threshold parameter determines the 450

amplitude of the events that are represented correctly by the 451

spike sequence. Therefore, it is encouraged that for each 452

application, the possible events that can appear in the signal 453

are considered and the threshold is chosen such that the 454

relevant events are captured. This knowledge should guide the 455

parameter optimization since multiple peaks can usually be 456

observed, e.g., selecting a higher threshold if higher peaks are 457

of interest in the given application. 458

C. Step-Forward Encoding 459

For SF encoding, even though the reconstructed signal is 460

step-wise, it follows most types of continuous signals excep- 461

tionally well (Table I) both in time and frequency domains 462

since multiple steps are allowed to account for a single change 463

in the original signal. Step-wise, smooth [Fig. 5(a)], and 464

trended signals [Fig. 5(b)] are all followed well (Table I). 465
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Fig. 3. (a) Scaling error of a trended signal with TBR encoding.
(b) TBR-generated spikes show that TBR cannot represent different amplitude
events well simultaneously.

Fig. 4. Threshold optimization curves for TBR (smooth signal).

The threshold can be chosen such that small and large466

amplitude events are both well represented. Similar to TBR,467

SF encoding represents only signal changes and thus offset468

Fig. 5. (a) Smooth signal is followed well by using SF encoding. (b) Spike
sequence generated by SF represents a trended signal well.

error is expected to be present in the reconstructed signal 469

unless the initial values are matched. Noise in the signal is 470

minimally reduced by the threshold. 471

SF encoding reconstructs the frequency spectrum as is; 472

in addition, it introduces no artifact frequency components 473

and only minimal noise that is related to quantization. For 474

noisy input signals, the noise is minimally reduced but mostly 475

encoded; however, this does not lead to 1/ f noise as was the 476

case with TBR, which is favorable. 477

Due to the moving baseline, the reconstructed signal does 478

not drift away even for longer signals. Overshoot does not 479

occur with SF since the moving baseline is adjusted only 480

by the threshold value; thus, the change is equal or less 481

than the signal change. The optimization curves match for 482

all three metrics and show a wide, high fit plateau (Fig. 6). 483

The wide plateau means that the threshold can be increased, 484

and thus spike density can be lowered without a significant 485

loss of encoding accuracy, which can be favorable in certain 486
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Fig. 6. Threshold optimization curves for SF with a high good fit plateau
(smooth signal with noise).

applications or cases. Furthermore, a lower AFR further487

enhances data compression and helps to prevent the saturation488

of SNN. Lowering the AFR also improves noise suppression489

but magnifies the quantization noise, especially in the lower490

frequency ranges.491

In summary, SF encoding performed well for all types of492

test signals (Table I), both in time and frequency domains with493

straightforward and robust optimization. SF encoding can thus494

be recommended for any applications, especially when there495

is little information on the nature of the original signal.496

D. Moving-Window Encoding497

1) Theoretical Considerations of MW Encoding: The MW498

encoding was suggested to be robust against noise [13]. The499

signal values are compared to a moving average, which acts500

as a moving average filter. Moving average is an optimal501

smoothing filter in the time domain against white noise,502

while a poor low-pass filter in the frequency domain [25].503

The frequency response function of moving average filters of504

windows size M is the sinc function505

H ( f ) =
sin (π f M)

M sin (π f )
. (7)506

The window size influences the cutoff frequency, the slope507

of the frequency response, and the noise reduction. The cutoff508

frequency at −3 dB is approximately given by509

fco = 0.8859 ·
√

(M2 − 1)

[

π · rad

sample

]

. (8)510

The noise suppression is proportional (equal in amplitude)511

to the square root of the window size. This means a tradeoff512

between noise reduction and the spectrum width retained dur-513

ing the encoding. Another implication is that the MW encod-514

ing in principle could be used to filter out a strong, artifact515

frequency component, e.g., power line noise in EEG signals.516

However, as it was pointed out, the band-stop characteristics517

of this filter are disadvantageous as the attenuation is rather518

shallow. Thus, it is recommended to apply a separate digital519

Fig. 7. (a) MW encoding follows a trended, smooth signal well. (b) Noise
and sharp peaks are reduced using MW encoding.

band-stop filter to remove line noise before encoding the signal 520

altogether. An important point is that the signal beginning is 521

not encoded well until the window size is reached. This can 522

be managed with a slight modification of the algorithm: for 523

the first M points, the baseline can be set to the mean of these 524

M points. 525

2) Quantitative Results of MW Encoding: Similar to SF, 526

MW follows sharp steps well (Table I). Trended [Fig. 7(a)], 527

smooth [Fig. 7(b)], and event-like signals are represented well 528

(Table I), but overshoot-type errors often appear. Interestingly, 529

error metrics indicate a poor match for the smooth signal 530

despite that visually, the signal dynamics appear to be well 531

captured. 532

As stated before, MW encoding reduces white noise. How- 533

ever, the 1/ f (pink) noise also appears during signal recon- 534

struction, the amount of which appears to be proportional 535

to the suppressed components in the spectrum above cutoff 536

frequency. For longer signals, this may cause the reconstructed 537

signal to drift away. 538
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Fig. 8. Grid search for MW parameters and optimization curves (noisy
trended smooth signal).

MW encoding has two parameters: window size and thresh-539

old. The window size affects the encoded spectrum width540

and noise suppression and thus should be chosen first. Then,541

the threshold can be optimized according to any of the error542

metrics (Fig. 8). SNR is favorable here since negative values543

clearly indicate prohibited areas. However, at a low threshold544

(close to continuous firing), the peak SNR can lead to a false545

threshold selection.546

In sum, MW encoding was conceived to provide the robust-547

ness against noise by what is essentially a moving average fil-548

ter. However, this noise suppression can only increase with the549

window size which in turn lowers the cutoff frequency. This550

may not be permissible in some applications, e.g., for EEG551

data that is not sufficiently oversampled. In such cases, it is552

recommended to use a separate digital filter as a preprocessing553

step instead and applying a spike encoding other than MW.554

E. Ben’s Spiker Algorithm Encoding555

1) Theoretical Considerations of BSA Encoding: In the556

original BSA implementation, the error threshold is an exact557

value and is subtracted [12]. However, this can effectively be558

replaced by a multiplication with a factor smaller than one.559

This method was implemented for this investigation. Such a560

threshold value is scale invariant; thus, the encoding becomes561

Fig. 9. Exemplar filter coefficients and frequency response.

more robust. For BSA, scaling of the filter coefficients pro- 562

vides a reconstruction boundary: the maximum value that can 563

be reached (by constant firing) is the sum of coefficients, 564

while the minimum value equals 0 (if all coefficients are 565

nonnegative) or a small negative value. 566

Filter design is based on at least two parameters, e.g., a low- 567

pass filter with cutoff frequency ( fco) and filter size (Fig. 9). 568

Design of the filter is crucial since the signal components that 569

can be represented are determined by the applied filter [12]. 570

If a low-pass filter was used with cutoff frequency fco = 0.05, 571

the SNR of the reconstructed signal will sharply fall to 0 dB 572

above this frequency. This means that the cutoff frequency is 573

to be chosen based on the task-relevant frequency spectrum. 574

The number of coefficients gives the width of the filter and 575

determines the sharpness of the frequency response function. 576

With regards to scaling, it should be sufficient in principle 577

that the coefficients are scaled such that the reconstruction 578

boundary equals the signal boundary. However, this limits the 579

dynamic characteristics which the reconstructed signal can 580

take. During the implementation steps of this investigation, 581

several values were experimented with. It was found that if the 582

sum of coefficients (the upper boundary of the reconstructed 583

signal) is scaled up to twice the original signal upper boundary, 584

the spike train is less saturated and the encoding is more 585

flexible. 586

2) Quantitative Results for BSA Encoding: For BSA, 587

the deconvolution algorithm works only for positive-valued 588

signals [12]; thus, the signals need to be shifted to the 589

positive range. BSA encoding favors a continuously changing 590

signal; these are represented (e.g., smooth signal, Fig. 10) and 591

reconstructed well (Table I), even with trends in the signal. 592

At the same time, BSA has a weakness for plateaus since 593

firing with a constant rate is required to represent a nonzero 594

constant value; without spikes, the reconstructed signal does 595

not hold but quickly returns to 0. This weakness for constant 596

values can lead to critical, conceptual failures for sharp step 597
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Fig. 10. Reconstruction of a smooth signal with well-scaled BSA filter
coefficients with the corresponding spike sequence.

signals and signals with plateaus in general. Higher plateaus598

(in the upper half of the signal range) can be particularly599

problematic, especially if the filter coefficients are not scaled600

up appropriately [Fig. 11(a)]. Here, this effect is demonstrated601

through scaling the coefficients such that their sum equals the602

maximum amplitude of the signal (“poorly scaled” case) and603

to equal twice the maximum (“well-scaled” case). In addition,604

BSA in general tends to show offset and scaling error in the605

reconstructed signal, depending on the optimization.606

Another implication is that there are false spikes and false607

reconstructed values at the start of the signal since the value608

has to catch up from 0. This means that the data should be609

shifted to have a minimum of 0 to improve the BSA encoding.610

The end of the signal is also falsely encoded due to the611

convolution; the number of erroneous points corresponds to612

the filter size. Depending on the sample length, substantial613

loss of information may occur here.614

In the frequency domain, the spectrum (Fig. 12) is changed615

similarly as if the FIR filter were applied to the original signal:616

frequencies above the cutoff point are suppressed (see Fig. 9).617

In effect, the encoding performs filtering at the same time.618

However, some artifact components with low frequencies can619

appear, especially if the filter size is large.620

The first step of parameter selection and optimization for621

BSA is the filter design which is aimed at retaining the622

task-relevant frequency spectrum. It is suggested that cutoff623

frequency and filter size are selected jointly since these624

determine the frequency response together. A grid search625

or other optimization can be performed to determine the626

highest encoding fit for possible cutoff size (Fig. 12). SNR627

is recommended as the error metric of the search since628

negative values indicate forbidden areas. Other optimization,629

e.g., genetic or differential evolving algorithms, could also be630

applied. As an initial guess, cutoff could be selected at twice631

the highest important frequency with a filter size of 20–24.632

It can be observed that the solution across the search space633

is not smooth (Fig. 12) as there are multiple local peaks. The634

resulting filter coefficients and especially the cutoff frequency635

Fig. 11. (a) Error at high plateaus with poorly scaled coefficients of BSA
encoding. (b) High plateau error disappears with well-scaled coefficients.

must be cross-checked against the signal’s relevant frequency 636

spectrum. With increased size, the filtering is sharper; a 637

limitation on the filter size is the false encoding and decoding 638

at the start and end of the signal due to the convolution. For the 639

optimal error threshold parameter corresponding to a set filter, 640

all error metrics give the same results (Fig. 13). For many 641

signals, a (multiplicative) threshold in the range of 0.94–0.98 642

provides a good solution. 643

In sum, BSA encoding is the only one of the four encod- 644

ings analyzed here that produces a unipolar (only positive) 645

spike train and thus may be the only option for some SNN 646

architectures. BSA produces major errors for suddenly chang- 647

ing, step-like signals and also has problems with plateaus, 648

especially in the higher value ranges. The filter design and 649

optimization are also nontrivial. Using a multiplicative error 650

threshold provides a robust solution, but the effects of this 651

algorithmic modification need further analysis. The false 652

encoding start and end are also of concern; padding the signal 653

with constant values might address this issue to a certain 654

extent. 655
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Fig. 12. Frequency spectrum effects of BSA encoding: single-sided amplitude
spectrum is filtered in effect and pink noise appears.

Fig. 13. Grid search for BSA filter parameters, threshold optimization curves
for a selected filter (smooth test signal).

F. Comparison of Encoding Methods656

A comparison of the key characteristics of analyzed encod-657

ing methods is given in Table II to aid with the first step of658

the encoding process, i.e., selecting the method. The first and659

foremost selection criterion is whether the SNN architecture660

TABLE II

SUMMARY AND COMPARISON OF ENCODING METHOD CHARACTERISTICS

accepts only positive or bipolar spike trains as well. Of the 661

analyzed methods, BSA was the only one producing unipolar 662

spikes (Table II). BSA is not suitable to encode step-like 663

signals; continuously changing, constant mean signals are 664

represented most efficiently while a trend in the signal causes 665

some scaling error. Signals with high plateaus are most diffi- 666

cult to encode with BSA. Noise suppression above the cutoff 667

frequency is excellent. However, it must be stressed that the fil- 668

ter design has to be congruent with the task-relevant frequency 669

spectrum and there is a single peak optimum threshold value 670

for a set filter. 671

Comparing the three temporal contrast methods, SF proved 672

to be very effective for all test signals (Table I) with the further 673

advantage of having a single parameter with a wide, high fit 674

optimization plateau (Table II). In addition, SF does not suffer 675

from systematic errors other than offset in the reconstruction 676

and even suppresses white noise to a small degree. Thus, SF is 677

recommended as a universal encoding method. In the case 678

of a very noisy raw signal, choosing MW encoding could 679

be justified. However, this moving average filtering cuts into 680

the frequency spectrum and the reconstructed signal suffers 681

from pink noise, artifact components, and often scaling error 682

as well (Table II). Thus, a preprocessing step with a digital 683

filter and SF encoding is recommended instead. The numerous 684

disadvantages (Table II) of TBR mean that it should be used 685

only when necessary, e.g., for the simulation, development or 686

deployment of hardware implementations. 687

G. Observations on the Error Metrics 688

The optimization curves for the test signals showed 689

that all three metrics give the same optimization curve 690

(Figs. 4, 6, 8, and 13). To account for this, consider that 691

R-squared and RMSE are both calculated based on the fitting 692

error variance while SNR calculates the power ratio of original 693

signal and fitting error. Furthermore, it was assumed that the 694

initial signal value is available for the decoding step; thus, 695

it was possible to match the initial original and reconstructed 696

signal values. If this was not the case, that would mean strong 697

implications for the optimization step. The error metrics would 698
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yield different curves and thus different optimal parameter699

values. The R-squared optimization works to represent the700

signal dynamics as well as possible (even with a constant offset701

error), while SNR aims to diminish the difference altogether702

such that the signal values will match. This often leads to false703

encoding–decoding at the start of the signal. RMSE would still704

yield the same results as SNR.705

The question of which error metric to choose for optimiza-706

tion arises. SNR can be interpreted based on its sign; it has to707

be positive for meaningful signal reconstruction. Therefore,708

SNR is recommended because of favorable interpretability.709

For computational load, RMSE is favorable, but note that710

the absolute value of RMSE obtained will differ for different711

inputs as there are no broadly accepted ways to normalize712

RMSE, making comparisons across signals difficult.713

The low-frequency erroneous components in the recon-714

structed signal may cause a significant drift away from the715

original signal. Although the final output of the encoding716

optimization is the resulting spike train, this drift is of interest717

because such a great difference between the two signals718

heavily influences the error metrics. It is possible that applying719

boundaries to the reconstruction could address this issue to720

some extent.721

H. Observations on the Validation Step722

As outlined in the three-step encoding workflow, a final723

validation step is required to check that task-relevant, mean-724

ingful information is retained in the spike train. Currently, a725

visual check is the only available method for this step. The726

original signal can be visually compared with the reconstructed727

signal or the spike train itself. Frequency spectra can also728

be compared, especially for a sinusoid signal in which the729

frequency components are of particular interest (Fig. 12).730

Another option for validation would be testing the accuracy of731

the whole SNN application. However, this would be influenced732

by the many parameters of the SNN as well.733

I. Observations on Biological Plausibility734

It could be of interest to consider the biological rationale of735

different encoding methods. As mentioned previously, BSA as736

a neuron stimulus estimation method has a strong biological737

plausibility considering the functioning of individual neurons.738

As for the temporal contrast encodings, these mostly rely on739

the biological strategy that only (large enough) changes of the740

important property are registered to improve robustness and741

energy efficiency. TBR registers only large changes between742

consecutive values, much like retinal cells [3]. SF does the743

same, but the basis of comparison is the previously registered744

large change that caused a spike and not necessarily the745

previous signal value; in this way functioning as a short-term746

memory or adaptation. MW takes a moving average of pre-747

vious signal values as a baseline to improve robustness, for748

which the biological rationale is hard to determine.749

J. Limitations of This Investigation750

To limit the scope of investigation, the analyzed signals751

were all 1000 samples long. A future study may address752

Algorithm 1 TBR Encoding

1: input: s signal, f factor

2: startpoint = s(1)

3: diff = zeros(length(s))

4: for t = 1:(length(s)-1))

5: diff(t) = s (t+1) – s(t)

6: end for

7: diff(end) = diff(end-1)

8: threshold = mean(diff) + f∗std(diff)

9: out = zeros(length (s))

10: for t = 1:length(s)

11: if diff(t) > threshold

12: out(t) = 1

13: elseif diff(t) < -threshold

14: out(t) = −1

15: end if

16: end for

17: output: out

Algorithm 2 SF Encoding

1: input: s signal, threshold

2: startpoint = s(1)

3: out = zeros(length (s))

4: base = s(1)

5: for t = 2:length(s)

6: if s(t) > base + threshold

7: out(t) = 1

8: base = base + threshold

9: elseif s(t) < base - threshold

10: out(t) = −1

11: base = base - threshold

12: end if

13: end for

14: output: out, startpoint

effects of the sample size, e.g., short (50–100) or long 753

(5000–10 000) samples. The momentum-like TBR algorithm 754

introduced in [14] was not considered because the corre- 755

sponding decoding method has not been demonstrated. The 756

GAGamma methodology [21] is based on the knowledge about 757

the signal generation, and this study is aimed at evaluation 758

different encoding methods for a wide variety of signals; 759

GAGamma was not included in our analysis. Another lim- 760

itation was that only individual samples were included in 761

the encoding parameter optimization. Future work is to be 762

carried out with regards to optimizing multiple sample data 763

and furthermore, data with multiple features. 764

VI. CONCLUSION 765

Any machine learning process can be effective and valid 766

only if the input data contain the relevant information in a 767

meaningful representation. For SNNs, this input format is 768

a unipolar or bipolar spike event sequence (spike trains). 769

Encoding real-valued data (signals) to spike trains, therefore, 770

has to retain the task-relevant information with as little artifacts 771
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Algorithm 3 MW Encoding

1: input: s signal, threshold, window, startpoint

2: startpoint = s(1)

3: out = zeros(length (s))

4: base = mean(s(1:window + 1))

5: for t = 1:(window + 1)

6: if s(t) > base + threshold

7: out(t) = 1

8: elseif s(t) < base - threshold

9: out(t) = −1

10: end if

11: end for

12: for t = (window+2):length(s)

13: base = mean(s(t-window−1:t-1)

14: if s(t) > base + threshold

15: out(t) = 1

16: elseif s(t) < base - threshold

17: out(t) = −1

18: end if

19: end for

20: output: out, startpoint

Algorithm 4 BSA Encoding

1: input: s signal, fir, threshold

2: L = length(s)

3: F = length(fir)

4: out = zeros(L)

5: shift = min(s)

6: s = s – shift

7: for t = 1:(L-F)

8: err1 = 0

9: err2 = 0

10: for k = 1:F

11: err1 = err1 + abs(s(t+k)-fir(k))

12: err2 = err2 + abs(s(t + k − 1))

13: end for

14: if err1 <= (err2 ∗ threshold)

15: out(t) = 1

16: for k = 1:F

17: s(t+k+1) = s(t+k+1) – fir(k)

18: end for

19: end if

20: end for

21: output: out, shift

as possible. A three-step workflow methodology is proposed772

here: selecting the encoding method appropriate to the original773

signal, optimizing its parameters, and validating the encoded774

signal. This paper aimed at providing analysis and guidelines775

for these steps. The investigation was limited to temporal776

signals and algorithms: temporal contrast (TBR, SF, and MW)777

and stimulus encoding (BSA) method. If the SNN architecture778

allows only unipolar spikes, BSA is the only appropriate779

method of these. If bipolar spike trains are allowed, temporal780

Algorithm 5 TBR, SF, MW Decoding

1: input: spikes, threshold, startpoint

2: recon = zeros(length (spikes))

3: recon(1) = startpoint

4: for t = 2:length(spikes)

5: if spikes(t) == 1

6: recon(t) = recon(t-1) + threshold

7: elseif spikes(t) == −1

8: recon(t) = recon(t-1) - threshold

9: else

10: recon(t) = recon(t-1)

11: end if

12: end for

13: output: recon

Algorithm 6 BSA Decoding

1: input: spikes, fir, shift

2: out = conv(spikes, fir) + shift

3: output: out

contrast methods can also be used. In most cases for bipolar 781

systems, SF should be the encoding method of choice due 782

to its versatility and robustness. TBR has numerous disad- 783

vantages and, therefore, is only recommended for hardware 784

simulation, development, or implementation since it suits 785

online, fast applications. MW encoding suits very noisy signals 786

but significantly cuts into the frequency domain; if this is 787

not permissible, a digital filtering preprocessing step and SF 788

encoding are recommended. Parameter optimization is based 789

on calculated error metrics between the original and recon- 790

structed real-value signals. Here, SNR is the recommended 791

metric since negative values indicate prohibited areas and 792

SNR values are invariant of signal amplitude which allows 793

for comparisons. An additional validation step is done through 794

the visual exploration of the original signal, encoded spike 795

train, and reconstructed (decoded) signal in the time and/or 796

frequency domain. 797

Future work is planned in the following directions: 798

1) development of error metrics in the frequency domain; 799

2) multiple variable encoding optimization in parallel, 800

e.g., optimizing the encoding for each of the EEG 801

channels; 802

3) automated validation of the encoding process; 803

4) adaptive encoding method selection and parameter opti- 804

mization for streaming data with concept drifts. 805

Custom MATLAB software with graphical user interface for 806

the selection and optimization of encoding methods is avail- 807

able on www.kedri.aut.ac.nz/neucube (named “spike encoding 808

tools”). 809

APPENDIX 810

Encoding algorithms 1–4 and corresponding decoding algo- 811

rithms 5 and 6 for all methods are as follows. 812
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