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Abstract

Since 2015, with the restart of the LHC for its second run of data taking, the LHCb

experiment has been empowered with a dedicated computing model to select and

analyse calibration samples to measure the performance of the particle identification

(PID) detectors and algorithms. The novel technique was developed within the

framework of the innovative trigger model of the LHCb experiment, which relies on

online event reconstruction for most of the datasets, reserving offline reconstruction to

special physics cases. The strategy to select and process the calibration samples, which

includes a dedicated data-processing scheme combining online and offline

reconstruction, is discussed. The use of the calibration samples to measure the detector

PID performance, and the efficiency of PID requirements across a large range of decay

channels, is described. Applications of the calibration samples in data-quality

monitoring and validation procedures are also detailed.

Keywords: Experimental methods and data analysis methods, Data acquisition, Data

analysis methods

Introduction

LHCb is a dedicated heavy flavour physics experiment at the LHC. Its main goal is to

search for indirect evidence of new physics in CP-violating processes and rare decays

of beauty and charm hadrons. Among other performance metrics, like excellent vertex

resolution and good momentum and invariant-mass resolution, charged particle identi-

fication (PID) distinguishing electrons, muons, pions, kaons and protons traversing the

detector is essential in the LHCb physics programme. The required performances range

from the per mille misidentification probability of hadrons as muons in the study of the

rare B(d,s) → μ+μ− decays [1–7], to the sub percent precision, over a wide kinematic

range accurate, on the detector induced asymmetries for the ambitious programme of CP

asymmetry measurements [8–11].
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PID information is extensively used both in the trigger selection and in offline data

analysis. This required the development of a dedicated computing model and a strategy to

select suitable calibration samples, in order to measure the PID performance and assess

systematic effects. A careful design of the computing model is strategical since, thanks to

the variety and abundance of the calibration samples available at the LHC, the statistical

uncertainty on the measured selection efficiencies is limited by the amount of computing

resources allocated to the task rather than from irreducible experimental factors.

In “Detector” section, an overview of the LHCb detector is given, together with a

summary of the PID calibration samples required in order to accomplish the physics

goals of LHCb with Run 2 data (2015−2018). The article then focuses on the strategy

to select and process PID calibration samples, including a description of the multivari-

ate classifiers used to combine the response of calorimeters, RICH and muon system

(“Global particle identification” section); the procedure to measure the PID performance

using dedicated calibration samples, together with the techniques to determine the selec-

tion efficiency on hundreds of different decay channels, relying on a small number

of calibration samples (“Measuring PID performance” section); the dedicated data-

processing scheme combining online and offline reconstruction (“Computing model for

the calibration samples” section); and the applications of the calibration samples to data-

quality monitoring and validation (“Data quality, monitoring and validation” section). A

brief summary and outlook are given in “Conclusions” section.While this article discusses

the calibration samples specifically for charged particle identification, the general com-

puting model and selection strategy is also being applied to other calibration samples in

Run 2, such as those for tracking calibration and neutral pion and photon PID.

Detector

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks [12, 13].

The detector includes a high-precision tracking system consisting of a silicon-strip ver-

tex detector surrounding the pp interaction region [14], a large-area silicon-strip detector

located upstream of a dipole magnet with a bending power of about 4 Tm, and three

stations of silicon-strip detectors and straw drift tubes [15] placed downstream of the

magnet. The tracking system provides a measurement of momentum, p, of charged par-

ticles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at

200GeV/c. The minimum distance of a track to a primary vertex, the impact parameter, is

measured with a resolution of (15+29/pT)μm, where pT is the component of the momen-

tum transverse to the beam, in GeV/c. Photons, electrons and hadrons are identified by

a calorimeter system (CALO) consisting of scintillating-pad and preshower detectors,

an electromagnetic calorimeter and a hadronic calorimeter. Different types of charged

hadrons are distinguished using information from two ring-imaging Cherenkov (RICH)

detectors [16]. Muons are identified by a system composed of alternating layers of iron

and multiwire proportional chambers [17].

The online event selection is performed by a trigger [18], which consists of a hard-

ware stage, based on information from the calorimeter and muon systems, followed by a

software stage, which applies a full event reconstruction. Since 2015, in between the hard-

ware and software stages, a real-time procedure aiming at the alignment and calibration

of the detector is performed [19], making use of a disk buffer [20]. Updated calibration
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parameters are made available for the online reconstruction, used in the trigger selection.

Online calibration is of such high quality that it is also used for offline reconstruction,

ensuring consistency between online and offline.

The responses of the calorimeter, RICH, and muon systems, or their combinations,

associated to each track in the reconstruction process are named for brevity PID variables.

They can be used in selections to increase the signal purity of a sample, reducing the pro-

cessing time devoted to the reconstruction of background events, often characterized by

high multiplicity, and helping in fitting into the data storage constraints. Moreover they

allow selections to avoid an explicit bias on quantities of physical interest, such as decay

time [21, 22].

The many contexts in which particle identification is exploited within the experiment

and the difficulties in obtaining a perfect simulation for the PID detectors, motivate the

development of techniques for measuring the PID performance in suitable PID calibra-

tion samples. These samples are datasets collected by LHCb where decay candidates have

a kinematic structure that allows unambiguous identification of one of the daughters,

without the use of any PID information from the calorimeter, RICH, or muon systems, so

that they are unbiased from the particle identification point of view. Today, most LHCb

physics analyses rely on calibration samples for the determination of PID efficiencies. In

addition, these samples can be used to monitor time variations in performance, and to

test new reconstruction algorithms.

The majority of physics analyses using data collected with the LHCb experiment rely on

the physics quantities as reconstructed in the online trigger reconstruction. Still, physics

analyses with special needs in terms of event reconstruction, searching for example

for interactions of light nuclei or particles beyond the Standard Model with the detec-

tor [23], are able to reprocess offline the collected calibration datasets with dedicated

reconstruction algorithms.

In order to enable the measurement of selection efficiencies that combine trigger

requirements on the online-computed PID variables and offline requirements of PID

variables obtained through dedicated reconstruction algorithms, an innovative dedi-

cated data-processing strategy has been designed. Calibration data are obtained through

a real-time selection based on the online reconstruction without any requirement on

PID variables. Each event belonging to the calibration samples is fully reconstructed

independently both online and offline. The resulting reconstructed particles are then

matched, allowing a measurement of the efficiency of requirements that combine the two

reconstruction types as described in “Measuring PID performance” section.

Global particle identification

The reconstruction algorithms of each of the PID detectors of the LHCb experiment are

very different, but each of them allows the computation of a likelihood ratio between

particle hypotheses for each reconstructed track [13]. The reconstruction algorithm of

the RICH detectors provides the likelihood of the electron, muon, kaon, proton and

deuteron hypotheses relative to the pion hypothesis. The calorimeter system provides

the likelihood of electrons relative to the pion hypothesis. Finally, the muon system

provides the likelihoods of the muon and non-muon hypotheses. The likelihood ratios

of the three detector systems are combined into Combined Differential Log-Likelihoods

(CombDLL) [13], which are used to define the selection criteria for the data analyses.
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Selection strategies based on CombDLL and isMuon [24], a binary variable loosely

identifying muons, are widely employed already at the trigger level [25].

Following recent developments in machine learning, more advanced classifiers have

also been designed to combine the likelihoods ratios defined above with the informa-

tions from the tracking system, including the kinematic variables of the particle, and

additional information from the PID detectors not entering the likelihood computa-

tion (e.g. the number of hits in the muon system shared among reconstructed tracks).

The classifier with the widest application in this category, named ANNPID, was devel-

oped using Forward Feeding Artificial Neural Networks [26], structured as a Multi-Layer

Perceptron (MLP) with a single hidden layer composed of roughly 20% more nodes

than the input layer activated, through a sigmoid function. The network is trained

minimizing the Bernoulli Cross-Entropy with Stochastic Gradient Descent as imple-

mented in the TMVA package [26]. Bernoulli Cross-Entropy originated from information

theory and is proportional to the likelihood of a perfect binary classification of the

training sample [27]. Alternative implementations and training strategies are also being

developed [28], but their treatment falls outside the scope of this paper. The train-

ing sample is obtained from abundant simulated decays of heavy hadrons that emulate

the kinematic distributions of signal samples studied in several analyses. Depending

on the arrangement of the input samples, on the quality of the simulation, and on

the available number of simulated events, the response of the ANNPID algorithm can

vary. As a consequence, the response of the ANNPID algorithms is provided in sev-

eral tunings, some for general purpose, and others specialised for a particular analysis

or kinematic range. The variables combined using the ANNPID classifiers are listed

in Table 1.

All of the input variables for the ANNPID classifiers are made immediately available

to physics analyses, easing the development of new tunings and classification algorithms

dedicated to single analyses. The many output variables of the detector reconstruction

which are not used as input to ANNPID can be accessed or even regenerated, relying on

the raw detector data stored on tape.

Measuring PID performance

More than twenty exclusive trigger selections are designed to select pure samples of the

five most common charged particle species that interact with the LHCb detector: pro-

tons, kaons, pions, muons and electrons [29]. Generally, low-multiplicity decay modes

with large branching fractions are chosen in order to enhance the statistics and the purity

and populate the tails in the distributions of the PID variables, which are of great rel-

evance when computing misidentification probabilities. Completely reconstructed final

states composed of charged particles only are preferred, as they are selected with high

purity at LHCb. An overview of the modes utilised is given in Table 2.

The assumption underlying the usage of the calibration samples is that the distribu-

tion of the particle identification variables is independent of the selection strategy. Simply

avoiding explicit requirements on the PID variables is not sufficient to ensure this. In

fact, the hardware trigger relies on information from the CALO and muon systems to

reduce the rate at which the full detector is read out to around 1 MHz, while a first layer

of the software trigger, running before the full event reconstruction, includes dedicated

selection algorithms to identify high pT muons and muon pairs.
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Table 1 Input variables of the ANNPID classifiers for the various subsystems of the LHCb detector

Tracking

Total momentum

Transverse momentum

Quality of the track fit

Number of clusters associated to the track

ANN response trained to reject ghost tracks [42]

Quality of the fit matching track segments upstream and downstream of the magnet

RICH detectors

Geometrical acceptance of the three radiators, depending on the direction of the track

Kinematical acceptance due to Cherenkov threshold for muons and kaons

Likelihood of the electron, muon, kaon, and proton hypotheses relative to the pion

Likelihood ratio of the below-threshold and pion hypotheses

Electromagnetic calorimeter

Likelihood ratio of the electron and hadron hypotheses

Likelihood ratio of the muon and hadron hypotheses

Matching of the track with the clusters in the preshower detector

Likelihood ratio of the electron and pion hypotheses, after recovery of the Bremsstrahlung photons

Hadronic calorimeter

Likelihood ratio of the electron and hadron hypotheses

Likelihood ratio of the muon and hadron hypotheses

Muon system

Geometrical acceptance

Loose binary requirement already available in the hardware trigger

Likelihood of the muon hypothesis

Likelihood of the non-muon hypothesis

Number of clusters associated to at least another track

In order to avoid a pre-selection that biases the PID variables, the selection strategy of

the calibration samples imposes requirements on the algorithms selecting the event in the

previous trigger layers. Either the trigger algorithms do not rely on PID information, or

the PID selection in the trigger is applied to one of the particles not used to measure the

performance.

Several of the selection strategies are implemented according to the so-called tag-and-

probe model [17]. Taking the J/ψ → μ+μ− decay as an example, - the tag-and-probe

selection strategy relies on a list of well-identified tag muons of a certain charge and a

list of probe tracks with opposite charge, selected avoiding any PID requirement. These

are combined to form muon pairs with invariant-mass consistent with the J/ψ mass, and

Table 2 Overview of decay modes that are used to select calibration samples

Species Low momentum High momentum

e± B+ → J/ψK+ with J/ψ → e+e−

μ± B+ → J/ψK+ with J/ψ → μ+μ− J/ψ → μ+μ−

π± K0s → π+π− D∗+ → D0π+ with D0 → K−π+

K± D+
s → φπ+ with φ → K+K− D∗+ → D0π+ with D0 → K−π+

p, p �0 → pπ− �0 → pπ− ;�+
c → pK−π+

The high momentum samples are primarily selected, while the low momentum samples are included to maximise the kinematic

coverage as much as possible
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are then filtered further on the basis of the quality of the fit of the decay vertex, to form

the final sample. To extend the pT range of the muons in the calibration samples to lower

values, where the background from low momentum pions is difficult to reduce, the J/ψ

candidates can be combined with charged kaons to form B+ → J/ψK+ candidates1,

adding further kinematic constraints related to the B decay to the final filtering.

Proton calibration samples are obtained from two different decay modes: �0 → pπ−

and �+
c → pK−π+. Since the visible �0 production cross section in LHCb is several

orders of magnitude larger with respect to heavy flavour production, the yield collected at

the trigger level exceeds the needs in terms of statistical precision on the particle identi-

fication. This would pose severe challenges for data storage. Therefore, a large fraction of

these signal candidates is discarded by running the selection only on a randomly selected

fraction of the events. In order to improve the kinematic coverage of the sample, the

fraction of discarded events is defined differently in four bins of the proton transverse

momentum (pT), resulting in a higher retention rate in the less-populated high-pT region.

The sample of �+
c decays is included to extend the pT coverage of the �0 samples.

An abundant calibration sample for pions is provided by the decayK0
s → π+π−, but the

spectrum of the probe particles is much softer than what is typical for hadrons produced

in heavy hadron decays. Charm hadron decays allow the kinematic range to be extended

to higher transverse momenta, but the lower purity of the samples, due to the smaller

production cross-section, requires additional care in the selection and background sub-

traction strategies. The decay D∗+ → D0π+ with D0 → K−π+ represents the primary

source of π± and K± calibration samples. The soft pion produced in the strong decay of

the D∗+ hadron allows to tag the flavour of the D0 and therefore to distinguish the kaon

and the pion produced in its decay without PID requirements on either of the two probe

particles. Applying a requirement on the energy release in theD∗+ → D0π+ decay, which

is expected to be small, enables the rejection of combinatorial background due to the erro-

neous combination of D0 hadrons and pions produced in unrelated processes. Finally, the

D+
s → φπ+ decay with φ → K+K− is a further source of kaons. This sample allows the

kinematic range for kaons to be extended to lower momenta, as the φ constraint enables

the kinematic requirements on the kaons to be loosened while retaining the purity.

The residual background that cannot be rejected with an efficient selection strategy is

statistically subtracted assigning a signed weight (named sWeight) to each decay candi-

date, as prescribed by the sP lot technique [30]. A fit to the invariant-mass of the decaying

particle is performed for each calibration sample, defining a signal component for which

the sample of probe tracks is known to be pure, and one or more background compo-

nents of different nature. In several cases, two-dimensional fits are performed to account

for additional background sources. The variables used in the two-dimensional fits are: the

D0 mass and D∗+ − D0 mass difference for D∗+ → D0π+; the B+ and J/ψ masses for

B+ →
(

J/ψ → μ+μ−
)

K+; the φ and D+
s masses for D+

s → φπ+.

The fit to each calibration sample is repeated (at least) twice; the first iterations have

a large number of free parameters including the means and widths of the signal compo-

nents and shape parameters of the background components, whereas the final iteration

fixes all of the parameters apart from the normalisation of each component (such as sig-

nal, misidentified background and combinatorial background). The covariance matrix

produced in the final fit is used to define a relation between the discriminant variables

and a signal sWeight to be assigned to the daughter candidate. Correlations between
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the chosen discriminating variables and the PID variables do not play a significant role.

Figure 1 illustrates the invariant-mass distributions for some of the calibration samples,

as obtained from proton-proton collision data collected in 2015 corresponding to an

integrated luminosity of 0.17 fb−1. The corresponding kinematic distributions for the

different species of probe particles are also shown.

The performance of the PID detectors to a traversing particle depends on the kinemat-

ics of the particle, the occupancy of the detectors (which may be different event-to-event

and for different particle production mechanisms), and experimental conditions such as

alignments, temperature, and gas pressure (which may modify the response of detectors

across runs).

One may assume that the response of a PID variable is fully parameterised by some

known set of variables, such as the track momentum p (which is related to the Cherenkov

angle in the RICH and to the energy deposited in the calorimeter) and the track multi-

plicity, the latter being given by the number of reconstructed tracks traversing the whole

detector. By partitioning the sample with sufficient granularity in these parameterising

variables, the PDF of the PID variable distribution does not vary significantly within each

subset, such that the efficiency of a selection requirement on that variable is constant

within each subset [40].

In the trivial case of events that come from the calibration sample, there is no need to

compute per-subset efficiencies, and the average efficiency is simply given by the fraction

of background subtracted events passing the PID requirement. To compute the PID effi-

ciency on a sample other than the calibration sample, denoted hereafter as the reference

sample, the parameterising variables in the calibration sample can be weighted to match

those in the reference sample. The PID efficiency can then be computed using the per-

subset weights. The weights are defined as the normalised ratio of reference to calibration

tracks

wi =
Ri

Ci
×

C

R
, (1)

where Ri (Ci) is the number of reference (calibration) tracks in the ith subset, and R (C) is

the total number of reference (calibration) tracks in the sample.

After applying the PID cut to the weighted calibration sample, the average efficiency of

the PID requirement on the weighted calibration sample is

ε̄ =

∑

i εiwiCi
∑

i wiCi
. (2)

where wi is the per-subset weight, ǫi is the per-subset efficiency and Ci is the number of

calibration tracks in the i-th subset.

The computation of the PID efficiency can be thought of as the reweighting of the cal-

ibration sample to match the reference, or as the assignment of efficiencies to reference

tracks based on the subset they belong to. This can also be extended to reference sam-

ples where PID requirements have been imposed on multiple tracks, where the efficiency

of an ensemble of cuts is required taking into account the kinematic correlation between

tracks.

There are a number of ways in which the calibration samples can be used to determine

PID efficiencies. Three broad strategies have been commonly implemented by LHCb in

the past. The first uses a simulated reference sample to provide the kinematics of the
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Fig. 1 On the left, mass distributions of the decaying particles with the results of the fit superimposed; signal

contributions are shown by the red dashed curves, and the total fit functions including background

contributions are shown by the blue solid curves. On the right, the background-subtracted distributions of

the calibration samples for electrons, muons, pions, kaons and protons as a function of the track

pseudorapidity, η, and momentum p are shown. The colour scale units are arbitrary
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signal tracks under consideration. This is an ideal approach to use when the kinematics of

the signal tracks are known to be well modelled in the simulation. If the signal in data can

be reliably separated from the other species in the sample, such that some background

subtraction can be used to extract the signal kinematics, a second approach to creating

the reference sample can be used.

Lastly, the PID response of MC signal samples can be corrected using the PID

calibration data samples. Two options are provided:

• Resampling of PID variables, where the PID response is completely replaced by the

one statistically generated from calibration PDFs.

• Transformation of PID variables, where the PID variables from the simulation are

transformed such that they are distributed as in data.

The PID correction is still considered as a function of track kinematics (pT and η) and

event multiplicity Nevt (such as the number of tracks in the event). However, unlike in

the first two strategies detailed above, the correction is performed using an unbinned

approach, where the calibration PDFs in four dimensions, the PID variable, pT, η, and a

measure ofNevt, are described by a kernel density estimation procedure using theMeerkat

library [31]. The advantage of resampling and variable transformation is that the corrected

PID response can be used as an input to a multivariate classifier.

However, a limitation of the PID resampling approach is that the PID variables for

the same track are generated independently, and thus no correlations between them are

reproduced. Therefore, only one PID variable per track can be used in the selection. Cor-

relations between variables for different tracks are preserved via correlations with the

kinematics of tracks, assuming the PID response is fully parameterised by pT, η, andNevt.

The PID variable transformation approach aims to remove this limitation [32]. The

corrected PID variable PIDcorr is obtained as

PIDcorr = P−1
exp (PMC(PIDMC|pT, η,Nevt)|pT, η,Nevt) , (3)

where PMC(PIDMC|pT, η,Nevt) is the cumulative distribution function of the simulated

PID variable PIDMC, and P−1
exp(x|pT, η,Nevt) (where 0 < x < 1) is the inverse cumulative

distribution function for the PID variable from the calibration sample (i.e. for fixed pT, η

and Nevt it returns the PID variable that corresponds to a cumulative probability x). The

functions are obtained from the results of kernel density estimations of the simulation and

calibration PID responses, respectively. The corrected PID variables obtained in this way

follow the PDF of the calibration sample, but preserve strong correlations with the output

of simulation. Through these correlations in simulation, the ones between PID variables

for the same track are reproduced to first order. The drawback of this approach is that it

also relies on the parametrisation of PID PDFs in simulation, which are extracted from

samples that are typically much smaller than the calibration data. Although one naively

expects this method to perform better due to taking correlations into account, studies are

ongoing to quantify the degree of agreement between the correlations found in simulation

and data. The PID resampling and variables transformation techniques are schematically

represented in Fig. 2.

There are a number of sources of uncertainty that affect the measurement of PID effi-

ciencies. The statistical uncertainty arises from finite statistics in the input samples used

in the calibration procedure, namely the calibration and reference samples. Due to the
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Fig. 2 Schematic representation of the PID resampling and variable transformation techniques

large calibration sample sizes, this uncertainty is usually dominated by the size of the

signal reference sample.

Several sources of systematic uncertainty related to the procedure must also be

accounted for, arising from differences between the reference and signal samples, the spe-

cific choice of binning used, and the sWeight procedure used in the calibration sample

production. The degree to which these uncertainties affect the PID efficiency precision is

analysis dependent, and require specific studies to be carried out on a case-by-case basis.

Moreover the availability of primary and secondary calibration samples allows to study

possible biases coming from single decay modes.

Computingmodel for the calibration samples

In order to face the new challenges of the second run of the LHC, the LHCb trigger

[33, 34] has evolved into a heterogeneous configuration with different output data for-

mats for different groups of trigger selections. Figure 3 shows a schematic representation

of the computing model that is described in the following.

Two alternative data formats for physics analyses, named Turbo stream [35] and Full

stream, have been developed. Trigger selections writing to the Turbo stream are intended

for analyses of samples where only the information related to the candidates and associ-

ated reconstructed objects is needed. Trigger selections that are part of the Turbo stream

produce a decay candidate which is stored for offline analysis, along with a large number

of detector-related variables, while the raw detector data is not kept [35, 36]. When con-

sidering analyses based on the Turbo stream, it is therefore evident that the calibration

samples must provide the PID information as computed online in order to assess the effi-

ciency of selection requirements applied either in the trigger selection, or offline on the

PID variables retrieved from the trigger candidate.

Trigger selections for events to be stored in the Full stream are intended for those

measurements and searches for which the Turbo approach is not applied. While the soft-

ware trigger fully reconstructs candidates, those are not saved. If the trigger decision is

affirmative, the raw detector data is saved together with summary information on the trig-

ger decision, including the CombDLL and isMuon variables, for each particle involved
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Fig. 3 Schematic representation of the computing model for the PID calibration samples

in the trigger decision. The track and decay candidates are reproduced in a further offline

reconstruction step that accesses the raw detector data. Indeed, some physics data anal-

yses present special needs in terms of particle identification algorithms, for example

because they explore kinematic regions at the boundaries of the kinematic acceptance, or

because of exceptional requirements in terms of the accuracy of the efficiency determi-

nation. To respond to such special requirements, dedicated algorithms accessing the raw

detector data can be developed and included in the offline event reconstruction. Hence,

the events selected as part of the calibration samples must include the raw data, allowing

the performance of future algorithms to be measured on data.

An interesting case is presented when a trigger selection targeting the Full stream

includes PID requirements that are then intended to be refined offline. Potentially,

the PID variables computed online can differ from those obtained from the full event

reconstruction performed offline. While accidental differences in the online and offline

algorithms are unlikely thanks to dedicated checks in the data quality validation proce-

dure, the offline reconstruction is subject to improvements that provide a slightly different

value for the PID variables. The determination of the efficiency of combined require-

ments on online and offline versions of the PID variables, or of different tunings of the
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multivariate classifiers adopted in the trigger and in the statistical data analysis, require

the use of calibration samples combining the information from the online and offline

reconstruction, allowing full offline reprocessing if needed.

A dedicated data format, named TurboCalib, was developed to satisfy the require-

ments on PID calibration samples described above [37]. After the online full event

reconstruction, events in which decay candidates useful for calibration are identified

and selected in real-time are stored including both the trigger candidates themselves

and raw detector data. The two output formats are processed independently for each

event, to obtain both decay candidates propagated from the trigger and decay candi-

dates reconstructed offline from the raw detector data. The two reconstructions are fully

independent, so that the tracks identified in the two processes must be matched. This is

done according to the fraction of shared clusters in the detector, or exploiting the TisTos

algorithm described in Ref. [38], or with a combination of the two techniques.

The offline versions of the PID variables can be easily replaced with other tunings of the

multivariate classifiers, or through the output of dedicated reconstruction sequences. As a

result of thematching procedure, each reconstructed track is associated to two sets of PID

variables, obtained through the online and offline versions of the reconstruction, respec-

tively. The two sets are available to the analysts to measure the efficiency of selection

requirements that possibly combine the two versions.

As described in “Measuring PID performance” section, the measurement of the selec-

tion efficiencies from the selected calibration samples is enabled through the subtraction

of the residual background by means of the sP lot technique. In order to overcome to

the scalability challenges set by the increasing needs for precision in many LHCb mea-

surements, resulting in huge calibration samples to control the statistical uncertainty, the

background subtraction is performed through a dedicated, distributed implementation

of the sP lot technique. Finely binned histograms of the invariant-mass distributions of

the trigger candidates are filled in parallel on thousands of computing nodes. They are

then merged and modeled through a maximum likelihood fit as the combination of signal

and background components. The relations between the discriminating variables and the

sWeights to be assigned to each candidate are sampled in fine grids and made available

through a distributed file system to the computing nodes of the LHCb grid [39], where

jobs to assign the weights are run as a final processing step in the calibration sample pro-

duction workflow. Such a distributed implementation of the sP lot technique avoids the

storage of the entire dataset on a single computing node, hence scaling better with the

size of the calibration samples.

The real-time selection strategy, the double-processing scheme combining event-by-

event the online and offline reconstructed variables, and the distributed approach to

background subtraction constitute the main novelties in the data processing for the cali-

bration samples, overcoming most scalability issues and making the limited cross-section

and the available data storage resources the only limitations to the statistical precision in

the determination of PID selection efficiencies.

Finally, the Particle IDentification Calibration (PIDCalib) package [40] is a user inter-

face written in python aiming at a standardization of the techniques described in

“Measuring PID performance” section to transfer the information on PID of the calibra-

tion samples to the reference sample of interest for the many physics analyses. It includes

several reweighing approaches, PID resampling and PID variable transformation. The set
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of variables identifying the kinematics of the tracks, the event multiplicity and the PID

response can be chosen case by case, while the access to calibration samples and the

implementation of the algorithms are maintained centrally.

Data quality, monitoring and validation

As discussed in “Measuring PID performance” section, calibration samples are abundant

decays with high purity which are selected at the trigger level. They are represen-

tative of all the families of long-lived charged particles interacting with the LHCb

detector, apart from deuterons. Their immediate availability during the data taking

and their high statistics are key ingredients for data-quality monitoring and vali-

dation. Since the reconstruction involves different systems of the LHCb detectors

depending on the nature of the particle, the various samples are used to monitor

and validate different aspects of the reconstruction. For example, the recovery of

Bremsstrahlung photons to improve the momentum resolution of the electrons can

only be monitored and validated using an electron sample. Similarly, the efficiency of

muon identification can be better monitored and validated using a sample of tagged

muons.

In order to add redundancy to the validation procedure, a small fraction of the cali-

bration samples are reconstructed with the offline procedure in real time. This enables

alarms to be triggered when misalignments occur between the online and offline recon-

struction, due to errors in the database handling the alignment and calibration constants,

for example.

Finally, several checks on the reconstructed quantities in the calibration samples have

been included in the automated validation procedure performed during data taking.

These aim to identify deviations from standard running conditions, and check for pos-

sible temporal variations in performance due to unstable environmental conditions, or

ageing of the detector [41].

Real-time monitoring on pure decay samples representative of the needs of a wide

physics programme will be of critical importance during Run 3 of the LHC, when, after

a major upgrade of the LHCb experiment, most datasets to perform physics data analy-

ses will be selected in the trigger and stored as decay candidates, with no support for raw

detector data [36]. Since no further reprocessing of the reconstruction will be possible,

any loss in performance will unavoidably result in a loss of effectiveness for the resulting

physics measurements.

Conclusions

The strategy to select and process the calibration samples used to measure the PID per-

formance has seen several improvements to face the challenges set by Run 2 of the LHC.

The samples are now selected directly in real-time at the highest level of the software trig-

ger, introducing an important benefit in terms of statistics and absence of selection bias

with respect to the offline selection strategy adopted in Run 1. The calibration samples are

used to measure the PID performance, to correct the simulated samples, and to monitor

the detector performance during the data-taking.

The computing model to manage and process the calibration samples has been

redesigned in order to overcome the scalability challenges set by the larger statistics

needed to investigate the PID performance for the LHC Run 2.
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The new scheme has been later adopted to provide the tracking and the photon

reconstruction performance, paving the way for Run 3.

Endnote
1Charged-conjugated candidates are implicitly considered here and throughout the

paper.
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