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SUMMARY

As a parallel computation framework, Spark can cache repeatedly resilient distribution datasets (RDDs)
partitions in different nodes to speed up the process of computation. However, Spark does not have a good
mechanism to select reasonable RDDs to cache their partitions in limited memory. In this paper, we propose
a novel selection algorithm, by which Spark can automatically select the RDDs to cache their partitions in
memory according to the number of use for RDDs. Our selection algorithm speeds up iterative computations.
Nevertheless, when many new RDDs are chosen to cache their partitions in memory while limited memory
has been full of them, the system will adopt the least recently used (LRU) replacement algorithm. However,
the LRU algorithm only considers whether the RDDs partitions are recently used while ignoring other factors
such as the computation cost and so on. We also put forward a novel replacement algorithm called weight
replacement (WR) algorithm, which takes comprehensive consideration of the partitions computation cost,
the number of use for partitions, and the sizes of the partitions. Experiment results show that with our
selection algorithm, Spark calculates faster than without the algorithm, and we find that Spark with WR
algorithm shows better performance. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Processing amounts of data-intensive applications in the era of big data has presented a challenge

issue [1–4]. Apache Spark [5] is an open-source parallel computation framework that computes in-

memory based on resilient distribution datasets (RDDs) to speed up data processing [6], [7]. As a key

abstraction in Spark, RDD is a collection of objects partitioned across nodes in Spark cluster, and

all partitions can be computed in parallel. More importantly, as a crucial abstraction, RDD leverages

the distributed memory to cache the intermediate results, with which, Spark has a huge advantage

over other parallel frameworks in terms of processing iterative machine learning. At the same time,

users can control storage strategies of Spark (e.g., in-memory storage and so on) and based on that,

Spark can cache many multiple occurrences of RDDs, so that users can reuse intermediate results

across multiple computations.

However, when Spark processes large-scale intensive applications, multiple storage strategies

are selected for the whole process of the computation. If users select storage strategies for the
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computations, the results are full of uncertainties. Different results will be caused by different

levels of programmers. Whether the process should cache the variables is completely according to

the experience. The uncertainty cannot adequately exploit the strengths of the high performance of

Spark. Poor storage strategies not only lower the efficiency of the program but also lead to errors

during the process of implementation. When useless intermediate results are kept in distributed

memory according to the storage strategy, it is likely to waste memory and degrade the executing

speed, even cause out-of-memory errors. Meanwhile, this situation misses the useful intermediate

results which will be reused in the subsequent computations. Therefore, they should be recomputed

each time when the other computations need them again, which lower the performance of Spark.

More importantly, we must recognize the fact that memory is limited, and it does not make sure

each computation has enough memory.

In this paper, we put forward a novel selection algorithm, by which Spark selects the

reasonable intermediate results to be cached in memory instead of being decided by users.

The algorithm reduces many unnecessary mistakes caused by programmers and makes sure that

the useful RDDs are kept in memory. We leverage the algorithm to choose the value RDDs to

cache their partitions in memory according to the number of use for RDDs during the process of

computation. Experiments show that the algorithm reduces overhead and speeds up the whole

computation process.

When limited memory is full of the partitions, there are many new value RDDs partitions to

be cached in memory. Spark selects the unused for longest time cache partitions to be replaced

according to the least recently used (LRU) replacement policy. However, the LRU algorithm just

considers whether the partitions are used recently, and it does not make sure the chosen one is

valueless. If the computation cost of the chosen one is higher, we should spend much cost to recom-

pute it in the future. In addition, if the size of the chosen one is smaller than the other one cached

in memory, which is not used recently as the chosen one, it is reasonable to select the larger one to

be replaced, which means more space to be provided for new value RDDs partitions. How to take

comprehensive consideration of these factors is another important problem in Spark.

In this paper, we propose a new novel replacement algorithm called weight replacement (WR)

algorithm. The weight of RDDs in our algorithm contains three parts: the partitions computation

cost, the number of use for partitions, and the sizes of the partitions. When the computation cost

of partition is high, it is a value partition. At the same time, if different partitions have the same

computing cost while the number of use of one partition is the largest among them, then its weight is

the largest. Considering the above factors, we select the reasonable partitions to be replaced, which

may speed up the process of Spark computation.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3

introduces preliminary information. Section 4 gives models and problem formulation. In Section 5,

we discuss the proposed algorithms. Experimental evaluation is illustrated in Section 6. Finally, we

make a conclusion in Section 7.

2. RELATION WORK

Because of characteristic of persistence, Apache Spark [5] provides multiple storage strategies for

users to cache the intermediate results, such as memory-only, memory-only-2, and so on. In order

to avoid computing the same RDDs repeatedly, programmers can choose one or several kinds of

storage strategies for procedure. However, when several storage strategies are chosen for procedure,

different programmers will select different strategies, which cannot make sure the useful RDDs

cached in memory or make full use of persistence characteristic. The results are wasting memory

or degrading the performance, which cannot adequately exploit the strengths of the persistence

characteristic of Spark.

In our work, instead of the storage strategies chosen by users, Spark keeps the multiple occur-

rences of RDDs in distributed memory according to our selection algorithm. That reduces the

mistakes or errors caused by programmers, improves the procedure reliability, reduces many

overhead, and speeds up the whole process of calculation.
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There are many widely used replacement algorithms such as first in first out (FIFO), LRU [8],

least frequently used, frequency-based replacement [9], least recently used and least frequently

used [10], [11], Landlord [12], [13], adaptive weight ranking policy (AWRP) [14]. Landlord algo-

rithm is an online mechanism, which combines replacement cost, cache object size, and locality by

extending both LRU and FIFO to include cost and the sizes of variable cache object within a cache

[13]. However, the credit or cost of object given by LANDLORD algorithm is not ideal, because

the algorithm does not take a comprehensive consideration of the number of use of the object and

the computation cost of the object. Swain et al. proposed an AWRP and it assigned weight to each

object in the buffer and ranked each object as per the weight. Nevertheless, the weight assigned by

AWRP only considers the frequency of object while ignores the sizes of the object. LRU is widely

used in operating systems as a buffer replacement policy because of its simplicity, and in LRU

policy, the unused for longest time cache block will be replaced. The LRU policy is implemented

on Spark framework to manage the limited memory available. When no enough space is provided

for a new RDD partition, the system evicts a partition from the least recently accessed RDD, unless

this is the same RDD as the one with the new partition. Although the LRU algorithm allows Spark

to manage the memory, it only considers whether the partitions are used recently and cannot make

sure the selected one is the valueless.

Compared with the replacement algorithms discussed previously, our work selecting the replace-

ment parts not only considers the number of use of partitions but also takes the partitions

computation cost and the sizes of the partitions into account. That makes sure the selected partitions

be reasonable replacement parts and reduces many overhead.

3. PRELIMINARY INFORMATION

3.1. Resilient distribution datasets

As a user, we can think RDD as a handle for a collection of individual data partitions, and it is the

critical part of Spark. Each RDD is characterized by five main properties [6]:

(1) A list of partitions. RDD is an abstraction in Spark and it contains a list of partitions, which

are distributed on different nodes;

(2) A function for computing each split;

(3) A list of dependencies on other RDDs, we call that lineage and the DAGScheduler forms a

Directed Acyclic Graph (DAG) of stages for each job according to the lineage;

(4) Optionally, a partitioner for key-value RDDs (e.g., to say that the RDD is hash-partitioned);

(5) Optionally, a list of preferred locations to compute each split (e.g., block locations for an

Hadoop Distributed File System (HDFS) file).

Resilient distribution dataset is a read-only dataset, which can only be created by some operations

(e.g., sc.textFile (hdfs://... /data.txt)) based on data in stable storage or other transformation opera-

tion in Spark (e.g., map, join, and so on). Transformations and actions are two kinds of operations.

There are no actual operations to be carried out in process of transformation until action operations

happened. During transformation operation process, RDD is transformed into different RDDs, and

this process does not execute until it meets the action operation. That means there are many RDDs

transforming into other kinds of RDDs, and each RDD remembers their parents and their children.

If RDDs appear repeatedly, we can cache their partitions in memory during iterative computation

process. It provides fault tolerance without requiring replication, by tracking how to recompute lost

data starting from the base data on disk. This lets RDDs be read and created to 40 times faster than

a typical distributed file system. Spark runs programs up to 100 times faster than MapReduce in

memory, or 10 times faster on disks [15].

It can be seen in Figure 1 that RDD includes a list of partitions, and all partitions are distributed

among the cluster nodes, which can be computed in parallel. By default, RDDs are transient, and

they should be recomputed each time during the action computation [16]. All partitions have serial

number, and in this paper, we use P to denote a partition, and Pij means the j -th partition of the

i-th RDD.
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Figure 1. The distribution partitions of resilient distribution dataset (RDD) in cluster.

Figure 2. System scheduling in Spark.

3.2. System scheduling in Spark

All operations in Spark are based on RDDs, and there are two kinds of operation: transformation

operations (e.g., map, join, groupBy, and filter) and action operations (e.g., reduce, count, collect,

and save). During transformation operation process, RDD is transformed into different RDDs, and

this process is not executed until its action operation happened. According to the dependencies

between RDDs, DAGScheduler forms a DAG of stages for each job, and then it submits tasks to

run on the cluster. So our selection algorithm selects the value RDDs to cache their partitions in

memory according to the DAG before tasks are performed. In this paper, we use G.R; E/ as DAG

model where R D ¹RDD1; RDD2; : : : ; RDDnº is the set of RDDs and E is the set of directed

edges. This process is shown in Figure 2.

3.3. Cache mechanism in Spark

All iterative computations are computed in memory, and the multiple occurrences of RDDs are not

cached in memory by default. We use a selection algorithm to select the multiple occurrences of

RDDs to cache their partitions in memory according to the DAG, and the scheduling process in

memory is illustrated in Figure 3.

It can be seen in Figure 3 that when RDD partitions have been cached in memory during the

iterative computation, an operation which needs the partitions will get them by CacheManager.

Moreover, the partitions are cached by CacheManager, and all operations including reading or

caching in CacheManager mainly depend on the API of BlockManager. BlockManager decides

whether partitions are obtained from memory or disks, while MemoryStore determines whether

partitions are cached in memory. When in-memory is full of partitions, the system will use LRU

replacement algorithm to select LRU partitions to be replaced. However, the LRU algorithm does

not consider the sizes of RDDs partitions and the computation cost of RDDs partitions, and

cannot make sure the chosen partition to be the reasonable one. Our proposed WR algorithm makes

full consideration of the three factors and tries its best to select the reasonable RDDs partitions

to be replaced.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2473–2486
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Figure 3. Cache mechanism in Spark.

Figure 4. The DAG graph for this process.

4. MODEL AND PROBLEM FORMULATION

4.1. Architecture model

In this paper, the G.R; E/ is modeled as a DAG, and an edge eij of the form (RDDi , RDDj )

denotes the dependency between RDDi and RDDj , in which RDDi denotes the parent and RDDj

is the child. According to this definition, a child RDD cannot work until all of its parent RDDs are

finished completely. Figure 4 is a DAG which stands for dependencies between RDDs in Spark.

We use CloudStack to manage our servers. Based on it, we deploy several virtual machines, and

all of them are of the same type. So the processing capacity of each virtual machine is the same.

Because memory in our paper is variable, the processing capacity changes with different memory,

and we use Pmemoryk
to denote the processing capacity. In this paper, 1G, 2G, 4G, three different

kinds of memory will be used, so k=1, 2, 3. We use Pmemoryk
to calculate the execution time of

RDDs. The execution time of Pij is estimated using the size of the j th partition of RDDi , which is

called Sij , in terms of floating point operations [17]. ¹Pi1; Pi2; : : : ; Pihº are the partitions of RDDi ,

and we can approximate partition execution time ETPij
as follows:

ETPij
D Sij =Pmemoryk

: (1)
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All partitions are computed in parallel, so the longest execution time of RDDi partitions is

roughly the execution time of RDDi . Equation (2) describes the execution time ETRDDi
:

ETRDDi
D max

®

ETPi1
; ETPi2

; : : : ; ETPih

¯

: (2)

4.2. Scheduling model

The reason why Spark deals with big data faster is that it builds a DAG of stages for each job, which

reduces many overheads during the process. When an iterative algorithm is carried out, there are

many variables which are recurring in an iterative process or multiple processes. When that happens,

it is important to cache the recurring variables in memory to speed up the whole computation.

We select the multiple occurrences of RDDs to cache their partitions in memory according to our

proposed algorithm, which speeds up the whole computation.

When there are many partitions cached in memory, the LRU partitions are chosen to store in disks

based on LRU algorithm. However, the LRU algorithm only considers whether those partitions are

recently used while ignores the partitions computation cost and the sizes of the partitions. When

the sizes of two partitions and their number of use are the same, one needs more time or overhead

to recompute it, which means that its computation cost is higher. There is no doubt that the higher

computation cost of partition should be cached. In addition, if the computation cost and the number

of use for two partitions are the same, the larger one needs more space. In this condition, caching

the smaller one means that there are more opportunities to cache more partitions.

All transformation operations are not executed until action operations work. So the number of use

for partitions can be known from the DAG before tasks are performed, and Nij is the number of use

of j -th partition of RDDi . We use Sij to express the size of j -th partition. Except execution time,

all partitions need communication with each other. So communication time is also an important

part. Each partition of RDDi starting time STij and finishing time F Tij can roughly express its

execution and communication time. We can approximate the computation cost of the partition as

follows:

Costj D F Tij � STij : (3)

After that, we set up a scheduling model and obtain the weight of Pij , which can be expressed as

Equation (4):

VPij
D k �

Costj � Nij

Sij

; (4)

where k is a correction parameter, and it is set to a constant. We use VP to denote the weight of

partition, because it considers the computation cost of partition, the number of use for partitions, and

the sizes of the partitions. There is no doubt that VP is proportional to the partitions computation

cost, and it is necessary to cache the partitions with higher computation cost. The number of use

for partitions is also an important part in this equation and the frequently used partitions should be

cached in memory instead of disks to reduce the I/O spending and communication overhead. As we

know, the larger partitions cached in memory need more space. When different partitions have the

same computation cost and the number of use, it is reasonable to choose the largest one to be stored

in disk, which means more space in memory to be provided for new value RDDs partitions.

Finally, we assume that there are h partitions in RDDi , and we can approximate the weight of

RDDi as follows:

VRi
D

h
X

j D1

VPij
: (5)

We use the time lag of partitions to roughly represent the computing cost and the complexity.

Because all nodes are the same, and we can roughly think that their processing capacities are the

same. There is no doubt that the partition spends more time to finish the task, which means that its

computation cost is higher. In that condition, we can roughly use partition time lag as its computa-

tion cost. When many partitions are cached in memory which is near saturation, we can select the

valueless partitions to be replaced based on VPij
and VRi

.
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4.3. Problem definition

Spark is a memory consumption computation framework which is suitable for iterative algo-

rithms. When the partitions are cached in memory, this can speed up the computation. We assume

¹RDD1; RDD2; : : : ; RDDnº are the whole datasets in the computation. All RDDs have many par-

titions. So we expect that the system spends less time or overhead to finish computation with our

proposed algorithms. That is depicted in Equation (6):

Minimize

n
X

iD1

ETRDDi
: (6)

All nodes have the same memory, which is used to cache partitions, and the sizes of all the

cached partitions should be less than the whole memory, which is used to cache partitions in cluster.

Because of exceeding the memory, the partitions should be stored in disks or removed. We use Scache

to represent the whole memory which is used to cache partitions. Because different RDDs have

different number of partitions, we use different parameters to denote corresponding RDDs partitions

number (e.g., h1, h2, . . . , hn). So we can depict the following:

h1
X

j D1

S1j C

h2
X

j D1

S2j C : : : C

hn
X

j D1

Snj < Scache: (7)

5. PROPOSED ALGORITHMS

5.1. Selection algorithm

Figure 4 is an iterative computation process, and we can see this as a DAG graph. We assume

that ¹P11; P21; P31; P41; P61; P63; P71; P81º are in one node, and P11 H) P31 H) P21 H) P41

H) P63 H) P21 H) P61 H) P71 H) P21 H) P81 H) DataCol lection are execution

sequences during the iterative process. When we do not cache the multiple occurrences of RDDs,

we approximate the execution time in one node as Equation (8):

ETP D ETP11
C 3ETP21

C ETP31
C ETP41

C ETP61
C ETP63

C ETP71
C ETP81

: (8)

From Equation (8), we find it has to calculate P21 three times. So that process has to spend extra

2 � ETP21
finishing this computation. That process is a small part during the iterative process.

Therefore, the whole computation has to spend many extra overheads to calculate the same variables.

If we cache the multiple occurrences of RDDs, the system performance would be improved.

In this paper, we use our selection algorithm to select the reasonable RDDs to be kept in memory.

During the transformation operations, RDDs are transformed into other kinds of RDDs, and that

process is not executed until action operations are executed. So we can use our selection algorithm

to select the value RDDs to cache their partitions in memory before action operations happen. The

transformation operations form a DAG graph, and if the RDD appears again, it is cached in memory.

The chosen RDDs will be kept in collection M , and NRDDi
denotes the number of use for RDDi .

We assume all RDDs have the same partitions and we set the parameter as h. The free memory which

is used to cache partitions denotes S
empty

cache . The pseudocode for the selection algorithm is described

in Algorithm 1. This algorithm proceeds as follows:

Step 1: We should know whether the RDDi has already been in memory.

Step 2: We select the reasonable RDD according to its number of use, while the sizes of the whole

RDD partitions should be less than the free memory which is used to cache partitions.

5.2. Replacement algorithm

As we know, weight is used to measure the importance of the part in a graph, and in this paper, we

use it to evaluate the importance of the partitions. We use VP to denote the weight of partition.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2473–2486
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When we deal with large amounts of RDDs, especially in the process of iteration, data processing

speed is an important performance evaluation. If the data used frequently is stored in the memory,

next time you can access it much more quickly. Generally speaking, the memory which is used to

cache partitions is finite and when many partitions are cached in memory, the memory is close to

saturation. At that time, Spark will select LRU partitions and store them in disks according to the

LRU algorithm.

When this algorithm is adopted to manage the memory, we find a problem that LRU cannot make

sure LRU partition to be a reasonable one. When the system uses LRU algorithm to select the unused

cache partition from memory for the longest time , and if Pij is the result, then Pij will be replaced.

Although Pij is used least recently, it is most likely that the cost of recomputing is significantly

high. So, we can see LRU cannot make sure the Pij to be the most valueless. In order to solve this

problem, in this paper, we put forward a novel algorithm: we replace the partitions according to

their weights. We take many experiments to compare the system with the LRU algorithm or WR

algorithm. Most results show that when experiment is under the condition of limited memory, WR

algorithm will have an advantage over the LRU algorithm.

When many partitions are cached in memory, we use Quicksort algorithm to sort the partitions

according to the value of partitions. So, all partitions in one node are sorted according to the ascend-

ing order. Then we give new serial number according to the new order (e.g., P 1; P 2; : : : ; P q). The

pseudocode for WR algorithm is described in Algorithm 2. The chosen partitions which are stored

in disk will be kept in collection Q. The free memory which is used to cache partitions in one node

denotes S
empty

node . The algorithm consists of two steps and the algorithm proceeds as follows:

Step 1: We should know whether the new Pm has already been in memory.

Step 2: We traverse cached sequence and find the suitable P i to be replaced, and P i is stored

in disk.

We give a simple example to explain the detailed steps of Algorithm 2 in Figure 5.

6. EXPERIMENTS

In this section, we use several experiments to evaluate the performance of the proposed algorithms

mentioned previously. We deploy CloudStack to manage five servers, then we create six virtual

machines. Each virtual machine has 100 G disk, 2.5 GHZ and runs Ubuntu 12.04 operation system

while memory is variable, and we set it as 1G, 2G, or 4G in different conditions. The version for

Scala is 2.10.4 while the Java Development Kit version is 1.8.0 25. We use Hadoop-2.4.0, Scala-

2.10.4, and Spark-1.1.0 for all experiments, and use ganglia to observe the memory usage.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2473–2486
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Figure 5. The operation of Spark computing process.

We choose 17 real graph datasets to do comparative experiments. All datasets will be showed

in Table I. We use detailed format to express them. The 17 real datasets are obtained from SNAP

[18]. The numbers of nodes and edges have a great influence on the execution time and memory

usage. The reason why we choose the 17 real datasets is that they are directed and different among

each other. More importantly, PageRank algorithm is running on directed graphs. The whole iter-

ative process does not stop until the ranking process is convergence. These datasets are described

in Table I.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2473–2486
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Table I. Detailed information for datasets.

Name Nodes Edges Description

p2p-Gnutella04 10,876 39,994 Gnutella peer to peer network from August 4, 2002
p2p-Gnutella24 26,518 65,369 Gnutella peer to peer network from August 24, 2002
wiki-Vote 7115 103,689 Wikipedia who-votes-on-whom network
p2p-Gnutella31 62,586 147,892 Gnutella peer to peer network from August 31, 2002
Cit-HepTh 27,770 352,807 Arxiv High Energy Physics paper citation network
soc-sign-Slashdot081106 77,357 516,575 Slashdot Zoo signed social network from

November 6, 2008
Cit-HepPh 34,546 421,578 Arxiv High Energy Physics paper citation network
soc-sign-Slashdot090221 82,144 549,202 Slashdot Zoo signed social network from

February 21, 2009
Soc-sign-epinions 131,828 841,372 Epinions signed social network
Slashdot0902 82,168 948,464 Slashdot social network from November 2008
Amazon0302 262,111 1,234,877 Amazon product co-purchasing network from

March 2, 2003
Web-Stanford 281,903 2,312,497 Web graph of Stanford.edu
Amazon0312 400,727 3,200,440 Amazon product co-purchasing network from

March 12, 2003
Wiki-Talk 2,394,385 5,021,410 Wikipedia talk (communication) network
web-Google 875,713 5105,039 Web graph from Google
cit-Patents 3,774,768 16,518,948 Citation network among US patents
soc-Pokec 1,632,803 30,622,564 Pokec online social network

Figure 6. Hadoop compares with Spark in different datasets.

6.1. The performance of Spark with selection algorithm compared with Hadoop

First, we use some datasets to prove that Spark dealing with iterative computing is faster than

Hadoop in the same condition. Our experiments are carried out on six virtual machines and their

memory is 2G. In Figure 6, we use ten different datasets to compare their performance with

PageRank algorithm, and each experiment has been performed more than three times, then we

compute their average.

From the graph, we can see that when there is enough memory, Spark with our selection algo-

rithm shows a significant advantage on iterative computation, and outcomes Hadoop by 20� to

30� because iterative computations are carried out in memory on Spark, while the computation

on Hadoop is based on disk computation, and it should constantly read from or write into HDFS,

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2473–2486
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Figure 7. Execution time with selection algorithm in different memory.

which heavily increases the overhead. Meanwhile, compared with default Spark, we find that Spark

with our selection algorithm spends less time to finish the computation. Because of small datasets

and enough memory, our selection algorithm does not have an obvious effect on the performance

of Spark.

6.2. Selection algorithm used in enough memory

Computation carried out in memory is a huge advantage in Spark framework. When we cache the

repeated RDDs partitions, it will enhance the system performance and minimize the execution time.

We will use the PageRank algorithm to test the system performance under different conditions.

We use nine datasets to verify whether the selection algorithm will boost the system performance in

different memory, and we record the execution time. Figure 7(a) and (c) gives each dataset average

memory usage rate based on their usage curve from ganglia when each curve is in a stable condition.

At the same time, by using ganglia, we can make sure each dataset computes with enough memory.

Figure 7(b) and (d) gives each dataset corresponding execution time in 1G and 2G memory.

When each dataset is computed in enough memory, a replacement algorithm will not play an

important role, while our selection algorithm will enhance the system performance. According to the

scheduling model, it chooses the multiple occurrences of RDDs to cache their partitions in memory.

If the identical RDDs appear again, it does not need to recompute them, which reduces the system

computation cost and speeds up the whole iterative computation.

It can be seen in Figure 7(a) and (c) that when increasing the number of nodes and edges, mem-

ory occupancy rate gets higher because Spark computation is carried out in memory and memory

is not released until the last iterative computation. More importantly, PageRank is a data-intensive

application, which needs large amounts of overhead including taking up much memory. In addi-

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2473–2486

DOI: 10.1002/cpe



2484 M. DUAN ET AL.

tion, the iterative computation with selection algorithm selects multiple occurrences of RDDs to

cache their partitions in memory, so the memory occupancy rate of Spark is higher than it without

the algorithm.

In Figure 7(b) and (d), it can be seen that an iterative calculation process with selection algorithm

spends less time, while the same dataset without the algorithm costs more time to finish computation.

The main reason is that our selection tries its best to select more recurring variables to be cached,

so that the subsequent computations which demand the variables can read the data from memory

instead of obtaining those through the remote transmission during the computation process. Thus,

our algorithm speeds up the whole computation. Compared with our selection algorithm, that default

Spark caches the recurring variables is decided by programmers, which is full of uncertainties.

Different programmers will choose different strategies, causing different results. It is likely to cache

many frequently used variables while miss many high frequency used variables. More importantly,

whether the process should cache the variables is mainly based on the experience. The uncertainty

cannot adequately exploit the strengths of the persistence characteristic of Spark. Although Spark

with our algorithm likely uses more memory, which seems more cost, relative to the uncertainties

of default Spark, even errors caused by programmers, our selection algorithm improves the sys-

tem efficiency and enhances the system reliability. Meanwhile it makes the system run faster, and

improves its performance. Relative to the more cost caused by our selection algorithm, Spark with

our algorithm gains much larger value.

6.3. WR algorithm in different conditions

When Spark uses selection algorithm to select many RDDs to cache their partitions in memory while

the memory is approach to saturation, it uses LRU replacement algorithm to manage and reallocate

memory. Replacement algorithm plays an important role in this condition, and we compare LRU

replacement algorithm with our WR algorithm. We use all datasets listed to test with PageRank

algorithm under the condition of 1G, 2G, and 4G. We observe the memory usage rate in real time

from ganglia. After we conduct experiments repeatedly, we find that the plots of five slaves are

roughly the same. The reason for it is that a Spark platform adopts load balancing policy to manage

the resource, and all the workers use the uniform distribution for datasets. So we only show the

memory usage of one node, and we just illustrate the average memory usage rate during the stable

process of iterative computation. In Figure 8 (a),(c), and (e), we will show memory occupied in 1G,

2G, and 4G conditions, and at the same time, we observe the execution time of iterative computation

process by using the LRU algorithm and the WR algorithm in Figure8 (b),(d), and (f).

It can be learnt in Figure8(a),(c), and (e) that when the iterative computation is with WR policy,

the memory occupancy rate is almost the same as the computation with LRU policy. This is primarily

due to the fact that whether Spark runs with the LRU algorithm or the WR algorithm, it uses selection

algorithm to select the value RDDs, and the LRU algorithm or the WR algorithm is the replacement

algorithm which does not have a great effect on memory size.

In Figure 8(b),(d), and (f), we can see that the execution time with LRU algorithm or WR algo-

rithm is roughly close to each other, because the replacement policies do not have much effect on

the performance in enough memory. With increasing the number of nodes and edges, there will

be no enough memory to cache the partitions, and replacement policies will play an important

role in this computation process. The three figures show that Spark handles computation with WR

algorithm faster than it with LRU algorithm in insufficient memory. The most important reason is

that LRU algorithm only takes an attention on whether the partitions are recently used, while WR

algorithm considers the sizes of partitions, the computation cost for partitions, and the number of

use for partitions. The partitions which are not used recently do not mean that they will not be

used frequently in the future. When the weights of replaced partitions are higher, it needs more

time to read them from disk or recompute them according to the lineage. The partitions chosen by

LRU algorithm cannot make sure it is the suitable one to be replaced while WR algorithm which

considers partition size, its computation cost, and its number of use makes sure the replaced par-

tition to be more valueless. Because its reasonable consideration makes Spark with WR algorithm

runs faster than it is with LRU algorithm.
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Figure 8. WR algorithm compared with least recently used (LRU) algorithm for different memory. WR,
weight replacement.

7. CONCLUSION

Spark is an effective distributed computation framework for processing amounts of data-intensive

applications. It has a better advantage over Hadoop on iterative computations because all com-

putations in Spark are based on memory. However, Spark does not make a good mechanism to

choose reasonable RDDs to cache their partitions in memory, which does not make full use of in-

memory storage mechanism. So we use our proposed selection algorithm to choose value RDDs

according to DAG before tasks are performed. The results show that iterative computation with

selection algorithm handles faster than without that.

When the memory which is used to cache partitions is full of partitions, Spark adopts the LRU

algorithm to select the LRU partitions to be replaced. It does not consider other factors, while our
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proposed WR algorithm considers the partitions’ computation cost, the number of use for partitions,

and the sizes of the partitions. Experiments show that Spark with the WR algorithm shows better

performance than LRU policy in insufficient memory.
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