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Abstract

This paper presents general approaches for addressing some of the most important issues in 

predictive computational oncology concerned with developing classes of predictive models of 

tumor growth. First, the process of developing mathematical models of vascular tumors evolving 

in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the 

most plausible models among these classes, given relevant observational data; third, the statistical 

calibration and validation of models in these classes, and finally, the prediction of key Quantities 

of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most 

challenging aspects of this endeavor is that all of these issues often involve confounding 

uncertainties: in observational data, in model parameters, in model selection, and in the features 

targeted in the prediction. Our approach can be referred to as “model agnostic” in that no single 

model is advocated; rather, a general approach that explores powerful mixture-theory 

representations of tissue behavior while accounting for a range of relevant biological factors is 

presented, which leads to many potentially predictive models. Then representative classes are 

identified which provide a starting point for the implementation of OPAL, the Occam Plausibility 

Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) 

and to determine if the model is a valid tool for predicting tumor growth and morphology (in 

vivo). All of these approaches account for uncertainties in the model, the observational data, the 

model parameters, and the target QOI. We demonstrate these processes by comparing a list of 

models for tumor growth, including reaction–diffusion models, phase-fields models, and models 

with and without mechanical deformation effects, for glioma growth measured in murine 
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experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in 

laboratory animals while demonstrating successful implementations of OPAL.
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1. Introduction

The last decade has seen an explosion in literature on mathematical and computational 

models of the invasion and growth of tumors in living tissue. Examples include the recent 

survey paper,27 books,9,10 and the papers.2,3 An elusive goal of studies in this broad area has 

been to create predictive models that capture the highly-complex array of biological, 

chemical, and physical events leading to the emergence and growth or decline of cancer in 

living organisms.41,42

The major challenges in tumor growth modeling remain the following: (1) Model selection. 

Among the enormous number of possible models covering a huge range of physical and 

biological events, which models are the “best” for predicting key Quantities of Interest 

(QOIs) in characterizing and measuring tumor growth? (2) Model parameters. How can we 

determine reasonable values or meaningful statistical representations of the multitude of 

parameters that appear in comprehensive models of tumor growth? (3) Observational data. 

How can one access observational data, both in vitro and in vivo data, to inform 

computational models and, at the same time, cope with experimental noise and inevitable 

errors in the processes and systems used to collect and process data? (4) Algorithms. What 

new computational algorithms are needed to cope with stochastic systems, highly-complex 

geometries, very large statistical sampling problems, numerical stability, very large scalable 

parallel computing requirements, error estimation and control, adaptive meshing, statistical 

inversions, image segmentation, classification and registration, and other computational 

issues? (5) Results and actions. How is the validity of the model predictions assessed; how is 

the uncertainty in the predicted QOIs quantified; and how can the model predictions guide 

effective therapies for controlling or eliminating tumor growth?

While some progress has been made in recent years in all of these grand-challenge areas, 

many open problems remain, and the development of approaches to tumor growth modeling 

remains a subject of active research. In Refs. 15 and 26 general phenomenological models of 

growth of tumors in living tissue are proposed and a Bayesian setting is presented as a basis 

for statistical calibration and validation of tumor models. The notion of Bayesian model 

plausibilities, mentioned in the classical work of Jeffreys,18 was introduced in Ref. 28 as a 

rigorous approach to the selection of tumor growth models. A general class of multi-species 

tissue models of tumor growth is presented in Ref. 24 and algorithms for assessing the 

sensitivities of model parameters and for solving stochastic systems describing such models 
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is given in Ref. 23. The Occam Plausibility Algorithm (OPAL) has been proposed as an 

adaptive process for model selection and validation in the presence of uncertainties, 12,25 and 

has been applied to the classical problem of generating coarse-grained molecular models for 

large atomistic systems. Its application to the selection of tumor models is taken up for the 

first time in the present study.

In this work, we develop a general framework for constructing models of tumor growth that 

begins with the construction of classes of phenomenological models of tissue behavior. For 

observational data, we draw from work on glioma rat models described in Ref. 17.

In Sec. 2, we describe a general approach for developing a large class of models that 

employs a combination of continuum mixture theory to handle large numbers of interacting 

species, the balance laws of continuum physics, and the principal hallmarks of cancer 

advocated in Refs. 13 and 14. From this we lay down a large family of models that include 

the phase-field models of Ref. 24, the reaction–diffusion models of Refs. 38 and 39, and the 

effects of mechanical deformation of tumors and the extracellular matrix.

2. Construction of Mathematical Models of Tumor Growth

The major challenges in developing phenomenological models of tumor growth are: (1) to 

cope with the highly heterogeneous system of interacting constituents in the complex 

environment encountered in living tissue (viable tumor cells, hypoxic cells, extracellular 

matrix, nutrients, etc.); (2) to develop mathematical relations that are consistent with (and do 

not violate) basic physical laws; and (3) to incorporate mathematical characterizations of 

biological phenomena generally accepted to be responsible for the emergence, growth, or 

decline of cancer in living organisms. To address (1), we appeal to mixture theory, in which 

an interacting mass of species is represented by N scalar fields representing the volume 

fractions or mass concentrations of each constituent. To address (2), we again call upon the 

very successful theory of continuum mechanics of mixtures, and to address (3) we attempt to 

develop mathematical characterizations of hypotheses suggested by the well-known eight 

Hallmarks of Cancer of Hanahan and Weinberg.14 We provide brief reviews of these 

fundamental components in the subsections that follow. As will become evident, this model-

building strategy leads to a very large class of possible models of tumor growth. Which 

models are valid among these is a central question in predictive science and a subject taken 

up in Secs. 3 and 4.

2.1. Continuum mixture theory

The fundamental idea underlying continuum mixture theory, developed in the early papers of 

Truesdell,35 Truesdell and Toupin,36 Eringen and Ingram11 and described in the 

comprehensive memoir of Bowen4 and the monograph of Rajagopal and Tao,31 is that a 

material body ℬ can be considered to be composed of N constituent species ℬ1, ℬ2, …, ℬN 

that occupy a common portion Ω of physical space at the same time. Each constituent is 

assigned a mass density ρ̂α, representing the mass of the αth constituent per unit volume, 

considered as a function of the spatial position x of material points of ℬ and of time t. The 

mass density of the mixture is then  and the mass concentration of 
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the αth constituent is defined by cα = ρα̂/ρ. If dvα is a differential volume element occupied 

by constituent α and dv is a volume element containing point (x, t), then ϕα(x, t) = dvα/dv is 

the volume fraction of the αth constituent at the point. We have the relations, ρcα = ραϕα = 

ρα̂, and

(2.1)

Thus, the major feature of a continuum mixture theory is that one can distinguish one 

species from another at a point (x, t) in a body at time t by simply specifying its volume 

fraction ϕα(x, t) (or its mass concentration cα(x, t)), thereby avoiding the need to impose 

interface conditions between different species, all subject to conditions (2.1). The influence 

of one species on another is manifested through flux and source contributions that enter 

through imposing conservation (balance) laws drawn from continuum physics. Confining 

ourselves to mechanical phenomena by ignoring thermal effects, these laws at the 

constituent level take on the following forms:

Conservation of mass:

(2.2)

Conservation (balance) of linear momentum:

(2.3)

Conservation (balance) of angular momentum:

(2.4)

Conservation of energy:

(2.5)

The second law of thermodynamics (the Clausius–Duhem inequality):

(2.6)
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Here dα/dt = d/dt+vα · ∇, ∇ being the spatial gradient operator and uα = vα − v. The 

definition of terms used in these relations is presented in Table 1. Full details on this theory 

and the role of constraints on the species balance laws imposed by the entropy inequality 

and the sums of the constituent laws that must be consistent with the full-mixture balance 

laws for the continuum are laid out in Ref. 26.

Our next step is to reduce the complexity of this system through the use of common 

simplifying assumptions: we shall assume that ρα = ρ0 = constant for all species, neglect 

inertial effects, set mα = 0 (i.e. a mono-polar material), bα = 0, ignore temperature and 

thermal effects, and treat the tumor as a solid mass of tumor cells; they are all higher-order 

effects and need not be considered in this first contribution. Following Ref. 26, the 

constitutive law for mass flux entering constituent α is

(2.7)

where Mαβ(ϕ) is the positive-semidefinite mobility matrix which may depend upon the 

volume fractions ϕ = (ϕ1, ϕ2, …, ϕN) and μαβ is the chemical potential. This particular law 

for mass flux manifests itself naturally from the second law of thermodynamics as the 

singular law, linear in the chemical potential, that is consistent with the Clausius–Duhem 

inequality (see Ref. 26). As shown in Ref. 26, if the Helmholtz free energy per unit volume 

Ψα is a function of species volume fractions and their spatial gradients, then μαβ can be 

derived from Ψα according to

(2.8)

With these assumptions and (2.7) and (2.8) enforced, the evolution of various species 

described by (2.2) is now governed by the equation

(2.9)

The source terms Sα(ϕ) must reflect the interactions taking place among constituents that 

encompass biological events leading to proliferation, hypoxic and necrotic differentiation of 

cancer cells, nutrient transport, etc.

Likewise, a possible constitutive equation for the partial stress Tα with hyperelastic 

deformable constituents is given by
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(2.10)

where Fα is the deformation gradient, Wα is the stored energy, and  is the right 

Cauchy–Green tensor for the αth constituent. Clearly, the mechanical behavior of the 

mixture can be characterized by free energy functions Ψα which are functions of volume 

fractions, their gradients, and some deformation measure such as Cα.

2.2. The hallmarks of cancer

The remaining steps in developing predictive models of tumor growth must attempt to 

capture a multitude of complex biological events present in the differentiation of cancer cells 

in living tissue. In a famous pair of papers, Hanahan and Weinberg13,14 proposed eight 

Hallmarks of Cancer as traits shared by the majority of cancer types. These are depicted in 

Fig. 1. The source terms Sα in (2.9) must be designed to model these traits in some fashion.

As an example, consider a 12-species model in which the volume fraction of cell types are:

• ϕ1 = ϕT = Tumor cells;

• ϕ2 = ϕH = Hypoxic cells;

• ϕ3 = ϕN = Necrotic cells;

• ϕ4 = ϕC = Healthy cells;

• ϕ5 = ϕσ = Nutrient-rich extracellular water (e.g. glucose);

• ϕ6 = ϕσo = Nutrient-poor extracellular water;

• ϕ7 = ϕTAF = Tumor Angiogenesis Factor (TAF) rich extracellular water 

(promoting vascular sprouting to supply nutrients to cancer cells);

• ϕ8 = ϕTAFo = TAF-poor extracellular water;

• ϕ9 = ϕe = Proliferative endothelial cells;

• ϕ10 = ϕeo = Non-activated endothelial cells;

• ϕ11 = ϕMDE = Matrix Degrading Enzyme (MDE) rich extracellular water;

• ϕ12 = ϕMDEo = MDE-poor extracellular water.

We also model an unknown displacement field, u = u(x, t), to depict motions (and 

deformations) and measure mechanical effects present in the tissue domain. The 

extracellular matrix (ϕ13 = ϕECM), the surrounding material that lies between cells and plays 

important role on the pattern of new blood vessels, is assumed to be non-motile and is 

degraded by soluble MDE and remodeled by the tumor cells (see Ref. 27). Following Ref. 

24, we only need to model the complementary species, e.g. ϕC = 1 – ϕT. Examples of source 

terms designed to depict biological events laid out in Fig. 1 are:
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(2.11)

where ℋ (ϕ) is the Heaviside function whose value is one if ϕ is positive and zero otherwise. 

In (2.11), the tumor cells can grow when the proliferative tumor cells (ϕP = ϕT –ϕH –ϕN) 

uptake nutrients in order to enter mitosis (divide) and decrease due to the apoptosis of the 

viable cells (ϕV = ϕP +ϕH). The hypoxic cells can die or change to other phenotypic states 

depending on the nutrient threshold. If ϕσ < σPH, the proliferative cells become hypoxic; 

however, if the nutrient volume fraction increases, so ϕσ > σHP, the hypoxic cells return to 

the proliferative phenotype, and if ϕσ < σHN, the hypoxic cells change to the necrotic state. 

The nutrient volume fraction can increase due to the growth of new blood vessels. The 

hypoxic cells release TAF that promotes the endothelial cells to proliferate and migrate up 

the TAF concentration gradient toward the source. The MDE are produced by the viable 

tumor cells and has a natural decay. The extracellular matrix is remodeled by the viable 

tumor cells and degraded by the MDE. In order to capture the angiogenesis process, we 

integrate to the continuum tissue-scale model an Agent-Based Model (ABM) that guides the 

movement of the endothelial tip cell.23 Results for subclasses of this model can be seen in 

Refs. 24 and 23.

3. Classes of Parametric Models of Tumor Growth

The fundamental idea of a mathematical model of a natural event is that a model embodies a 

mathematical abstraction based of inductive and testable hypotheses laid down in an attempt 

to explain observed phenomena. Models are surrogates of scientific theory and, thus, are 

representatives of a fundamental pillar of science designed to acquire knowledge about the 

causes and effects of physical and biological phenomena and to predict events that occur 

under known or assumed conditions. We subscribe to the philosophy of Box5 who observed 

that “all models are wrong, but some can be useful”. Our goal is not only to develop useful 

models but also methods to estimate exactly how useful models are in predicting of realistic 

phenomena prevalent in tumor emergence and growth.

As a first step, we develop a set of model classes of macroscale (tissue-level) models ℳ of 

the form
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(3.1)

where ℘i(θi) is a class of models parametrized by parameters θi which belong to a parameter 

space Θi ⊂ ℝdi, di < ∞. Each model class is a mathematical model, symbolically written as

(3.2)

where Ai(·) is a collection of mathematical operators, S is the scenario in which the model is 

implemented and ui(S, θi) is the solution to the forward problem. The notion of a model 

scenario is important in the science of model selection and validation: the term scenario is 

used to describe the parameter-independent domain in which the problem (3.2) is posed and, 

interchangeably, the physical environment in which observational data are collected to 

calibrate or validate the model, or to solve the forward problem in the full prediction 

scenario SP. Examples are the collection of in vitro data for a calibration scenario SC, 

collection of in vivo data for validation scenarios SV, and the full-model prediction in a 

scenario SP. Other examples involve cross-validation processes in which a model is 

“trained” in a calibration scenario and then validated or rejected in the validation scenario. 

The application discussed in Sec. 6 involves such scenarios.

3.1. Bayesian model calibration and validation

The use of a Bayesian framework for statistical model calibration and validation in the 

presence of uncertainties is discussed in detail in Refs. 12 and 25. The basic ideas involve 

the following steps:

1. Beginning with one or more calibration scenarios, SC, in which observational 

data, yC, are collected and given a prior probability density, , on the 

vector of model parameters θ ∈ Θ, compute the posterior probability density 

 from the relation

(3.3)

where  is the calibration likelihood function and 

 is the model evidence.

2. Using  as a prior update, the parameters in validation tests in 

validation scenario SV, with observational data yV, using the relation
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(3.4)

with , and  the validation posterior, likelihood and 

evidence Probability Density Functions (PDFs), respectively.

3. Using the updated parameters θ computed in (3.4), solve the forward problem in 

the final validation scenario SV for the model approximation dV (θ) of yV, and 

determine if the prediction accuracy meets a preset tolerance γtol, e.g.

(3.5)

|| · ||being an appropriate norm. If this tolerance is met, the model is declared not 

invalid. Otherwise, the model is invalid and the model is rejected.

4. If the model is declared not invalid, use the validation parameter θ in the full 

prediction scenario SP to solve the forward problem A(θ, SP; u(SP, θ)) = 0 and 

use the solution to compute the QOI Q(u(SP, θ)).

The statistical inverse problems (3.3) and (3.4) are solved using appropriate sampling 

algorithms such as Markov-Chain Monte Carlo (MCMC). The forward problem in Step (4) 

is solved using any appropriate stochastic solver employing, for example, the Monte Carlo 

method, stochastic collocation, etc. (see e.g. Refs. 22, 29 and 23). The norm in (3.5) 

symbolizes any of several measures of distance between the PDFs dV (θ) and yV. We 

frequently employ the Kullback–Leibler divergence DKL(·||·), which measures the difference 

in information content between probability distributions: for PDFs q (data) and p 

(prediction),

(3.6)

 being the space in which observational data are sampled. The choice of a suitable metric 

is often a subjective one. The DKL(·||·) is a natural measure of relative information entropy 

between two PDFs. We may also add weights, such as the variance σ2 in data, yielding 

measures “DKL(σ2)”. We employ such measures in the applications discussed in Sec. 7.

3.2. Model sensitivities

Given a parametric model ℘, with a parameter set θ, the fundamental issue of parameter 

sensitivity naturally arises: to what extent do variations in model parameters affect the target 

QOIs? This question can be addressed by computing model sensitivities — a topic addressed 

extensively in the literature; see, for example, the books of Saltelli.32,33
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The general approach is to pick an output function Y (θ) that depends upon the parameters θ 
(Y (θ) can, in some cases, be taken to be the QOI, Q(θ)) and to compute changes in Y (θ) 

due to small perturbations (δ) in each parameter, taken one at a time, the other parameters 

being held constant. In this way, parameter sensitivity indexes can be computed to assess the 

relative influence of model parameters on Y (θ).

An example of such sensitivity measures is the elementary effects method (see Refs. 32 and 

33):

The total sensitivity of the parameter is given by

(3.7)

where Nt is the number of trajectories. If a parameter is judged to have little impact on the 

outcome Y (θ), then the model featuring this parameter can be discarded, often resulting in a 

great simplification of the model to be used in the prediction of the QOI. Examples of model 

sensitivity calculations for tumor models can be found in Ref. 23.

3.3. Model plausibility

A fundamental question of overriding importance in modeling tumor growth (and, indeed, in 

all of predictive science) is that of selecting the mathematical model most appropriate for the 

predicting QOIs. A general approach to model selection is embodied in the notion of model 

plausibility, attributed originally to Jeffreys18 and later proposed by Chow,7 Beck,1 

Prudencio and Cheung,29 and Oden et al.25 The basic idea is this: given observational data y 

and a set of m models , each model ℘j having its own parameters θj ∈ Θj, 

rewrite Bayes’ rule acknowledging that probabilities are conditional on the model ℘j and the 

set ℳ:

(3.8)

The model evidence is the marginalization of the numerator in (3.8):

(3.9)

We next observe that the evidence (3.9) can be viewed as a likelihood for a discrete Bayesian 

calculation, yielding a new posterior called the posterior model plausibility, ρj,
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(3.10)

Since {ρj} is a probability distribution,

(3.11)

For given data y, the model with the largest plausibility is regarded as the best model in the 

set ℳ.

Other methods of model selection are based on information theory. The most popular among 

these is the Akaike Information Criterion (AIC) (see Ref. 21):

(3.12)

where πlike is the likelihood density, θ̂ is the Maximum Likelihood Estimation (MLE) and kj 

is the number of parameters in model ℘j. The Akaike weights are defined as:

(3.13)

Since , the Akaike weights play a similar role as the plausibilities ρj; the 

model(s) with the largest weights is (are) the best model among the set of models. Similarly, 

we can compute Bayesian Information Criterion (BIC):

(3.14)

where nd is the number of data points, herein nd = 3. The BIC weights:

(3.15)

have the property , and thus, are alternative to the plausibilities and Akaike 

weights as indicators of the best model (see Ref. 21).
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4. OPAL: The Occam Plausibility Algorithm

OPAL is a process for the systematic selection and validation of models in a given set ℳ, 

given calibration observational data yC and validation data yV.12

Briefly stated, OPAL consists of the following steps12,25:

1. A set ℳ of parametric models, as in (3.1), is identified, each with parameters θi 

belonging to an appropriate parameter space Θi, 1 ≤ i ≤ m.

2. A parameter sensitivity analysis is performed to assess the sensitivity of a model 

output function Y (θ) on perturbations in model parameters. Those models with 

parameters not appreciably affecting the output are eliminated, yielding a 

reduced set ℳ̄ of models,

3. The models surviving Step (2) are partitioned into “Occam Categories” 

according to their complexity. Those with the fewest parameters, for example, 

are put in Category 1; those with the next highest number of parameters in 

Category 2, and so forth.

4. Models in setℳ* of Category 1 are calibrated in calibration experiments 

involving calibration data yC, and the Bayesian statistical calibration calculation 

embodied in (3.3), yielding a calibrated set of Category 1 models,

5. The posterior Bayesian plausibilities ρi of all models in ℳ* are computed for the 

calibration data yC according to (3.10). Only the most plausible models with ρi ≥ 

ρj, i, j ≤ k are retained.

6. An experimental validation scenario is constructed yielding validation 

observational data yV, and the most plausible model in Category 1 is used to 

compute a prediction of the observables yV; if the difference between the 

observables and the prediction measured in an appropriate metric or pseudo-

metric is within a preset tolerance γtol, the model is deemed “valid”. If not, one 

returns to Step (3) and repeats the process for the next category of models. If no 

models of any category are deemed valid, one returns to Step (1) and enlarges the 

set ℳ of possible model classes and then proceeds with the steps listed above.

7. Upon identifying a valid model, the forward problem is solved in the prediction 

scenario and the target QOI is computed, completing the prediction process.

All of these steps (see Fig. 2) are designed to cope with uncertainties in the choice of model, 

the model parameters, the observational data, and the target QOIs, all uncertainties generally 

characterized by probability densities.
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5. Applications: Models of Tumor Growth

To demonstrate the theory and procedures presented this far, we consider two representative 

model classes in which tumor evolution depends on tumor cell net growth, diffusion and 

linear elastic deformation. The diffusive mechanisms are taken into account through both 

classical Fickian and generalized diffusion models.8 The latter is driven by a gradient flow, 

characterized by an energy functional that encompasses diffusive gradients.

A key unknown scalar field in all of the models to be considered is the volume fraction ϕT (= 

ϕ1) of tumor cells. The displacement field is denoted by u and we assume that displacement 

gradient is small throughout the tissue domain Ω. Under these conditions, the infinitesimal 

deformation (strain) tensor is given by

(5.1)

The strain tensor may be decomposed into the form

(5.2)

where εs and εg are the mechanical counterpart of strain (due to applied stress) and the 

stress-free strain (strain due to growth), respectively. The total free energy Ψ̃ of the system 

consists of a Ginzburg–Landau component depending only on the mixture species ϕα (ϕT in 

this case) and their gradients ∇ϕα, and a stored energy potential W depending on the ϕα and 

the strain measure ε(u). Thus, if ẽ is the energy per unit (spatial) volume, then:

(5.3)

The strain energy density is assumed to be of the form

(5.4)

where T̄(ϕT ) is a symmetric compositional stress tensor and

(5.5)
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is the linear elastic inhomogeneous material tensor. The function g(ϕT ) allows (ϕT ) to 

vary smoothly across the diffuse interface from the healthy tissue ( h) to the tumor tissue 

( t). It is an interpolation function satisfying g(ϕT = 1) = 1 and g(ϕT = 0) = 0.37,40

The variational derivatives of the energy functional with respect to ϕT and ε define the 

chemical potential and the stress tensor, respectively. In line of (2.8), we have (α = 1):

(5.6)

and

(5.7)

where the later equality results from the assumption of small deformations.

Because the diffusion mechanism occurs on a timescale much larger than that associated 

with inertia, we consider a quasi-static approximation and disregard inertial terms. Thus, the 

moment balance is simply given by

(5.8)

For the avascular tumor evolution considered here, we assume a linear isotropic 

compositional stress of the form T̄(ϕT) = λϕT ℐ, where ℐ is the identity tensor and λ 
depends on the tumor growth rate. Thus, rewriting (5.8) in terms of the displacement vector 

u, we obtain the mechanical equilibrium equation:

(5.9)

A major simplification occurs if we assume that the material is isotropic and homogeneous, 

in which case Hooke’s law holds with the addition of a source term proportional to ∇ϕT:

(5.10)

In (5.10), ν is the Poisson’s ratio and  is the shear modulus, with E the Young’s 

modulus. The definition of the free energy density Ψ(ϕT,∇ϕT ) yields the different tumor 
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growth models considered here. As a simplification, we assume constant mechanical 

properties throughout the whole domain.

5.1. The reaction–diffusion models

In this model family, the mass balance expresses the rate of change of the cancer cell 

population density due to Fickian diffusion and includes the net proliferation of cancer 

cells.41 The latter is modeled by a logistic law and the former may be derived by assuming 

that the total energy functional (5.3) is given by the internal energy of the system: i.e. 

. Then, the chemical potential is simply given by μ = cϕT, yielding the reaction–

diffusion (RD) model:

(5.11)

in which  is the diffusion coefficient.

If we assume that the total energy functional (5.3) is given by the internal energy of the 

system plus the strain energy density we get

(5.12)

Under these hypotheses, we get the reaction–diffusion model with mechanical coupling 

(MD):

(5.13)

The complete RD and MD models incorporating the mechanical deformation effects are 

obtained by including the mechanical equilibrium equation (5.10).

5.2. The phase-field models

The phase-field modeling approach considered here is derived from the models developed in 

Ref. 24. We assume that the tumor microenvironment is a mixture of tumor and healthy 

tissue. For this two-constituent medium, ϕT is scaled so that 0 ≤ ϕT ≤ 1, in which the upper 

and lower bounds represent the tumor and healthy tissue volume fractions, respectively, 

separated by a typically thin interface where 0 < ϕT < 1. The system dynamics is driven by 

the following energy functional,
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(5.14)

which includes the bulk energy density due to local interactions (first term), the interfacial 

energy density (second term) and the strain energy density (third and fourth terms). The 

positive constants Ē and εT are energy scales of the bulk phase and interface, respectively. 

As shown before, the quasi-static mechanical equilibrium is modeled by (5.10). Assuming 

again a logistic tumor growth (recall Eqs. (2.8) and (2.9)), the mass balance yields the 

Phase-Field (PF) model:

(5.15)

Here, we assume a nonlinear tumor cell mobility in the form  so that it 

vanishes wherever there is either only tumor or healthy cells. We note that (5.15) implicitly 

takes into account the deformation on the tumor evolution.

5.3. Deformation feedback on the tumor growth

The stress field developed due to tumor growth affects the cell behavior as well as a large 

variety of cross-talk signals in the microenvironment. Experimental studies6,16,34 have 

shown that the accumulation of compressible stresses inside tumors inhibits tumor growth 

while tensile stress can squeeze blood and lymphatic vessels, decreasing fluid flow and 

eventually increasing tumor aggressiveness. In this work, we are particularly interested in 

the mechanical aspects of the tumor growth regarding their link with tumor cell proliferation 

and motility. We hypothesize that mechanical stresses inhibit tumor growth by damping the 

mobility coefficient or the net rate growth. The damping strength is regulated by the stress 

measure Σ and a scaling constant γ in the form

(5.16)

Thus, we consider three cases: MT:= exp(−γΣ)MT; ; and 

. Here we take for the stress measure,41 Σ, the Von Mises 

stress,
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6. A Representative Set ℳ of Parametric Classes of Tumor Growth Models

We employ the OPAL framework12 for model selection and validation of all tumor growth 

parametric model families introduced in the preceding section. The OPAL framework brings 

together model calibration, determination of sensitivities of outputs to parameter variances, 

and calculation of model plausibilities for model selection. We identify the model classes 

and perform sensitivity analyses of the QOI, here chosen as the tumor volume as a function 

of time or tumor area for 2D depictions obtained from in vivo magnetic resonance imaging 

data.

Table 2 summarizes a set of possible models derived from the previous models where: PF# = 

phase-field model; RD# = reaction–diffusion model without mechanical coupling and MD# 

= reaction–diffusion model with mechanical coupling. We indicate with ✓ if the model 

contains the parameter or variable; otherwise, we leave the cell empty. All models include 

variable tumor volume fraction ϕT, a diffusional/mobility and the net growth rate . 

Likewise, all models that include mechanical deformation consider the elastic parameters G 

and ν, and the compositional growth strength λ. We remark that the phase-field models 

involve the parameters related to the energy scales (Ē and εT ). The models are classified 

into Occam’s categories according to their number of parameters: the model with fewest 

parameters is assigned to Category 1.

7. Numerical Simulation

The scenario that is used for model calibration, validation and prediction is based on data 

that were obtained in the murine model of glioma growth in Ref. 17. We are using the data 

from just one animal, after the first 10 days of tumor growth, it was imaged with Diffusion 

Weighted Magnetic Resonance Imaging (DW-MRI) during an interval of 10 days. With the 

time relative to the date of tumor implantation, data were collected on the 10th, 12th, 14th, 

15th, 16th, 18th and 20th days. The MRI domain encompasses 41×61×16 voxels, each one 

having 250×250×100 μm. In our work we selected the 12th DW-MRI slice, where the tumor 

is observed during all measurements. In Fig. 3, the domain obtained from the MRI is 

presented with the QOI, the area of the tumor, in red.

For the calibration scenario we selected days 10, 12, 14 and 15, where the 10th day is used 

as an initial condition. During the validation step, the initial condition is the glioma at t = 15 

day and days 16 and 18 are used in order to update the PDF of the parameters. Usually, for 

the prediction, the QOI is an unknown. However, in order to illustrate the capabilities of the 

selected model, we left out day 20 to compare with the outcome of our model. We use as an 

initial condition the 18th day in order to predict the tumor area at the 20th day.

All models were implemented in C++ under the libMesh framework.20 The total simulation 

time, including calibration, validation and prediction of each model, requires 10 h on 24 

processors on the Lonestar 5 Cluster, at the Texas Advanced Computing Center (TACC) of 

The University of Texas at Austin (http://www.tacc.utexas.edu). The mesh is constructed 

based on a voxel representation of the brain (see Fig. 4) and the time step is Δt = 0.05 days. 
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For model calibration and validation, we employ a multi-level Monte Carlo algorithm (see 

Ref. 29) that is available in the library QUESO.30

The calibration priors are assumed to have uniform distributions, as presented in Table 3. We 

select the range in order to contain the values calibrated for this data by Ref. 17. The same 

priors are used for all the simulated models.

7.1. Sensitivity analysis

In order to investigate the effects of uncertain input parameters in the tumor growth models, 

we use the elementary effects method for the sensitivity analysis. The domain is the same in 

Fig. 4 and the initial conditions are taken from the 10th day data exhibited in Fig. 3. We 

conduct the simulation until t = 20 days and Nt = 50 trajectories for each model. The total 

number of simulations run is given by Nt ×(#Params+1). Table 4 shows the results for all the 

models in ℳ. Clearly, the area of the tumor is more sensitive to the rate of tumor growth. 

Despite the influence of some of the parameters being very small (on the order of 10−7), we 

retain all the models for the next OPAL steps.

7.2. Model calibration and validation using MCMC

First we evaluate the model in Occam Category 1. Model RD01 is a reaction–diffusion 

model without mechanical deformation, so we only need to calibrate the parameters  and 

. In Fig. 5, the prior and posterior PDF to each parameter is presented.

As in Category 1 we have just one model, the plausibility step is not necessary, so we can 

move forward to the validation step. At the validation step, the posterior from the calibration 

step is used as a prior to the validation step in order to update our knowledge regarding the 

parameters. In Fig. 6, the prior and posterior for the validation step are exhibited. Using this 

new posterior, the forward problem is solved using Monte Carlo sampling and the PDF for 

the area of the tumor is computed. The error between the in vivo data and the model 

simulation is given by the Kullback–Leibler divergence divided by the variance of the data. 

In order to be declared not invalid, , where  is the variance 

at time t. Both the choice of a measure of accuracy (the ) and the tolerance (γtol) are 

subjective choices. The DKL is a common measure of relative entropy between probability 

distributions and is a natural choice in the present setting. The tolerance is a subjective 

threshold picked to generally correspond to relatively close agreement (within 10–15%) of 

the tumor mass (area) observed and that predicted by the model. The model RD01 has 

 and , so, the model is not valid.

The next step is to proceed to the model in Occam Category 2, which is also not valid. In 

Category 3, we have three models with six parameters each. So, after the calibration step we 

compute the plausibility of each model. The most plausible model, in this case model 

MD01, is selected for the validation step. Even though model MD01 is the most plausible, it 

is not a valid model. We continue the simulation until a not invalid model is selected.
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Table 5 presents the results for all the simulations performed. For this specific dataset, model 

PF04 from Category 5 satisfies the prescribed tolerance, with  and 

. In Fig. 7 we compare the mean results for the tumor area at times 16 and 18 

days with their respective in vivo data. It is possible to conclude that model PF04, which is a 

phase-field model that includes the mechanical deformation feedback at the tumor growth 

rate ( ), is not invalid. As the model PF04 is already not invalid, it is not necessary to 

run the more complex model PF05.

Using the validation posterior for the parameters from model PF04, an example of the 

prediction of the model is presented in Fig. 8. As can be seen, the model is able to predict 

the area of the tumor with 9.75% difference from the mean value.

For the next experiment, we replace the plausibility as the tool to select the best model 

among the ones from the same Occam Category, by the AIC weights and the BIC weights. 

These results are presented in Table 6, where the best model is now PF03 for both methods. 

The AIC and BIC weights have the same value, for all the models, as the number of data 

points is the same (nd = 3) and the number of parameters is the same for the models within 

the same Occam Category. Due to the fact that we are computing log πlike(y|θ̂) numerically 

using 104 samples, the computation of the maximum value presents numerical errors. This is 

evident in the fact that different models are selected as the best from their Occam Category.

The plausibility calculation indicates that MD01 is the best among the models in Occam 

Category 3 and PF04 is the best among Category 5. However, when using AIC or BIC 

weights, the best models for Categories 3 and 5 are RD02 and PF03, respectively. This result 

can be justified by the differences in AIC and BIC given by:

As indicated in Ref. 19, if the difference is below 0.5, the evidence against the higher AIC or 

BIC is insignificant.

8. Conclusions

In this work, we employ the OPAL framework for model selection and validation to study a 

large body of tumor growth models. We develop/select 13, thermodynamically consistent, 

continuum tumor growth models, five of them using the phase-field modeling approach and 

the others being reaction–diffusion type models. The proposed models are able to reproduce 

the tumor growth patterns approximating those observed during in vivo experiments. The 

goal is, following Occam’s Razor, to choose the best and simplest model, simplest meaning 

the one with fewest parameters.

We demonstrate that the OPAL is able to assist in the selection of the best tumor growth 

model from a defined set of models. The methodologies and results confirm that the OPAL 

strategy provides a powerful framework for model selection, parameter estimation, and 

model validation in the presence of uncertainties. The use of a Bayesian framework for 
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calibration and validation makes possible the characterization of probability densities 

depicting all relevant parameters.

As a tool to select the best model among the same Occam Category, we use either the model 

plausibility, the AIC weights or the BIC weights. As expected, the AIC and BIC weights 

lead to the same result, indicating in our application example that the model PF03 is the best 

model. However, when we use the posterior plausibility measure, the model selected as the 

best is the PF04. We can conclude that the best approach, for these data and with the tumor 

area as a QOI, is to use a phase-field model with a deformation feedback, either in the 

mobility or the tumor growth rate.

The extension of this study to different scenarios including (for example) radiotherapy and 

chemotherapy treatments, and more refined QOIs that take into account (for example) the 

shape and connectivity of the tumor and the number of cells per voxel, is the target of future 

work.
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Fig. 1. 

A representation of the eight Hallmarks of Cancer discussed in Refs. 12 and 13. Sustaining 

proliferative signaling: the ability to divide even without the presence of growth factor or a 

hyper-response to these signals; Deregulating cellular energetics: the ability to reprogram 

cellular glucose metabolism, and thus cellular energy production; Resisting cell death: 

acquired resistance to signals that lead to cell death (apoptosis); Inducing angiogenesis: the 

ability to induce the growth of new blood vessels when the cells have a low level of nutrients 

and oxygen; Evading growth suppressors: the ability to ignore antiproliferative signals that 

maintain cellular quiescence; Avoiding immune destruction: the ability of cancer cells to 

evade the attack and destruction by the immune system; Enabling replicative immortality: 

the ability to ignore the replicative senescence (cellular old age); Activating invasion and 

metastasis: the ability to spread to other parts of the body and form secondary tumors.
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Fig. 2. 

The OPAL.
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Fig. 3. 

Observational data extracted from MRI images of progressive tumor growth in a murine 

experiment.16
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Fig. 4. 

Voxels from the MRI that capture the domain of the brain.
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Fig. 5. 

 and  for model RD01 at the 

calibration step.
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Fig. 6. 

 and  for model RD01 at the 

validation step.
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Fig. 7. 

Tumor area evolution at slice 12 at t = 16 (a) and (b) and t = 18 (c) and (d).
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Fig. 8. 

Tumor area evolution at slice 12 (t = 20).
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Table 1

Nomenclature for the αth species in an N-species mixture.

ϕα Volume fraction

ρα

Mass density of αth constituent ( )

vα

Velocity field in αth constituent ( )

ραSα Mass supplied to αth constituent by other constituents

ραJα Mass flux entering αth constituent from other constituents

Tα Partial Cauchy stress tensor

mα Intrinsic moment of momentum

p ̂α Momentum supplied by other constituents

bα

Body force ( )

Lα Velocity gradient tensor = ∇vα

εα̂ Energy supplied by other constituents

ϒα Energy supplied by changes in surface tensions and concentrations of nutrient reactions

ηα

Entropy density ( )

Hα Entropy flux

Γα
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Table 3

Calibrated parameters and their priors.

Parameter Prior

MT (0.2, 1.0)

(0.05, 0.35)

c (0.1, 0.55)

(0.2, 1.6)

ĒT (0.15, 0.35)

εT (0.5, 0.7)

E (1.2, 2.8)

ν (0.2, 0.49)

λ (0.001, 0.004)

γ (80, 320)

γg (80, 320)
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Table 5

Results for the OPAL framework using the plausibility for model selection.

Model Occam category Plausibility

RD01 1 n/a 0.92 0.70

PF01 2 n/a 0.65 0.74

RD02 3 0.22

RD03 3 0.14

MD01 3 0.64 0.93 0.72

RD04 4 0.02

MD02 4 0.06

MD03 4 0.02

PF02 4 0.90 0.68 0.76

MD04 5 0.02

PF03 5 0.34

PF04 5 0.64 0.70 0.66

PF05 6 n/a

Math Models Methods Appl Sci. Author manuscript; available in PMC 2017 November 01.



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Lima et al. Page 37

T
a
b

le
 6

R
es

ul
ts

 f
or

 th
e 

O
PA

L
 f

ra
m

ew
or

k 
us

in
g 

th
e 

A
IC

 a
nd

 B
IC

 w
ei

gh
ts

 f
or

 m
od

el
 s

el
ec

ti
on

.

M
o

d
el

O
cc

a
m

 c
a
te

g
o
ry

A
IC

 w
B

IC
w

R
D

01
1

n/
a

n/
a

0.
92

0.
70

P
F

01
2

n/
a

n/
a

0.
65

0.
74

R
D

02
3

0.
41

0.
41

0.
95

0.
72

R
D

03
3

0.
25

0.
25

M
D

01
3

0.
34

0.
34

R
D

04
4

0.
02

0.
02

M
D

02
4

0.
08

0.
08

M
D

03
4

0.
05

0.
05

P
F

02
4

0.
85

0.
85

0.
68

0.
76

M
D

04
5

0.
02

0.
02

P
F

03
5

0.
52

0.
52

0.
64

0.
70

P
F

04
5

0.
46

0.
46

P
F

05
6

n/
a

n/
a

Math Models Methods Appl Sci. Author manuscript; available in PMC 2017 November 01.


	Abstract
	1. Introduction
	2. Construction of Mathematical Models of Tumor Growth
	2.1. Continuum mixture theory
	2.2. The hallmarks of cancer

	3. Classes of Parametric Models of Tumor Growth
	3.1. Bayesian model calibration and validation
	3.2. Model sensitivities
	3.3. Model plausibility

	4. OPAL: The Occam Plausibility Algorithm
	5. Applications: Models of Tumor Growth
	5.1. The reaction–diffusion models
	5.2. The phase-field models
	5.3. Deformation feedback on the tumor growth

	6. A Representative Set ℳ of Parametric Classes of Tumor Growth Models
	7. Numerical Simulation
	7.1. Sensitivity analysis
	7.2. Model calibration and validation using MCMC

	8. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

