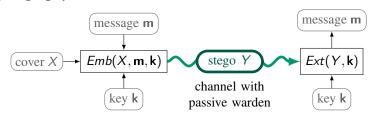
Selection-Channel-Aware Rich Model for Steganalysis of Digital Images


Tomáš Denemark, Vahid Sedighi, Rémi Cogranne, Vojtěch Holub, and Jessica Fridrich

Steganography and steganalysis

► Steganography is the art of secret communication

► Steganographer's job

Modify a cover image to stego image so that it contains a secret message (by flipping LSBs, changing DCT coefficients, ...).

Goal: make the embedding changes statistically undetectable.

▶ Warden's job: Distinguish between cover and stego images by building a detector. If cover source is known, the best detection is achieved using feature-based steganalysis and machine learning.

Steganography in practice

Sender

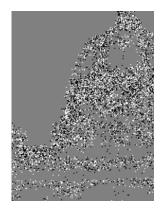
Specifies the cost of changing each pixel in the cover, $\rho_{ij} \geq 0$.

Embeds the message by minimizing the distortion in the form of a sum of costs of all changed pixels, $\sum_{x_{ij} \neq y_{ij}} \rho_{ij}$.

Problem is equivalent to source coding with a fidelity constraint.

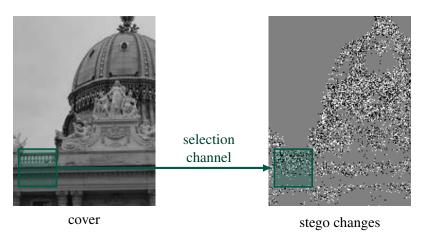
Can be implemented with syndrome-trellis codes that operate near the rate-distortion bound [Filler 2010].

Recepient


Extracts the secret message using the parity-check matrix of the shared syndrome-trellis code.

Content-adaptive steganography

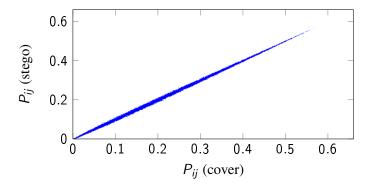
► Embedding prefers changing pixels in textured / noisy areas


cover

stego changes

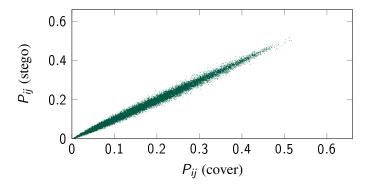
Content-adaptive steganography

► Embedding prefers changing pixels in textured / noisy areas

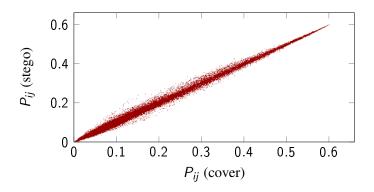

Selection channel

► Formally, the selection channel are the probabilities of changing pixel *ij*:

$$p_{ij} = \frac{e^{-\lambda \rho_{ij}}}{1 + e^{-\lambda \rho_{ij}}},$$


- $\lambda \geq 0$ parameter controlling the payload
 - \triangleright ρ_{ii} pixel "costs" computed from cover image x
 - costs dictated by content + noise
- ► Since stego changes are subtle: ρ_{ij} from cover $\approx \rho_{ij}$ from stego image

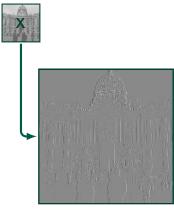
Selection channel recoverability, WOW


[Holub, IEEE WIFS 2012] Designing Steganographic Distortion Using Directional Filters

Selection channel recoverability, S-UNIWARD

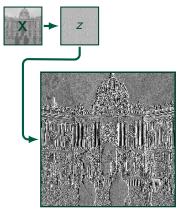
[Holub, EURASIP 2014] Universal Distortion Function for Steganography in an Arbitrary Domain

Selection channel recoverability, HILL

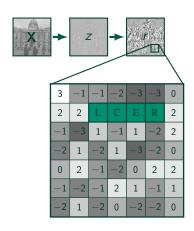

[Li, ICIP 2014] A New Cost Function for Spatial Image Steganography

Using Selection Channel for Steganalysis

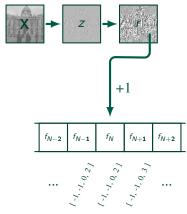
- ▶ [BOSS, IH 2011] no successful attack on HUGO based on approximate knowledge of the selection channel.
- ► [Schöttle et al., WIFS 2012] improved WS detector for naive content-adaptive LSB replacement.
- ▶ [Denemark, SPIE 2014] first successful attack on modern stego scheme that utilized an artifact in selection channel.
- ► [Tang, ACM IH & MMSec 2014] thresholded SRM first general purpose attack using selection channel.
- ► [Denemark, WIFS 2014] maxSRMd2 (this presentation)



cover X

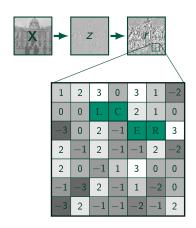

noise residual z

- $ightharpoonup z_{ij} = x_{i,j} \operatorname{Pred}(\mathcal{N}(x_{ij}))$
- ▶ Pred($\mathcal{N}(x_{ij})$) ... pixel predictor on neighborhood \mathcal{N}
- ► linear and min/max filters
- $ightharpoonup z_{ij}$ has narrower dynamic range
- better SNR (stego noise to image content)

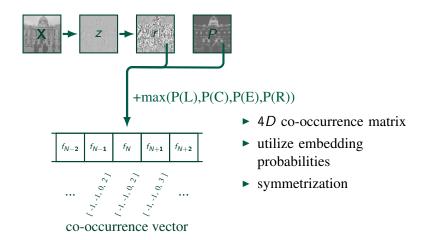


quantized residual r

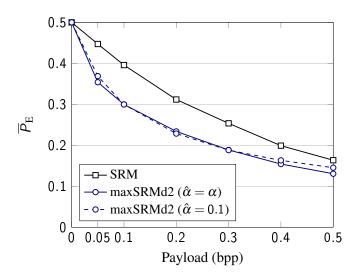
- $ightharpoonup z_{ij}
 ightharpoonup r_{ij} = Q_{\mathcal{Q}}(z_{ij})$
- ▶ T ... truncation threshold
- ▶ q ... quantization step (SRM uses q = 1, 1.5, 2)


- ► collect quartets of values
- horizontal and vertical directions

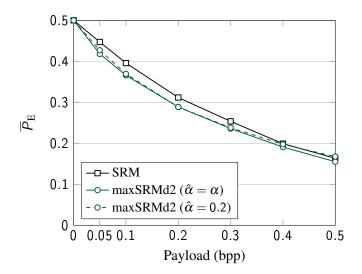
co-occurrence vector

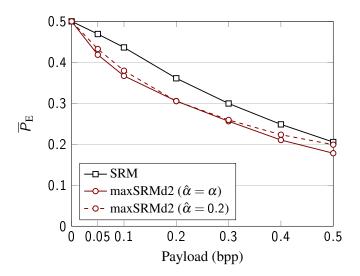

- ► 4D co-occurrence matrix
- symmetrization

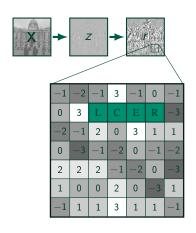
Co-occurrences in maxSRMd2



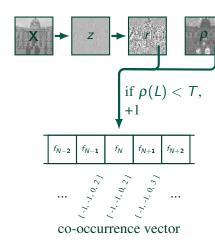
- ► collect quartets of values
- horizontal and vertical directions
- twice as many symmetries


Co-occurrences in maxSRMd2

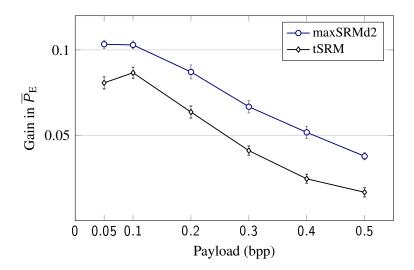

Detection gain w.r.t. SRM (WOW)


Detection gain w.r.t. SRM (S-UNIWARD)

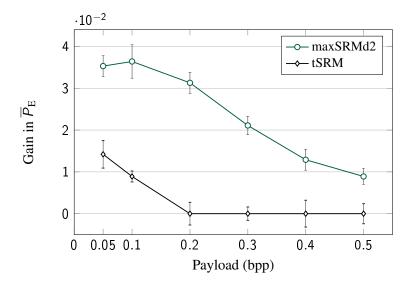
Detection gain w.r.t. SRM (HILL)



Co-occurrences in thresholded SRM (tSRM)


- ► collect quartets of values
- horizontal and vertical directions

Co-occurrences in thresholded SRM (tSRM)



- ► 4D co-occurrence matrix
- ▶ utilize only some values
- ► symmetrization

Comparison between maxSRMd2 and tSRM (WOW)

Comparison between maxSRM and tSRM (S-UNIWARD)

Summary

- maxSRM is a general-purpose feature set capable of utilizing the selection channel for detection of content-adaptive steganography
- Overly content-adaptive embedding hurts security (WOW)
- When designing steganography, selection-channel attacks need to be considered
 - ▶ often, improvement w.r.t. SRM leads to bigger loss w.r.t. maxSRM
- ► Matlab code available from http:\\dde.binghamton.edu\download