
 Open access Journal Article DOI:10.1017/S0960129509990351

Selection functions, bar recursion and backward induction — Source link

Martín Hötzel Escardó, Paulo Oliva

Institutions: University of Birmingham, Queen Mary University of London

Published on: 01 Apr 2010 - Mathematical Structures in Computer Science (Cambridge University Press)

Topics: Mutual recursion, Double recursion, Structural induction, Recursion and Strong monad

Related papers:

 Sequential games and optimal strategies

 On the computational content of the axiom of choice

 Computational interpretations of analysis via products of selection functions

 Applied Proof Theory: Proof Interpretations and their Use in Mathematics

 Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes

Share this paper:

View more about this paper here: https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-
4uf590mxae

https://typeset.io/
https://www.doi.org/10.1017/S0960129509990351
https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-4uf590mxae
https://typeset.io/authors/martin-hotzel-escardo-4cbnlq7xv4
https://typeset.io/authors/paulo-oliva-2m48mzb3wg
https://typeset.io/institutions/university-of-birmingham-3r0e0n04
https://typeset.io/institutions/queen-mary-university-of-london-2dj97w38
https://typeset.io/journals/mathematical-structures-in-computer-science-1hi82pc3
https://typeset.io/topics/mutual-recursion-3e16f8nl
https://typeset.io/topics/double-recursion-y6vjzaka
https://typeset.io/topics/structural-induction-17wrh65o
https://typeset.io/topics/recursion-3oha8jlv
https://typeset.io/topics/strong-monad-1kdjyz7a
https://typeset.io/papers/sequential-games-and-optimal-strategies-2q1b0e3aex
https://typeset.io/papers/on-the-computational-content-of-the-axiom-of-choice-3ubzf47q69
https://typeset.io/papers/computational-interpretations-of-analysis-via-products-of-3s1dqx5cv5
https://typeset.io/papers/applied-proof-theory-proof-interpretations-and-their-use-in-1jtudlay7x
https://typeset.io/papers/uber-eine-bisher-noch-nicht-benutzte-erweiterung-des-finiten-32ja4bch92
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-4uf590mxae
https://twitter.com/intent/tweet?text=Selection%20functions,%20bar%20recursion%20and%20backward%20induction&url=https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-4uf590mxae
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-4uf590mxae
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-4uf590mxae
https://typeset.io/papers/selection-functions-bar-recursion-and-backward-induction-4uf590mxae

University of Birmingham

Selection Functions, Bar Recursion and Backward
Induction
Escardo, Martin; Oliva, P

DOI:
10.1017/S0960129509990351

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Escardo, M & Oliva, P 2010, 'Selection Functions, Bar Recursion and Backward Induction', Mathematical
Structures in Computer Science, vol. 20, no. 2, pp. 127-168. https://doi.org/10.1017/S0960129509990351

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© Cambridge University Press 2010
Eligibility for repository checked July 2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. May. 2022

https://doi.org/10.1017/S0960129509990351
https://doi.org/10.1017/S0960129509990351
https://birmingham.elsevierpure.com/en/publications/6cf9143f-4cf6-4bf8-9167-afb74e6c37cb

Mathematical Structures in Computer
Science
http://journals.cambridge.org/MSC

Additional services for Mathematical Structures in
Computer Science:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Selection functions, bar recursion and backward induction

MARTÍN ESCARDÓ and PAULO OLIVA

Mathematical Structures in Computer Science / Volume 20 / Special Issue 02 / April 2010, pp 127 - 168
DOI: 10.1017/S0960129509990351, Published online: 25 March 2010

Link to this article: http://journals.cambridge.org/abstract_S0960129509990351

How to cite this article:
MARTÍN ESCARDÓ and PAULO OLIVA (2010). Selection functions, bar recursion and backward
induction. Mathematical Structures in Computer Science, 20, pp 127-168 doi:10.1017/
S0960129509990351

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/MSC, IP address: 147.188.224.215 on 30 Jul 2014

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Math. Struct. in Comp. Science (2010), vol. 20, pp. 127–168. c© Cambridge University Press 2010

doi:10.1017/S0960129509990351

Selection functions, bar recursion and

backward induction

MART ÍN ESCARDÓ† and PAULO OLIVA‡§

†University of Birmingham, Birmingham B15 2TT, U.K.

Email: m.escardo@cs.bham.ac.uk
‡Queen Mary University of London, London E1 4NS, U.K.

Email: paulo.oliva@eecs.qmul.ac.uk

Received 2 July 2009; revised 11 November 2009

Bar recursion arises in constructive mathematics, logic, proof theory and higher-type

computability theory. We explain bar recursion in terms of sequential games, and show how

it can be naturally understood as a generalisation of the principle of backward induction

that arises in game theory. In summary, bar recursion calculates optimal plays and optimal

strategies, which, for particular games of interest, amount to equilibria. We consider finite

games and continuous countably infinite games, and relate the two. The above development

is followed by a conceptual explanation of how the finite version of the main form of bar

recursion considered here arises from a strong monad of selections functions that can be

defined in any cartesian closed category. Finite bar recursion turns out to be a well-known

morphism available in any strong monad, specialised to the selection monad.

1. Introduction

In this paper we define a generalisation of sequential games and investigate constructions

of optimal outcomes and strategies via a form of bar recursion (Berardi et al. 1998; Berger

and Oliva 2006; Spector 1962), which we propose as a formalisation of the principle of

backward induction from game theory (Nisan et al. 2007). Our sequential games are

defined in terms of rounds, where Xi are the possible moves at round i, leaving open both

the number of players and who plays at each round. The outcome of a game is specified

by an n-ary predicate p : Πn−1
i=0 Xi → R, and the aim of the game by a quantifier for each

round of the game. For instance, assume that R is the set � = {true, false} of booleans,

and consider a game between two players, playing in alternating rounds, with the first

player trying to force the outcome to be the value true while the second player tries to

obtain the opposite outcome false. The first player has a winning strategy if and only if

∃x0∀x1∃x2∀x3 . . . p(x0, . . . , xn−1).

On the other hand, assuming the aim at each round is to force the outcome to be the value

true, the existence of a winning strategy corresponds to the satisfiability of the predicate

§ The second author gratefully acknowledges the support of the Royal Society under grant 516002.K501/

RH/kk.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 128

p, that is,

∃x0∃x1 . . . ∃xn−1p(x0, . . . , xn−1).

Dually, if the goal of each round is to obtain a final outcome false, the non-existence of

a winning strategy corresponds to the tautology of the predicate p, that is,

∀x0∀x1 . . . ∀xn−1p(x0, . . . , xn−1).

Now consider games with more than two outcomes, for example, R = {−1, 0, 1}. Following

up from our first example, suppose the outcome 1 means that the first player wins, −1

means that the second player wins, and 0 stands for a draw. In this case, the existence of

a non-losing strategy for the first player is expressed as
(

sup
x0∈X0

inf
x1∈X1

. . . sup
xn−2∈Xn−2

inf
xn−1∈Xn−1

p(x0, . . . , xn−1)

)
� 0.

Similarly, if all inf functionals are replaced by sup, this corresponds to a game where

each round is trying to maximise the final global payoff p(x0, . . . , xn−1). In this case, if

R = �n and at each round i we are trying to maximise the i-coordinate of the outcome,

the existence of a winning strategy corresponds to the existence of a profile in Nash

equilibrium for sequential games (Nisan et al. 2007).

Summarising, the goal at each round i in an n-round game is defined via an outcome

quantifier,

φi : (Xi → R) → R,

which we leave open in the definition of the game. When φi are the standard quantifiers

∃, ∀ : (X → �) → � or the supremum and infimum functionals sup, inf : (X → R) → R,

where R is a closed and bounded set of real numbers, we obtain the examples mentioned

above. We then define the product of generalised quantifiers and use it to define notions

such as optimal play, outcome and strategy.

Some generalised quantifiers φ : (X → R) → R have selection functions, that is, functions

ε : (X → R) → X

satisfying φ(p) = p(ε(p)). For example, a selection function for the supremum functional

sup: (X → R) → R, when it exists, gives a point at which p attains its maximum

value max p. We show that, when outcome quantifiers have selection functions, an

optimal strategy for the game can be computed via a suitably defined product of

corresponding selection functions. This product will turn out to appear not only in game

theory (corresponding to backward induction (Nisan et al. 2007)), but also in algorithms

(corresponding to backtracking (Valiente 2002)) and proof theory (corresponding to bar

recursion (Berardi et al. 1998; Berger and Oliva 2006; Spector 1962)), among others.

We then consider the infinite iteration of the binary product of selection functions,

and discuss how this gives optimal strategies in finite games of unbounded length. Both

the finite and infinite products considered here are generalisations of the first author’s

paper Escardó (2008). This is explained in Section 5, where we also show how the infinite

product amounts to a form of bar recursion.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 129

The above development is followed by a conceptual explanation of how the finite

version of the main form of bar recursion considered here arises from a strong monad

of selection functions that can be defined in any cartesian closed category (Kock 1972;

Mac Lane 1971). The finite form of bar recursion turns out to be a well-known morphism

available in any strong monad, specialised to the selection monad.

1.1. Organisation of the paper

In Section 2 we discuss generalised quantifiers, finite products of quantifiers and sequential

games. Section 3 covers selection functions, finite products of selection functions and the

calculation of optimal strategies. Section 4 describes some applications. In Section 5 we

consider infinite products of selection functions and quantifiers, and bar recursion, and in

Section 6, the continuation and selection monads. In Section 7 we discuss some further

work based on the work in this paper.

1.2. Background and pre-requisites

This paper has been deliberately written so that readers who are not familiar with certain

categorical notions should be able to follow Sections 2–4 without the need to familiarise

themselves with such concepts. These sections are formally developed in the generality of

cartesian closed categories, but can be read as if we were working with sets and functions

as in ordinary mathematics (see below). Sections 5 and 6, on the other hand, rely on and

apply to cartesian closed categories other than that of sets.

Recall that a category is said to be cartesian closed if it has finite products 1 and X×Y ,

and function spaces (X → Y), often written Y X in the literature, characterised by a natural

bijection between maps A × X → Y and A → (X → Y) (see Mac Lane (1971)), given

by currying and uncurrying in lambda-calculus terminology. Recall also that cartesian

closedness is precisely what is needed in a category in order to interpret the simply-typed

lambda-calculus (Lambek and Scott 1986). In the category of sets, the function space

(X → Y) is the set of all functions X → Y , and in certain cartesian closed topological

spaces, (X → Y) is the set of continuous maps with a suitable topology (see, for example,

Escardó et al. (2004)).

The main cartesian closed categories of interest for this work include:

(i) that of sets and functions, and more generally toposes (Johnstone 2002);

(ii) Howard–Bezem majorisable functionals (Bezem 1985);

(iii) spaces with extended admissible representations in the sense of Schröder (2002),

(iv) several categories of continuous maps of topological spaces (Escardó et al. 2004),

such as k-spaces and QCB spaces (Battenfeld et al. 2007), Kleene–Kreisel spaces and

continuous functionals (Normann 1980) and various categories of domains under the

Scott topology (Abramsky and Jung 1994);

(v) several categories of effective maps of effectively presented objects, such as Kleene–

Kreisel computable maps (Normann 1980), effectively given domains (Smyth 1977),

and the effective topos and realisability toposes, among others.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 130

When working with our underlying cartesian closed category, we reason with generalised

elements and the λ-calculus. So, for example, for any given m : X × X → X, the equation

m(x, y) = m(y, x) amounts to the element-free equation m = m ◦ 〈π1, π0〉, where π0, π1 are

the projections. If m is regarded as a variable rather than a constant, this equation is to

be understood as λm.m = λm.m ◦ 〈π0, π1〉. A global element of X is a map 1 → X, and

a generalised element of X is a map S → X, where S is called the stage of definition

of x. We write x : X, and occasionally x ∈ X by an abuse of language, to mean that

x is a generalised element of X at an unspecified stage S , which never needs to be

mentioned explicitly due to the fact that we are working with the lambda-calculus. When

the underlying category is well pointed, for example, the category of sets and categories of

continuous maps of spaces or domains, working with generalised elements is equivalent

to working with actual elements (or global elements), and most of our examples will fall

in this kind of category.

2. Generalised quantifiers

The main notion discussed in this section is that of a (generalised) quantifier. We assume

a fixed cartesian closed category, with a fixed object R, and define

KX := (X → R) → R.

We think of R as an object of generalised truth values, of functions X → R as predicates,

of R-valued functions of several variables as relations, and of the elements of KX as

generalised quantification functions, which, by an abuse of language, we refer to as

quantification functions or simply quantifiers. This construction is part of a well-known

monad, which we will develop in Section 6.

Examples 2.1.

1 Our underlying category is that of sets. Then the standard universal and existential

quantifiers ∀X , ∃X are elements of KX with R = � = {true, false}.
2 More generally, our underlying category is a topos and R = Ω is the object of truth

values (subobject classifier). Then the standard universal and existential quantifiers

∀X , ∃X are elements of KX. Recall that in the topos of sets, Ω = {false, true} = {0, 1}.
We assume classical logic for the topos of sets (the principle of excluded middle and

the axiom of choice).

3 Continuing from the above, we define

φ(p) := ∀x∈X∃y∈Y p(x, y),

for p : X × Y → R. Then φ ∈ K(X × Y).

4 We assume R is the real line � in a cartesian closed category of spaces and continuous

functions (such as k-spaces, QCB spaces, and so on). We define

I(p) :=

∫ 1

0

p

for p : [0, 1] → �. Then I ∈ K[0, 1].

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 131

5 Continuing from the previous example, we define

φ(p) := sup
x∈[0,1]

∫ 1

0

p(x, y) dy

for p : [0, 1]2 → �. Then φ ∈ K([0, 1]2).

2.1. Finite products of quantifiers

The above Examples 2.1(3) and 2.1(5) are instances of the following construction.

Definition 2.2. Given quantifiers φ ∈ KX and γ ∈ KY , define a new quantifier

φ ⊗ γ ∈ K(X × Y)

by, for any p : X × Y → R,

(φ ⊗ γ)(p) := φ(λx.γ(λy.p(x, y))).

Examples 2.3.

1 If R is the object of truth values in a topos, then ∀X ⊗ ∀Y = ∀X×Y , as this amounts to

(∀X ⊗ ∀Y)(p) = ∀x ∈ X(∀y ∈ Y (p(x, y))) = ∀z ∈ X × Y (p(z)) = ∀X×Y (p).

2 Similarly, we have ∃X ⊗ ∃Y = ∃X×Y .

3 And (∀X ⊗ ∃Y)(p) = ∀x∈X ∃y∈Y p(x, y).

4 If R are the real numbers � in a cartesian closed category of spaces and continuous

functions, by Fubini’s rule, we have
∫

[0,1] ⊗
∫

[0,1] =
∫

[0,1]×[0,1], as this amounts to

∫

[0,1]

(∫

[0,1]

p(x, y) dy

)
dx =

∫

[0,1]×[0,1]

p(x, y)d(x, y).

5 Generalising the previous example, let νi be Borel regular measures on locally compact

Hausdorff spaces Xi for i = 0, 1, and define φi ∈ KXi by φi(p) :=
∫
pdνi. Then

φ ∈ K(X0 × X1) defined by

φ(p) :=

∫
pd(ν0 × ν1)

satisfies φ = φ0 ⊗ φ1, where ν0 × ν1 is the product measure.

We now consider the iteration of the binary product of quantifiers defined above. We

write
n−1∏

i=0

Xi := X0 × · · · × Xn−1

with the conventions that the operation × is right associative, that for n = 0 this is the

one-point set 1 = {()} where () is the empty sequence, and that for n = 1 this is X0. Hence,

for n > 1 this is

X0 ×
n−1∏

i=1

Xi.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 132

Definition 2.4. Given quantifiers φ ∈
∏n−1

i=0 KXi, we define
⊗n−1

i=0 φi ∈ K(
∏n−1

i=0 Xi) as

n−1⊗

i=0

φi := φ0 ⊗ · · · ⊗ φn−1,

which, expanding the definition, amounts to
(

n−1⊗

i=0

φi

)
(p) := φ0(λx0.φ1(λx1. · · ·φn−1(λxn−1.p(x0, x1, . . . , xn−1)) · · ·)).

Alternatively, we can define this product inductively since

n−1⊗

i=0

φi = φ0 ⊗

(
n−1⊗

i=1

φi

)
.

In this case we have
(

n−1⊗

i=0

φi

)
(p) = φ0

(
λx0.

(
n−1⊗

i=1

φi

)
(λ(x1, . . . , xn−1).p(x0, x1, . . . , xn−1))

)
,

which, writing px0
(x1, . . . , xn) := p(x0, x1, . . . , xn), can be expressed concisely as

(
n−1⊗

i=0

φi

)
(p) = φ0

(
λx0.

(
n−1⊗

i=1

φi

)
(px0

)

)
.

That is, the value of the quantifier
⊗n−1

i=0 φi on a predicate p is given by the value of the

quantifier φ0 on the predicate λx0.(
⊗n−1

i=1 φi)(px0
). For the base case we can take the unary

case
n−1⊗

i=n−1

φi = φn−1

or, alternatively, the nullary case
(

n−1⊗

i=n

φi

)
(p) = p(),

if we instead adopt the convention that
∏n−1

i=0 Xi = X0 ×· · ·×Xn−1 ×1 with the operation ×
right associative (cf. Section 3.3 below).

The empty product of quantifiers lives in K1 and is both the universal quantifier ∀1

and the existential quantifier ∃1, given by λp.p(). With our official convention for finite

products, this is a neutral element for the binary product up to isomorphism, in the sense

that ∀1 ⊗ φ ∈ K(1 × X) and φ × ∀1 ∈ K(X × 1) are isomorphic to φ ∈ KX via the

isomorphisms K(1 × X) ∼= KX ∼= K(X × 1).

2.2. Quantifiers in sequential games

We now show how generalised quantifiers and their iterated products are convenient for

expressing some general notions regarding finite sequential games. It should be noted

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 133

that we use the language of sequential games simply for the sake of intuition, but, as we

shall see in Section 4, our notion of game is general enough to capture many specific

constructions in several application areas that are not usually formulated in terms of

games.

Example 2.5. Consider an alternating, two-person game that finishes after exactly n moves,

with one of the players winning. The ith move is an element of the set Xi and the game

is defined by a predicate p :
∏n−1

i=0 Xi → R, with R = Ω, that says whether the first player,

Eloise playing against Abelard, wins a given play �x = (x0, . . . , xn−1) ∈
∏n−1

i=0 Xi. Then

Eloise has a winning strategy for the game p if and only if

∃x0 ∈X0∀x1 ∈X1 . . . ∃xn−2 ∈Xn−2∀xn−1 ∈Xn−1 p(x0, . . . , xn−1)

holds (assuming n is even for notational convenience). Let φi := ∃Xi
for i even and

φi := ∀Xi
for i odd. The above sufficient and necessary condition on Eloise having a

winning strategy can be expressed concisely as
(

n−1⊗

i=0

φi

)
(p).

The following definition abstracts from this example in several ways. First we assume

R to be an arbitrary fixed object. Also, we focus on the number of rounds of the game,

ignoring the number of players and who plays in each round, and we take the quantifier

to be applied in each round as part of the definition of the game. However, we still require

the game to have a fixed length n.

Definition 2.6. Let (Xi)
n−1
i=0 be an n-tuple of objects, p :

∏n−1
i=0 Xi → R be a predicate and

φ :
∏n−1

i=0 KXi be an n-tuple of quantifiers.

1 We think of the triple ((Xi)
n−1
i=0 , p, φ) as a game, or, more precisely, as a finite sequential

game with n rounds.

(a) Xi is the set of possible moves at round i.

(b) A play is a sequence �x :
∏n−1

i=0 Xi.

(c) p is the outcome function, and p(�x) is the outcome of the play �x.

(d) φi : (Xi → R) → R is the outcome quantifier for round i.

2 Given a partial play �a :
∏k−1

i=0 Xi for k � n, define the sub-game outcome function

p�a :
∏n−1

i=k Xi → R by

p�a(xk , . . . , xn−1) := p(a0, . . . , ak−1, xk , . . . , xn−1),

or, more concisely,

p�a(�x) := p(�a ∗�x),

where ∗ denotes concatenation of finite sequences. A partial play �a defines a sub-game

(
(Xi)

n−1
i=k , p�a, (φi)

n−1
i=k

)
,

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 134

which is like the original game but starts at the position determined by the initial

moves �a. Notice that if k = n, then p is constant, and when k = 0, this is the same as

the full game.

3 The optimal outcome of the game is w := (
⊗n−1

i=0 φi)(p).

Hence, for any �a :
∏k−1

i=0 Xi,

w�a :=

(
n−1⊗

i=k

φi

)
(p�a)

is the optimal outcome of the sub-game determined by �a, and of course w = w(). Note

that if k = n, then w�a = p(�a), whereas, if k < n,

w�a = φk

(
λxk .

(
n−1⊗

i=k+1

φi

)
(p�a∗xk)

)
= φk

(
λxk .w�a∗xk

)
.

Hence, the optimal outcome of round k is determined by the outcome quantifier for

round k together with a mapping λxk .w�a∗xk computing the optimal outcome at round

k + 1 given what is played at round k.

4 An optimal move ak at round k is a move that forces the optimal outcome at round

k + 1 to be the same as the optimal outcome at round k, that is, w�a = w�a∗ak .

5 A play �a = a0, . . . , an−1 is optimal if each ak is an optimal move in the sub-game

determined by a0, . . . , ak−1. Hence a play �a is optimal if and only if

w() = w(a0) = w(a0 ,a1) = · · · = w(a0 ,...,an−1).

6 A strategy is a family of functions,

nextk :

k−1∏

i=0

Xi → Xk ,

with k < n, computing which move should be played at each round k, that is, when the

game is at position �a = (ai)
k−1
i=0 , the move selected is ak = nextk(�a).

7 A strategy is optimal if for every k < n and every partial play (ai)
k−1
i=0 , the move nextk(�a)

is optimal at round k, that is,

w�a = φk

(
λxk .w�a∗xk

)
= w�a∗next(�a).

Given an optimal strategy, the definition by course-of-values induction

a0 := next0(), ak+1 := nextk+1(a0, . . . , ak)

gives an optimal play.

Note that optimal strategies do not exist in general, but they do if the outcome

quantifiers have selection functions in the sense of Section 3 below. In fact, we will show

that a suitably defined product of selection functions calculates optimal strategies.

Example 2.7. In Example 2.5, the optimal outcome w of the game says which of Eloise

and Abelard has a winning strategy. Suppose, however, we choose R = {−1, 0, 1} instead,

with the convention that −1 means that Abelard wins, 0 means that the game is a

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 135

draw, and 1 that Eloise wins. We replace the existential and universal quantifiers by the

minimum and maximum value functionals minX ,maxX : (X → R) → R as

φi =

{
maxXi

if i is even,

minXi
if i is odd.

This is because Eloise tries to maximise the outcome of the game while Abelard tries to

minimise the same outcome. If the optimal outcome w is 1, then Eloise has a winning

strategy, if w = −1 then Abelard has a winning strategy, and if w = 0 then both Eloise

and Abelard have strategies for not losing. Any optimal strategy nextk gives the best

moves for Eloise when k is even, and for Abelard when k is odd.

3. Selection functions for quantifiers

The main notion investigated in this section is that of a selection function for a quantifier.

Before introducing the notion, we discuss several well-known examples that motivate the

general definition.

The mean value theorem asserts that for any continuous p : [0, 1] → � there is a ∈ [0, 1]

such that ∫
p = p(a).

Similarly, the maximum value theorem says that any continuous p : X → � defined on a

non-empty compact Hausdorff space X attains its maximum value: there is a ∈ X such

that

sup p = p(a).

And, of course, this holds for minimum values too: there is a ∈ X such that

inf p = p(a).

If R is the object of truth values of the topos of sets, then for any non-empty set X

and any predicate p : X → R, there is a ∈ X such that

∀p = p(a).

This is popularly known as the drinker paradox: in any pub X there is a person a such

that everybody drinks if and only if a drinks, where p(x) is interpreted as the fact that x

drinks. A variation of the drinker paradox is that in any pub X there is a person a such

that somebody drinks if and only if a drinks. That is, for any p : X → R there is a ∈ X

such that p(x) holds for some x if and only if p(a) holds:

∃p = p(a).

All of these statements hold in classical logic, but generally fail in intuitionistic logic or

a computational setting. But notice that:

(1) The drinker paradox, in both forms, holds constructively for non-empty finite sets X,

when R is the set of booleans (decidable truth values). Moreover, in this case, there is

the following stronger statement.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 136

(2) There is a function ε : (X → R) → X that constructs, from p, the point a at which p

attains its φ-value, in the sense that

a = ε(p)

solves the equation.

Of course, in the category of sets, if the desired a can always be found for any p, then

there is a function ε as above that finds it from p, by the axiom of choice (in fact, this

amounts to the axiom of choice).

Definition 3.1. Given a quantifier φ : (X → R) → R, any function ε : (X → R) → X such

that

φ(p) = p(ε(p)),

for all p : X → R, is called a selection function for φ. A quantifier that has a selection

function is said to be attainable.

We refer to φ(p) as the φ-value of p, and say that p attains its φ-value at a if φ(p) = p(a).

With this terminology, ε is a selection function for the quantifier φ if and only if every p

attains its φ-value at ε(p). For our purposes, ε will play the role of providing an algorithm

for computing φ(p) as p(ε(p)). Notice that if the quantifier φ : (X → R) → R is attainable,

the set X is non-empty, and φ(λx.r) = r for any r ∈ R, because (λx.r)(ε(λx.r)) = r for any

choice of ε.

In the context of games, if X is a set of moves for a particular round, then a selection

function ε : (X → R) → X can be thought of as a policy function, that is, a function that

chooses a particular move x ∈ X given that the effect of each move on the outcome of

the whole game is known (that is, X → R). For instance, if the policy of the player is

to maximise its payoff, then ε would be the functional computing the point ε(p) where p

attains its maximum value.

Remark 3.2. Escardó (2008) defined selection functions for subsets S of X with R the

discrete booleans (two-point space) in a cartesian closed category of continuous functions.

Using the language of the above definition, we can formulate this as follows: a selection

function for the set S is a selection function for the bounded existential quantifier

∃S : (X → R) → R.

We will see in Section 6 that, like KX = ((X → R) → R) defined above, J defined below

gives rise to a monad, and this fact will play an illuminating role in our investigation of

quantifiers that have selection functions. Before knowing that J and K are monads, the

following defines a map that will turn out to be a monad morphism.

Definition 3.3. For R fixed as above, we write JX := ((X → R) → X). For any ε ∈ JX,

we define a quantifier ε ∈ KX by

ε(p) := p(ε(p)).

Thus, every ε ∈ JX is a selection function of some quantifier, and hence we refer to the

elements of JX as selection functions.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 137

For selection functions of existential quantifiers, this construction occurs in Escardó (2008),

in particular, in the proof of Escardó (2008, Lemma 3.4).

3.1. Finite products of selection functions

We now show that attainable quantifiers are closed under finite products. We then develop

technical tools to be used in the applications described in Section 4. In order to establish

the preservation of attainability, we define a product of selection functions, which we

show to correspond to the product of its associated quantifiers (cf. Definition 2.2).

Definition 3.4. Given selection functions ε ∈ JX and δ ∈ JY , we define a new selection

function

ε ⊗ δ ∈ J(X × Y)

by

(ε ⊗ δ)(p) := (a, b(a))

where

b(x) := δ(λy.p(x, y))

a := ε(λx.p(x, b(x))).

That is, from the relation p : X × Y → R, we get the function b : X → Y by choosing

some y for a given x using the selection function δ. In a finite game of length two, this

function gives a strategy for the second player. We can measure the success of the strategy

for any move x ∈ X by evaluating p(x, b(x)). It follows from the definition of δ that

δ(λy.p(x, y)) = p(x, b(x)). This says that for any x ∈ X, the predicate λy.p(x, y) attains its

δ-value at b(x). Now, a as defined above is such that ε(λx.p(x, b(x))) = p(a, b(a)). Again,

this says that the predicate λx.p(x, b(x)) attains its ε-value at a. Putting this all together,

we have the following lemma.

Lemma 3.5. ε ⊗ δ = ε ⊗ δ.

Proof. We calculate

(ε ⊗ δ)(p) = p(a, b(a))

= ε(λx.p(x, b(x)))

= ε(λx.δ(λy.p(x, y)))

= (ε ⊗ δ)(p)

by simply unfolding the definitions.

Remark 3.6. The above definition is equivalent to

(ε ⊗ δ)(p) := (a, δ(λy.p(a, y))),

where a := ε(λx.δ(λy.p(x, y))), which was the construction used in Escardó (2008,

Proposition 4.4) to show that a finite product of searchable sets is searchable.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 138

Example 3.7. Recall the drinker paradoxes for the quantifiers ∀ and ∃, defined above.

Combining the two forms of the paradox with the product operator for selection functions

we get the following. In any group of people, there are a man a and a woman b such

that every man loves some woman if and only if a loves b. More precisely, for any two

non-empty sets X and Y , and any predicate p : X × Y → Ω, there is (a, b) ∈ X × Y such

that

(∀x∈X∃y∈Y p(x, y)) = p(a, b).

In fact, by the two versions of the drinker paradox, the universal and existential quantifiers

∀X and ∃Y have selection functions AX and EY , respectively, and hence AX ⊗ EY is a

selection function for the quantifier ∀X ⊗ ∃Y , so we can take (a, b) = (AX ⊗ EY)(p).

Notice that J1 has precisely one element, which is a neutral element for the product

up to isomorphism. We adopt the notation
⊗n−1

i=0 εi for the iterated product of selection

functions, as we did for quantifiers. By Lemma 3.5 and straightforward induction, we get

the following theorem.

Theorem 3.8. For any sequence ε ∈
∏n−1

i=0 JXi of selection functions,

n−1⊗

i=0

εi =

n−1⊗

i=0

εi.

The following corollary expresses this in terms of attained values, which is useful for

the formulation and justification of the applications we have in mind.

Corollary 3.9. If εi is a selection function for a quantifier φi, and if we define

E =

n−1⊗

i=0

εi, Φ =

n−1⊗

i=0

φi,

then every p :
∏n−1

i=0 Xi → R attains its Φ-value at �a = E(p) in the sense that

Φ(p) = p(�a).

Example 3.10. We continue from Example 2.5 on two-person games. Let Ai, Ei ∈ JXi be

selection functions for the quantifiers ∀Xi
and ∃Xi

respectively, and define

εi =

{
Ei if i is even

Ai if i is odd
φi =

{
∃Xi

if i is even

∀Xi
if i is odd.

By Corollary 3.9, for any game p :
∏n−1

i=0 Xi → Ω, the play �a := (
⊗n−1

i=0 εi)(p) is such that

Eloise has a winning strategy in the game p if and only if she wins the play �a since this

amounts to the equation
(

n−1⊗

i=0

φi

)
(p) = p(�a).

Section 3.2 below shows, in particular, that �a above is an optimal play, and that the

product of selection functions can also be used to compute optimal strategies.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 139

Remark 3.11. In several kinds of games, the set of allowed moves at round i+ 1 depends

on the move played at round i. We can account for this with the following generalisation

of the binary product:

1 Given a quantifier φ ∈ KX and family of quantifiers γ : X → KY , we define their

dependent product φ ⊗ γ ∈ K(X × Y) as

(φ ⊗ γ)(p) := φ(λx.γ(x)(λy.p(x, y))),

for p : X × Y → R.

2 For example, the combination of quantifiers ∀x∈A ∃y∈B(x) p(x, y) arises as a dependent

product φ ⊗ γ, where A ⊆ X and B(x) ⊆ Y for each x ∈ A, and where φ = ∀A and

γ(x) = ∃B(x).

3 Similarly, given a selection function ε ∈ JX and a family of selection functions δ : X →
JY , we define their dependent product as

(ε ⊗ δ)(p) := (a, b(a))

for p : X × Y → R, where

b(x) := δ(x)(λy.p(x, y))

a := ε(λx.p(x, b(x))).

4 Then Lemma 3.5 holds for this notion of dependent product with a routine generalisa-

tion of its proof.

3.2. Calculating optimal strategies

Let ((Xi)
n−1
i=0 , p, φ) be a game in the sense of Definition 2.6, and suppose that each

quantifier φi has a selection function εi. By the definitions of selection function and

optimal strategy, we have the following lemma.

Lemma 3.12. The construction

nextk(�x) := εk(λxk .w�x∗xk),

where w�x is defined in 2.6(3), gives an optimal strategy.

Recall that the optimal outcome w�x of a sub-game is defined in terms of products

of quantifiers. Our next objective is to calculate this optimal strategy as a product of

selection functions instead. In order to do this, we develop the following two recursive

characterisations of finite products of selection functions, which are interesting in their

own right.

Lemma 3.13. (
n−1⊗

i=k

εi

)
(p) = ak ∗

((
n−1⊗

i=k+1

εi

)
(pak)

)
,

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 140

where

ak = εk

(
λxk .pxk

((
n−1⊗

i=k+1

εi

)
(pxk)

))
.

Proof. This follows directly from Remark 3.6, taking X = Xk , Y =
∏n−1

i=k+1 Xi, ε = εk

and δ =
⊗n−1

i=k+1 εi, a = ak .

Lemma 3.14. (
n−1⊗

i=0

εi

)
(p) =�a

where �a is given by course-of-values recursion as

ak = εk

(
λxk .pa0 ,...,ak−1 ,xk

((
n−1⊗

i=k+1

εi

)
(
pa0 ,...,ak−1 ,xk

)
))

= εk(λxk .wa0 ,...,ak−1 ,xk).

Proof. The first equation follows by Lemma 3.13 and course-of-values induction. By

the assumption that εi is a selection function for the quantifier φi and Theorem 3.8, the

optimal outcome of the game that starts at position �x ∈
∏k−1

i=0 Xi can be calculated as

w�x = p�x

((
n−1⊗

i=k

εi

)
(p�x)

)
,

which gives the second equation.

By Lemmas 3.13 and 3.14, we get the following theorem.

Theorem 3.15. The optimal-strategy functions nextk constructed in Lemma 3.12 can be

calculated as

nextk(�x) :=

((
n−1⊗

i=k

εi

)
(p�x)

)

0

.

Moreover,

1 The whole sequence

�a =

(
n−1⊗

i=k

εi

)
(p�x)

is an optimal play for the game that starts at position �x.

2 The predicates pk : Xk → R defined by

pk(xk) = wa0 ,...,ak−i ,xk = pa0 ,...,ak−1 ,xk

((
n−1⊗

i=k+1

εi

)
(
pa0 ,...,ak−1 ,xk

)
)

satisfy

εk(pk) = ak , pk(ak) = pj(aj).

for all k, j < n.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 141

Theorem 3.15(2) says that the optimal move ak can be computed from the selection

function εk and the mapping λxk .wa0 ,...,ak−1 ,xk of possible moves at round k to optimal

outcomes at round k + 1.

3.3. Implementation of the finite product

The computation of finite products of selection functions can be easily implemented in

higher-type functional programming languages when all types Xi are the same and equal

to X. For example, this can be implemented as follows in Haskell (Hutton 2007):

type J r x = (x -> r) -> x

otimes :: J r x -> J r [x] -> J r [x]

(epsilon ‘otimes‘ delta) p = a : b(a)

where b(x) = delta(\xs -> p(x : xs))

a = epsilon(\x -> p(x : b(x)))

bigotimes :: [J r x] -> J r [x]

bigotimes [] = \p -> []

bigotimes (epsilon : epsilons) =

epsilon ‘otimes‘ (bigotimes epsilons)

Here we use lower case letters r and x for R and X because of Haskell’s syntactical

requirements. In Haskell, a finite list of length n is written

[x0, x1, . . . , xn−1] = x0 : x1 : · · · : xn−1 : [],

where [] is the empty list. The operator otimes computes the binary product of a selection

function ε : JX0 with a selection function δ : J(
⊗n−1

i=1 Xi), obtaining a selection function in

J(
⊗n−1

i=0 Xi), and the function bigotimes iterates this finitely often. List types in Haskell

actually include infinite lists, and we will see in Section 5 that this algorithm in fact also

works for infinite lists of selection functions (and corresponds to a form of bar recursion).

Dependently typed languages such as Agda (Bove and Dybjer 2008) allow the types Xi

to be distinct, with a similar recursive definition.

4. Applications

In this section we show that finite products of selection functions appear in many guises

in different areas, such as game theory, fixed-point theory, proof theory and algorithms.

4.1. Game theory

Consider a sequential game with n players (say 0, 1, . . . , n − 1) and n rounds, with player i

picking his move at round i from a fixed set Xi. In standard game theory, a play

(x0, . . . , xn−1) ∈ Πn−1
i=0 Xi (cf. Definition 2.6) is also known as a strategy profile, and outcome

functions p : Πn−1
i=0 Xi → �n are called payoff functions, since p(x0, . . . , xn−1) = (v0, . . . , vn−1)

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 142

gives the payoff each player gets at the end of all rounds. Each player is trying to maximise

their payoff, so the outcome selection functions εi : (Xi → �n) → Xi are

εi(q) := x ∈ Xi such that (qx)i � (max{(qx)i : x ∈ Xi})

where q : Xi → �n. Finally, an optimal play is a strategy profile where each player has

maximised their possible payoff, relative to the choice of the other players.

Theorem 4.1. The optimal play

�x :=

(
n−1⊗

i=0

εi

)
(p)

is a strategy profile in Nash equilibrium.

By the definition of Nash equilibrium, it is enough to note that the optimal strategy

function nextk(x0, . . . , xk−1) computes the move for player k (in the sub-game px0 ,...,xk−1
)

maximising his payoff, given that all the following players are playing optimally. Hence,

once an optimal play has been obtained, any change of move from either player

individually cannot result in a better payoff for that player.

The above construction can be viewed as a formal description of backward induction,

a technique used in Game Theory (Nisan et al. 2007) to compute Nash equilibria in

sequential games. Intuitively, backward induction is explained as follows. An equilibrium

strategy profile is computed by inductively pruning branches of the game tree. Starting

from the last player, we pick in each sub-tree only the branch that would be selected

by the last player if that sub-game is reached. The same is then done for each player in

turn, in reverse order. We end up with just one branch left, which, by construction, is an

optimal play.

4.2. Fixed-point theory

A map fix: (R → R) → R is said to be a fixed-point operator if fix(p) is a fixed point of p

for every p : R → R, that is,

fix(p) = p(fix(p)).

For non-trivial fixed-point operators to exist, we must work in a cartesian closed category

other than that of classical sets, as for every set, except the one-point set, there is

an endo-function with no fixed point. Well-known examples are various categories of

domains.

Now, JR = KR = ((R → R) → R), and hence a fixed-point operator can be considered

both as a selection function and as a quantifier. Moreover, f : (R → R) → R is a fixed-point

operator if and only if it is its own selection function, as this amounts to

f(p) = f(p) = p(f(p)).

Bekič’s Lemma (Bekič 1984) says that if X and Y have fixed-point operators, then so

does X × Y , and, moreover, explicitly constructs a fixed-point operator for the product

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 143

from given fixed point operators for the factors. We now show that Bekič’s construction

arises as a product of suitable selection functions.

Lemma 4.2. If X and Y have fixed-point operators fixX and fixY , then X × Y has a

fixed-point operator fixX×Y ∈ J(X × Y), with R = X × Y , given by

fixX×Y := εX ⊗ δY ,

where we define the selection functions ε ∈ JX and δ ∈ JY (also with R = X × Y) by

εX(p) := fixX(πX ◦ p)

δY (q) := fixY (πY ◦ q).

Here πX : X × Y → X and πY : X × Y → Y are the projections.

The selection functions ε and δ are not fixed-point operators themselves, and neither

are the derived quantifiers φ = ε ∈ KX and γ = δ ∈ KY . But, by Theorem 3.8, this gives

ε ⊗ δ = φ ⊗ γ, and by the fact that J(X × Y) = K(X × Y) for R = X × Y and fixX×Y

is a fixed-point operator if and only if it is its own selection function, we conclude from

Lemma 4.2 that fixX×Y is also given as a product of quantifiers:

fixX×Y = φ ⊗ γ.

For the proof of Lemma 4.2, however, again in view of Theorem 3.8, it is enough to

conclude that

ε ⊗ δ = φ ⊗ γ,

where, of course, the left product is of selection functions and the right one is of

quantifiers, because then fixX×Y is its own selection function and hence is a fixed-point

operator. Indeed, when applied to a function r = (s, t) : X × Y → X × Y , both sides of

the equation reduce to the same term, namely, (a, b) with

a = fixX(λx.s(x, fixY (λy.t(x, y))))

b = fixY (λy.t(a, y)).

This is Bekič’s formula for calculating a fixed point (a, b) of the function r. Of course, here

we are using the fact that any r : X ×Y → X ×Y is of the form (s, t) with s : X ×Y → X

and t : X × Y → Y ,

r(x, y) = (s(x, y), t(x, y)),

by considering s = πX ◦ r and t = πY ◦ r.

Notice that there is an asymmetry in the definitions of a and b. If we switch the

roles of a and b (and of s and t), another fixed-point operator is obtained. We have

not investigated the relationship between these two fixed-point operators, but we suspect

they do not coincide in general. As is well known in domain theory (and first observed

by Bekič), however, if X and Y are objects of a category of domains and continuous

functions, and fixX and fixY are the least fixed-point operators, then either construction

produces the least fixed-point operator of the product domain X × Y , and hence the two

constructions coincide.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 144

By Lemma 4.2 and induction, we have the following theorem.

Theorem 4.3. If Xi for 0 � i < n has a fixed-point operator fixi, then
∏n−1

i=0 Xi has a

fixed-point operator fix ∈ J(
∏n−1

i=0 Xi), with R =
∏n−1

i=0 Xi, given as a product of selection

functions:

fix =

n−1⊗

i=0

(λpi. fixi(πi ◦ pi)),

where πi is the projection of the product into Xi.

4.3. Proof theory

Uses of the product of selection functions in proof theory will be discussed further in

Section 5.7, where we explain how this construction is related to the so-called bar recursion.

In this section we look at a simple example, where the computational interpretation of

a non-computational principle can again be explained in terms of products of selection

functions. The principle we consider is the infinite pigeon-hole principle, which says that

for any finite set n = {0, 1, . . . , n−1} of colours and any colouring of the natural numbers,

some colour occurs infinitely often:

∀n : � ∀f : � → n ∃k ∈ n ∀i ∃j � i(fj = k).

This is non-computational, in the sense that, given n and f, we cannot effectively produce

the colour k that is used infinitely often. We look, therefore, at the dialectica interpretation

(Avigad and Feferman 1998) of its negative translation, that is,

∀n : � ∀f : � → n(¬¬∃k ∈ n ∀i ∃j � i(fj = k)).

The dialectica interpretation of this is

∀n : � ∀f : � → n ∀ε : n → (�� → �) ∃k ∈ n ∃p : � → �

p(εk(p)) � εk(p) ∧ f(p(εk(p))) = k,

that is, given n, f and a sequence εi, we must find k and p such that

p(εk(p)) � εk(p) ∧ f(p(εk(p))) = k.

Intuitively, the function p is trying to compute a value j that makes the statement true

(that is, the selection function for the existential quantifier in ∃j � i(fj = k)), whereas the

functional εk tries to produce a counter-example i given any such p and fixed colour k

(that is, the selection function for the universal quantifier in ∀i(pi � i ∧ f(pi) = k)). The

above constructive version of the infinite pigeon-hole principle says that given a partition

f of the natural numbers into n sets, and given n (counter-example) selection functions

ε0, . . . , εn−1, one for each colour, we can always find k < n and pk , such that εk is not

successful in finding a counter-example, that is, pk(εk(pk)) = k.

But, again, we can also view the above as an instance of our general notion of a

sequential game (Definition 2.6). Consider the game where Xi = R = �, and max: �n →
� is the outcome function, and φk(p) = p(εkp) is the outcome quantifier for round k. We

will show how the above computational interpretation of the infinite pigeonhole principle

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 145

can be realised from the optimal play in this sequential game. Note that although this is a

finite game, with n rounds, we have at each round k an infinite number of possible moves

as Xk = �.

Theorem 4.4. Let n, f and εi be given. Define

�x :=

(
n−1⊗

i=0

εi

)
(max).

Then, for all k < n we have pk(xk) � xk , and for some k < n we have

f(pk(εk(pk))) = k,

where

pk(y) := max
x0 ,...,xk−1 ,y

((
n−1⊗

i=k+1

εi

) (
max

x0 ,...,xk−1 ,y

))
.

In fact, by Theorem 3.15, xk = εk(pk), for all k < n. Hence

pk(xk) = max{x0, . . . , xn−1},

and pk(xk) � xk , for all k < n. It remains to show that f(pk(εk(pk))) = k for some k, but

this follows from the fact that pk(εk(pk)) = pk(xk) is the same for all k < n, again by

Theorem 3.15.

Remark 4.5. A similar calculation was performed in Oliva (2006), but using a finite

version of Spector’s bar recursion (cf. Section 5.7) instead of finite products of selection

functions.

4.4. Algorithms

Products of selection functions also correspond to the algorithmic technique of back-

tracking. For instance, if each εk : (� → �) → � is a selection function for the boolean

existential quantifier, and p(x0, . . . , xn−1) is a decidable predicate on n-boolean variables,

then (
n−1⊗

i=0

εi

)
(p)

computes an assignment that makes p true, if p is satisfiable.

The same construction can also be used to compute a shortest path between two nodes

in a given weighted directed graph, where in this case the quantifiers are the minimum

functionals. Let X be a finite set of vertices, and d : X ×X → R be the weighted incidence

matrix of the directed graph, with d(x, x) = 0, where R = [0,∞]. If d(x, y) = ∞, this means

that there is no edge from node x to node y; otherwise this gives the weight of the edge

from x to y. Let n be the cardinality of X, and let Xi = X for i < n. Define the quantifiers

φi : (Xi → R) → R as

φi(p) := min p = min{p(x) : x ∈ Xi},

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 146

and let εi be a selection function for φi. So we have a constant sequence of quantifiers,

and of selection functions. The length of a path x0, . . . , xk−1 is defined as d(x0, x1) + · · · +

d(xk−2, xk−1). If this is different from ∞, and if xi �= xj for i �= j, we call this a proper

path. Given vertices u and v, we define q : Xn → R by:

q(x0, . . . , xn−1) := if there is k < n such that u, x0, . . . , xk , v is a proper path, then the

length of such path for the smallest k else ∞.

Theorem 4.6. A shortest path, or the non-existence of a path from u to v, can be read off

from

�a :=

(
n−1⊗

i=0

εi

)
(q).

More precisely, if q(�a) = ∞, then v is not reachable from u; otherwise, look for the smallest

k < n such that d(ak , v) �= ∞, and the shortest path from u to v is u, a0, . . . , ak , v.

In fact, by simultaneous induction on n − k − 1,
(

n−1⊗

i=k

εi

)
(qa0 ,...,ak−1

)

calculates the shortest way to link the path u, a0, . . . , ak−1 to the node v, and

qa0 ,...,ak−1 ,ak

(
n−1⊗

i=k+1

εi

)
(qa0 ,...,ak−1 ,ak)

calculates the length of any such shortest way.

Note that this solution corresponds to computing a shortest path via backtracking with

pruning, which is less efficient than Dijkstra’s algorithm. The tree over which backtracking

is performed is based on the order in which the predicate q queries its arguments.

Also, the pruning takes place whenever q finds that the argument x0, x1, . . . , xk is not

a proper path by just looking at a few positions, thereby speeding up the backtracking

(cf. Escardó (2007)). In fact, the product of selection functions behaves like this in general,

including in all of the applications mentioned above.

Note also that, alternatively, we could use the dependent version of the product of

selection functions (Remark 3.11) to ensure that the next element added to the path is

connected to the previous one, and has not been visited before, which means that only

proper paths are considered.

5. Infinite products of selection functions

Escardó (2008, Definition 4.5) constructed a functional

Π: ((D → B) → D)ω → ((Dω → B) → Dω)

where D is a domain and B is the lifted domain of booleans. Using our notation and

choosing R = B, the type definition of this functional can be written as

Π: (JD)ω → JDω .

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 147

Escardó (2008, Theorem 4.6) proved that if we are given ε ∈ (JD)ω such that εi ∈ JD is

a selection function for an existential quantifier ∃Si , with Si ⊆ D, then Π(ε) ∈ JDω is a

selection function for the existential quantifier ∃ΠiSi of the set
∏

i Si ⊆ Dω .

5.1. Generalisation of the product functional

We will now rework the product functional Π in a number of ways:

(1) We will work with an infinite sequence Xi of spaces rather than a single domain

D, and replace the countable product (JD)ω by the dependent product
∏

i JXi. To

be consistent with our notation, we rename the functional to
⊗

, and give it the

type

⊗
:

∏

i

JXi → J

(
∏

i

Xi

)
.

(2) We will allow R to be any discrete space, not just the booleans. In the infinite case,

the assumption that R be discrete is essential (Remark 5.11).

(3) We will show that, more generally, if we are given ε ∈
∏

i JXi such that εi ∈ JXi is

a selection function for a quantifier φi ∈ KXi, then
⊗

i εi ∈ J
(∏

i Xi

)
is a selection

function for a suitably defined quantifier
⊗

i φi ∈ K
(∏

i Xi

)
.

(4) We will note that the recursive definition of the Π functional given in Escardó (2008,

Section 8.1, page 30), here written
⊗

as explained above, can be written as
⊗

i

εi = ε0 ⊗
⊗

i

εi+1,

so the infinite version can be seen as simply the iteration of the binary version of the

product of selection functions. We will also show that the analogous equation
⊗

i

φi = φ0 ⊗
⊗

i

φi+1

holds for attainable quantifiers, but unfortunately does not characterise infinite

products of quantifiers in general.

We will see in Section 5.5 that these equations for infinite products can be understood

as definitions by bar recursion, introduced in Section 5.4. We will first discuss the spaces

to which the development discussed above applies (Section 5.2), and observe that infinite

sequential games, in the continuous case, amount to finite games of unbounded length

(Section 5.3).

5.2. A convenient category of spaces and domains

In order to form the required function spaces for the product functional, we work in a

cartesian closed category of continuous maps of topological spaces closed under countable

products. The largest such category for we which are able to prove our main results is

that of continuous maps of QCB spaces (Battenfeld et al. 2006; Battenfeld et al. 2007).

Such spaces are precisely the T0 topological quotients of countably based spaces, and can

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 148

be characterised in a number of ways, including:

(i) the sequential T0 spaces with countable pseudo-bases;

(ii) the sequential T0 spaces with admissible quotient representations;

(iii) a certain full subcategory of the category PER(ωAlgLat), whose objects are the

countably based algebraic lattices with a partial equivalence relation, and whose

morphisms are the Scott continuous maps that preserve the equivalence relation

(Bauer 2002).

QCB spaces admit a theory of computability, and, as shown in Escardó et al. (2004), have

some well-known cartesian closed subcategories closed under countable products, such

as:

(i) Kleene–Kreisel continuous functionals; and

(ii) Ershov–Scott continuous functionals.

Hence, in particular, they account simultaneously for both total and partial computation.

For some lemmas, we allow k-spaces (also known as compactly generated spaces), which

contain QCB as a full subcategory closed under finite and countable products and function

spaces (Escardó et al. 2004), as the restriction to QCB spaces would be artificial and serve

no purpose.

5.3. Finite games of unbounded length

In a topological setting, the move from finite to countable products corresponds to the

move from finite games of fixed length to finite games of unbounded length. In order to

see this, notice that if a discrete-valued function p :
∏

i Xi → R is continuous, then for

any sequence α ∈
∏

i Xi, the value p(α) depends only on a finite prefix of the sequence α.

Formally, for α, β ∈
∏

i Xi and n � 0, we define

α =n β if and only if αi = βi for all i < n.

If p is continuous, then for every α ∈
∏

i Xi, there is some n such that

p(β) = p(α) for all β =n α.

We use nα to denote the smallest such n. If p :
∏

i Xi → R is the outcome function of a

game, then continuity of p implies that the outcome of every infinite play is determined

by a finite prefix of the play. In this case, we may say that the play α terminates in nα
rounds. It is in this sense that, by considering continuous outcome functions, we move

from finite games of fixed length to finite games of unbounded length.

5.4. Bar induction

A continuous discrete-valued continuous function p :
∏

i Xi+n → R can be regarded as

a well-founded tree as follows. The root of the tree is the only node of level 0. Each

node of level i is either a leaf labelled by an element of R, or it has one branch for

each point of Xi+n, leading to a node of level i + 1. The well-foundedness condition says

that each maximal path of the tree starting from the root is finite and thus eventually

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 149

reaches a leaf. For each α ∈
∏

i Xi+n, the finite prefix of α of length nα (defined in

Section 5.3) gives a maximal path ending at a leaf labelled by the value p(α), and all

maximal paths of the tree are of this form. Hence, if p is constant, it is seen as a singleton

tree consisting of just a leaf, otherwise the subtree of p that follows the branch xn ∈ Xn

is that corresponding to the predicate pxn :
∏

i Xi+n+1 → R. Intuitively, to evaluate p(α)

for any given α ∈
∏

i Xi+n, we follow the branches α0, α1, . . . until a leaf is reached, whose

label gives the value p(α). Notice that different trees can give rise to the same continuous

function. The procedure described above builds the optimal tree, corresponding to the

optimal modulus of continuity α �→ nα of the function p.

The following lemma is a counterpart of induction on well-founded trees, and is well

known in various guises and particular situations.

Lemma 5.1 (Bar induction). Let Xi be a sequence of k-spaces and R be discrete. Consider

a sequence of sets

An ⊆ Pn :=

(
∏

i

Xi+n → R

)

where the product and exponential are calculated in the category of k-spaces. If for all n,

1 the constant functions are in An, and

2 for all p ∈ An, the condition ∀x∈Xn (px ∈An+1) implies p ∈ An,

then An = Pn for all n.

Proof. Suppose that for some n, there is p ∈ Pn such that p �∈ An. Then, by the

assumption, there is some αn such that pαn �∈ An+1. Proceeding in the same manner, we

get an infinite sequence α ∈
∏

i�n Xi such that pαn ,αn+1 ,...,αk �∈ An+k+1 for every k. But, by

continuity, pαn ,αn+1 ,...,αk is constant for some k, and hence is in An+k+1 by assumption, which

is a contradiction.

We now consider definitions of continuous functionals hn : Pn → Yn by bar recur-

sion (Normann 1999, Section 6), where the spaces Pn are as in Lemma 5.1 and the spaces

Yn are arbitrary. Given Ln : R → Yn and Bn : Pn × (Xn → Yn+1) → Yn, we consider the

equations

hn(λα.r) = Ln(r),

hn(p) = Bn(p, λx.hn+1(px)).

The intuitive idea is that the base case Ln accounts for leaves and the recursion step Bn

for branches. By bar induction, it is easy to see that there is at most one such function hn.

Of course, one cannot continuously test whether a function is constant or not, and hence

there is no guarantee that there is a continuous solution. Moreover, the second equation

also applies to the case when p is the constant function λα.r, where we get, using both

equations and the fact that (λα.r)x = λβ.r,

Ln(r) = hn(λα.r) = Bn(λα.r, λx.hn+1(λβ.r)) = Bn(λα.r, λx.Ln+1(r)).

Now, by bar induction, it is easy to see that the following lemma holds.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 150

Lemma 5.2. Let Bn : Pn × (Xn → Yn+1) → Yn be a family of continuous maps. If for every

r ∈ R there is at most one sequence Ln(r) ∈ Yn such that

Ln(r) = Bn(λα.r, λx.Ln+1(r)),

then there is at most one family of continuous functions hn : Pn → Yn such that

hn(p) = Bn(p, λx.hn+1(px)),

which automatically satisfy hn(λα.r) = Ln(r).

Definition 5.3. We refer to the system of equations hn(p) = Bn(p, λx.hn+1(px)) as a

specification of hn by bar recursion.

The advantage of this recursion scheme is that it has only one equation and hence avoids

the non-continuous case distinction discussed above. Notice that we do not require that

the conditions of Lemma 5.2 hold, and hence a specification by bar recursion can have

zero, one or more continuous solutions.

5.5. The infinite product as the iteration of the binary product

The functional equation that defines the functional Π: (JD)ω → JDω in Escardó (2008,

Section 8.1, page 30) is

Π(ε)(p) = x0 ∗ Π(ε′)(px0
) where x0 = ε0(λx.px(Π(ε′)(px))),

and where ε′ is the sequence ε with its first term ε0 removed, that is, ε′
i = εi+1. This can be

equivalently written as

Π(ε)(p) = x0 ∗ b(x0),

where

δ = Π(ε′), b(x) = δ(λα.p(x ∗ α)), x0 = ε0(λx.p(x ∗ b(x))).

In turn, this can be written as

Π(ε) = ε0 ⊗ Π(ε′)

if, as in Section 3.3, we consider the variation of the finite product ⊗ that, given two

selection functions ε ∈ JX0 and δ ∈ J
(∏

i Xi+1

)
, produces ε⊗δ ∈ J

(∏
i Xi

)
. This variation

is given by

(ε ⊗ δ)(p) = x0 ∗ b(x0),

where b and x0 are defined as above.

Remark 5.4. Equivalently, to define the variation of the binary product, we can consider

the isomorphism

X0 ×
∏

i

Xi+1 →
∏

i

Xi

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 151

defined by (x, α) �→ x∗α. In fact, because, as established in Section 6 below, J is a functor,

we get an isomorphism

J

(
X0 ×

∏

i

Xi+1

)
→ J

(
∏

i

Xi

)
.

Then the original product ε ⊗ δ ∈ J
(
X0 ×

∏
i Xi+1

)
gives the above variation after the

application of this isomorphism:

JX0 × J
(∏

Xi+1

)
⊗

−→ J

(
X0 ×

∏

i

Xi+1

)
∼=

−→ J

(
∏

i

Xi

)
.

It is thus natural to attempt to define
⊗

in the generality discussed in Section 5.1 as

a solution to the functional equation F(ε) = ε0 ⊗ F(ε′). The above equations for Π make

sense because it was assumed that Xi = D, for every i. But if we assume the type of F

in the left-hand side of the above equation to be
∏

i JXi → J
(∏

i Xi

)
, then this forces

the type of F in the right-hand side to be
∏

i JXi+1 → J
(∏

i Xi+1

)
. Hence, instead we

consider the system of equations

Fn(ε) = ε0 ⊗ Fn+1(ε
′)

with the continuous unknowns Fn :
∏

i JXi+n → J
(∏

i Xi+n

)
. We now show that if Xi and

R are QCB spaces with R discrete, there is a unique solution, using bar recursion.

Lemma 5.5. Assume that Xi and R are k-spaces with R discrete, and fix a sequence

εi ∈ JXi of selection functions. The system of equations

δn = εn ⊗ δn+1

with the unknowns δn ∈ J
(∏

i+n Xi

)
is equivalent to a specification of δn by bar recursion

of the form

δn(p) = Bn(p, λx.δn+1(px)).

Moreover, there is at most one solution, and if it exists, it satisfies

δn(λα.r)(i) = εi+n(λx.r).

Construction. Define Bn : Pn × (Xn → Yn+1) → Yn by

Bn(p, f) = xn ∗ f(xn), where xn = εn(λx.p(x ∗ f(x))),

where Yn =
∏

i Xi+n and Pn = (Yn → R).

Proof. Because (Pn → Yn) = J
(∏

i Xi+n

)
, we have that δn : Pn → Yn, and

Bn(p, λx.δn+1(px)) = xn ∗ b(xn),

where b(x) = δn+1(px) and xn = εn(λx.p(x ∗ b(x)),

= (εn ⊗ δn+1)(p).

Hence the equations δn(p) = Bn(p, λx.δn+1(px)) are equivalent to δn = εn ⊗ δn+1. Because

xn = εn(λx.r) if p = λα.r, the equations Ln(r) = Bn(λα.r, λx.Ln+1(r)) amount to Ln(r) =

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 152

εn(λx.r) ∗ Ln+1(r). But there is a unique sequence Ln(r) ∈ Yn that satisfies this, namely

Ln(r)(i) = εi+n(λx.r), and hence the result follows from Lemma 5.2.

We emphasise that the next construction is not a specification by bar recursion, since a

domain cannot be discrete, except in the uninteresting case that it is the one-point space,

and hence the two equations do not uniquely characterise δn. But if R is, for example, a

lifted discrete space, this, of course, comes very close to a specification by bar recursion,

which is what the proof of Theorem 5.7 exploits.

Lemma 5.6. If Xi and R are domains, then for every sequence of selection functions

εi ∈ JXi, there is a sequence of selection functions δn ∈ J
(∏

i Xi+n

)
, continuously in ε,

such that, for all n,

δn(λα.r) = λi.εi+n(λx.r),

δn(p) = Bn(p, λx.δn+1(px)),

where Bn is defined in the construction of Lemma 5.5.

Proof. Let F =
∏

n (Pn → Yn) =
∏

n J(Yn), and define H : F → F by

H(h)(n)(p) = Bn(p, λx.hn+1(px)).

Then H is continuous and hence has a fixed point δ =
⊔

k H
k(⊥) with δn : Pn → Yn,

because F is a domain. Then δn(p) = Bn(p, λx.δn+1(px)) holds by construction. Moreover,

it is clear that Bn depends continuously on εn, and hence so do H and its least fixed

point δ. By induction on k,

Hk(⊥)(n)(λα.r)(i) =

{
εi+n(λx.r) if i < k,

⊥ if i � k,

so δn(λα.r)(i) =
⊔

k H
k(⊥)(n)(λα.r)(i) = εi+n(λx.r), as claimed.

We do not know whether the following theorem holds more generally for k-spaces.

Theorem 5.7. If Xi and R are QCB spaces with R discrete, then for any sequence εi ∈ JXi,

there is a unique sequence δn = δn(ε) ∈ J
(∏

i Xi+n

)
such that, for all n,

δn = εn ⊗ δn+1.

Moreover, δn(ε) is continuous in ε.

Proof. We use the fact that QCB is fully and faithfully embedded into PER(ωAlgLat)

as described in Bauer (2002). The embedding transforms Xi and R into objects (|Xi|,∼i)

and (|R|,∼R). It also gives Scott continuous functions |εi| : (|Xi| → |R|) → |Xi| that

preserve ∼, since the embedding preserves function spaces. Then we can apply Lemma 5.6

to the domains |Xi| and |R| under the Scott topology, and to the selection functions |εi|,
to get selection functions |δn|. Using the two equations of Lemma 5.6 as the base case

and induction step of an argument by bar induction on p, one sees that for all n and

p ∈ Pn, if so, s1 :
∏

n |Xi+n| → |R| track p, then |δn|(s0) ∼ |δn|(s1). Hence s0 ∼ s1 implies

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 153

|δn|(s0) ∼ |δn|(s1), so |δn| is a morphism of PER(ωAlgLat), which then gives a morphism

δn of QCB, because the embedding of QCB into PER(ωAlgLat) is full.

Note that the assumption of discreteness of R is used twice in this proof, so bar

induction can be applied to:

(1) establish that there is at most one solution in Lemma 5.5;

(2) prove totality of the functional constructed in Lemma 5.6.

As discussed in Remark 5.11 below, such an assumption is essential.

Lemma 5.8. Under the assumptions and notation of Theorem 5.7, and additionally

defining ε
(k)
i := εk+i, we have

δn
(
ε(k)

)
= δn+k(ε).

Proof. If we apply Theorem 5.7 to the sequences ε and ε(k), we get sequences δn = δn(ε)

and ζn = δn
(
ε(k)

)
that satisfy δn = εn ⊗ δn+1 and ζn = ε(k)n ⊗ ζn+1 = εn+k ⊗ ζn+1. But the

sequence δn+k also satisfies the second equation, and hence, by uniqueness, ζn = δn+k ,

which amounts to the statement of the lemma.

Corollary 5.9. The equation Fn(ε) = ε0 ⊗ Fn+1(ε
′) has a unique continuous solution

Fn :
∏

i JXi+n → J
(∏

i Xi+n

)
, namely Fn(ε) = δ0

(
ε(n)

)
.

Proof. This equation amounts to δ0(ε
(n)) = ε0 ⊗ δ0(ε

(n+1)), which in turn amounts to

δn(ε) = ε0 ⊗ δn+1(ε) by Lemma 5.8, and holds uniquely by Theorem 5.7.

Definition 5.10. For any sequence εi ∈ JXi, we write
⊗

i εi := δ0(ε). Then, by Corollary 5.9,

this is characterised as
⊗

i

εi = ε0 ⊗
⊗

i

εi+1.

Remark 5.11. The assumption that R be discrete is essential. If R = (� → �) and

Xi = �, for instance, we could take p(α)(m) = α(m) + 1 and εn(q) = q(0)(n + 1). In this

case our equation would imply

δ0(p)(0) = x0 = ε0(λx.p(x ∗ b(x))) = p(0 ∗ b(0))(1) = b(0)(0) + 1 = δ1(p0)(0) + 1,

and by induction, δ0(p)(0) = δn(p0n)(0) + n for all n, and hence there is no solution δn for

the equation of Theorem 5.7. This is adapted from a similar counter-example in Berger

and Oliva (2005). Note, however, that for specific families εn, a solution may exist for

R non-discrete, for example, if the εn are constant functions. But notice that, by virtue

of the previous counter-example, the equation of Corollary 5.9 cannot have a solution if

R = (� → �).

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 154

5.6. Infinite products of quantifiers

We now proceed to the definition of infinite products of quantifiers, which turns out to

be subtler. In particular, any such notion ought to satisfy
⊗

i

∃Xi
= ∃∏

i Xi

⊗

i

∀Xi
= ∀∏

i Xi

⊗

i

sup
Xi

= sup∏
i Xi

⊗

i

inf
Xi

= inf∏
i Xi

when these quantifiers exist for suitable choices of R. We have seen that the selection

function
⊗

i εi is continuous in the sequence ε. However, such a quantifier
⊗

i φi cannot

be continuous in φ. In fact, if we consider the particular case in which φi is the boolean-

valued, bounded existential quantifier ∃Si for a finite subset Si of Xi, then the
∏

i Si is

empty if and only if Si is empty for some i. But an empty set may be present arbitrarily

far away in the sequence Si, and hence
(⊗

i ∃Si
)
(p) depends on the whole sequence ∃Si ,

which violates continuity. In connection with this, we observe, for future reference, that

the bounded existential quantifier of the empty set is not attainable.

It is thus natural to attempt to define infinite products of quantifiers φi ∈ KXi

by mimicking Theorem 5.7, but giving up continuity of the formation of the product.

Consider the system of equations

γn = φn ⊗ γn+1

with the unknowns γn ∈ K
(∏

i Xn+i

)
. This system of equations can be put in bar recursive

form

γn(p) = Bn(p, λx.γn+1(px))

for a suitable Bn. In fact, because

γn(p) = (φn ⊗ γn+1)(p) = φn(λx.γn+1(λα.p(x ∗ α))

= φn(λx.γn+1(px))

we can (and are forced to) define

Bn(p, f) = φn(f).

Now the equation Ln(r) = Bn(λα.r, λx.Ln+1(r)) amounts to

Ln(r) = φn(λx.Ln+1(r)).

If, for example, Xi = R = � and φi(q) = q(0) + 1, this equation reduces to Ln(r) =

Ln+1(r) + 1, and, by induction, Ln(r) = Ln+k(r) + k for every k, which is impossible and

hence shows that there is no sequence γn such that γn = φn ⊗ γn+1. Thus, in general, the

infinite iteration of the finite product of quantifiers fails to exist.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 155

Now, by the discussion that follows Definition 3.1, if the quantifiers φn are attainable,

φn(λx.r) = r, and hence the above constraint on the sequence Ln amounts to Ln(r) =

Ln+1(r), that is, Ln can be any constant sequence. Then Lemma 5.2 is not applicable,

and, moreover, even if the equation γn = φn ⊗ γn+1 has a solution, all it says about

γn(λα.r) is that it must be a constant sequence Ln(r). But if γn itself is required to be

attainable, then γn(λα.r) = r. Hence, by bar induction, using this for the base case and

γn(p) = Bn(p, λx.γn+1(px)) for the inductive step, we see that if the quantifiers φi are

attainable, the system of equations γn = φn ⊗ γn+1 has at most one attainable solution.

Theorem 5.12. For every sequence of attainable quantifiers φi ∈ JXi, there is a unique

sequence of attainable quantifiers γn ∈ J
(∏

i Xi+n

)
such that, for all n,

γn = φn ⊗ γn+1.

Proof. It remains to establish existence. Let εi be a selection function for the quanti-

fier φi. By Theorem 5.7, there is a unique sequence δi such that δn = εn ⊗ δn+1. Taking

γn = δn, Theorem 3.8 gives γn = εn ⊗ δn+1 = εn ⊗ δn+1 = φn ⊗ γn+1, as required.

If we define
⊗

i φi = γ0, under the assumptions of this theorem, then, by construction,

⊗

i

φi = φ0 ⊗
⊗

i

φi+1

⊗

i

εi =
⊗

i

εi.

In particular, we do have that, as required above, for suitable choices of R discrete,
⊗

i

∃Xi
= ∃∏

i Xi

⊗

i

∀Xi
= ∀∏

i Xi

⊗

i

sup
Xi

= sup∏
i Xi

⊗

i

inf
Xi

= inf∏
i Xi

,

provided the quantifiers of the left-hand sides of the equations exist and are attainable.

Question 5.13. By Escardó (2008, Theorem 6.3), if R = �, if X is a space of Kleene–

Kreisel functionals, and if � �= S ⊆ X has a quantifier ∃S ∈ KX, then ∃S has a selection

function continuously in ∃S . By Escardó (2008, Lemma 5.5), such a set S has a quantifier

∃S ∈ KX if and only if it is compact. Note that the universal quantifier ∀S is continuously

interdefinable with the quantifier ∃S , and that ∃S = supS and ∀S = infS for the case R = �

with false < true. We highlight the following open question. Under what constraints on

R, X and φ ∈ KX do quantifiers φ have a selection function continuously in φ? Notice

that, for such quantifiers, the infinite product functional is continuous.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 156

5.7. Relation to traditional instances of bar recursion

Recall that in Lemma 3.13 we developed a recursive characterisation of the optimal play
(

n−1⊗

i=0

εi

)
(p).

Before we proceed, we shall consider an alternative recursive characterisation in which the

sequence of selection functions ε and the outcome predicate p do not change in recursive

calls. For this, we introduce a finite sequence s that is prefixed to the argument of p, and

grows in recursive calls. Intuitively, each recursive call extends a partial play s of length

k in an optimal way from k onwards to get a complete play. In fact, bar recursion is

normally presented in this way, with the sequence s, rather than as in Section 5.4.

Definition 5.14. For εi ∈ JXi and p :
∏n−1

i=0 Xi → R fixed, and for each k < n, define

cbrk :

k−1∏

i=0

Xi →
n−1∏

i=0

Xi

by

(cbrk(s))i :=

{
si if i < k,

εi(λxi.p(cbri+1(s ∗ t ∗ xi))) if n > i � k,

where t = (cbrk(s))k ∗ · · · ∗ (cbrk(s))i−1. Notice that the equation cbrn(s) = s is included in

the above scheme, which gives a base case for the recursion.

Proposition 5.15. The family of functions cbrk :
∏k−1

i=0 Xi →
∏n−1

i=0 Xi is related to the

product of selection functions as

cbrk(s) = s ∗

(
n−1⊗

i=k

εi

)
(ps).

In particular, we have
(

n−1⊗

i=0

εi

)
(p) = cbr0().

The above family of functions cbrk(s) can be viewed as a finite approximation to the

functional

cbr:
∑

k

k−1∏

i=0

Xi →
∞∏

i=0

Xi,

which computes an infinite optimal play from a partial play s of finite but unbounded

length since

cbr(s)(i) :=

{
si if i < |s|

εi(λxi.q(cbr(s ∗ t ∗ xi))) if i � |s|,

where t = cbr(s)(|s|) ∗ · · · ∗ cbr(s)(i − 1) and q : Π∞
i=0Xi → R. Note that we no longer have

a fixed stopping point n, but if q is assumed to be a continuous functional, for instance,

we eventually reach a point of continuity of q and the bar recursion stops.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 157

This functional cbr is very similar to (but different from) the functional used by Berardi,

Bezem and Coquand (Berardi et al. 1998), taking s :
∏

i∈�
Xi with finite support,

bbc(s)(i)
Xi
:=

{
si if i ∈ dom(s)

εi(λx
Xi .q(bbc(s ∗ (i, x)))) if i �∈ dom(s).

Other instances of bar recursion include Spector’s bar recursion (Spector 1962), with

εk : (Xk → ΠiXi) → ΠiXi,

sbr(s)
ΠiXi
:=

{
ŝ if q(̂s) < |s|

ε|s|(λx
X|s| . sbr(s ∗ x)) if q(̂s) � |s|,

where (̂·) is any fixed mapping ΣkΠ
k−1
i=0 Xi → ΠiXi, and modified bar recursion (Berger and

Oliva 2006), with Xi = X, for a fixed X,

mbr(s)(i)
X
:=

{
si if i < |s|

εi(λx
X .q(mbr(s ∗ x))) if i � |s|.

6. The continuation and selection monads

Crucial parts of the above development follow naturally from conceptual arguments

expressed in terms of category theory. The above construction K is part of a well-known

monad, known as the continuation monad, which we review here. We show that J is also

part of a monad, which we refer to as the selection monad. The two monads are strong,

which explains the products of quantifiers and the products of selection functions in a

unified way. Moreover, the procedure ε �→ ε that transforms selections functions into

quantifiers given in Definition 3.3 is a monad morphism J → K . This explains our main

Theorem 3.8, which shows that attainable quantifiers are closed under finite products.

6.1. Strong monads on cartesian closed categories

Recall that a monad (Mac Lane 1971) on a category X is a triple (T , η, µ) where T : X → X
is a functor, and ηX : X → TX (the unit) and µX : TTX → TX (the multiplication) are

natural transformations, subject to the three equations

µX ◦ ηTX = idTX = µX ◦ TηX (unit laws),

µX ◦ TµX = µX ◦ µTX (associativity law).

It is fairly laborious and space consuming to check the associativity law directly for the

cases T = J and T = K because it involves three applications of T , which amounts to

a nesting of six function spaces. In such situations, as is well known, it is often more

convenient to derive the monad from a suitable adjunction (Mac Lane 1971, page 134).

Assuming that the underlying category has finite products, the monad is strong if and

only if it admits a (necessarily unique) natural transformation

tX,Y : X × TY → T (X × Y)

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 158

subject to certain equations, which can be safely omitted because we work with the

following characterisation. Further assuming that the category is cartesian closed, the

monad is strong if and only if the functor is X-enriched (Kock 1970a). This means that

its action on morphisms is tracked by a morphism

(X → Y) → (TX → TY)

of X, rather than just a function from the hom-set X(X,Y) to the hom-set X(TX,TY).

For example, in a cartesian closed category of continuous functions, this means that the

assignment f �→ Tf is continuous in f. When T is X-enriched, the strength is given by

the λ-definition

tX×Y (x, v) = T (λy.(x, y))(v),

and automatically satisfies the equations referred to. Notice that λy.(x, y) : Y → X × Y ,

so T (λy.(x, y)) : TY → T (X × Y).

Definition 6.1. Let T be a strong monad on a cartesian closed category X. We define a

morphism

mX,Y : TX × TY → T (X × Y)

by

mX×Y (u, v) = µX×Y (T (λx.t(x, v)))(u).

That is, given any fixed v : TY , we have λx.t(x, v) : X → T (X × Y). Applying the functor

T to this, we get a map TX → TT (X × Y), and composing with the multiplication

µX×Y : TT (X × Y) → T (X × Y), we get the a map TX → T (X × Y), which we apply to

u : TX to get mX×Y (u, v).

Remarks 6.2.

1 This standard morphism makes T into a monoidal monad (Kock 1972). This amounts

to saying that

m1,X(η1(), u) ∼= u ∼= mX,1(u, η1())

and

mX,Y ×Z (u, mY ,Z (v, w)) ∼= mX×Y ,Z (mX,Y (u, v), w)

via the isomorphisms

T (1 × X) ∼= TX ∼= T (X × 1), T (X × (Y × Z)) ∼= T ((X × Y) × Z).

2 We have defined m from t. We can recover t from m by

t(x, v) = m(η(x), v).

3 Any monad morphism θX : TX → T ′X commutes with the standard monoidal monad

structure of Definition 6.1:

θX×Y (m(u, v)) = m(θX(u), θY (v)).

Recall that a monad morphism T → T ′ is a natural transformation T → T ′ that

commutes with the functors, units and multiplications that define the monads.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 159

6.2. The continuation monad

The continuation monad KX = ((X → R) → R) is well known (Kock 1970b; Moggi 1990;

Moggi 1991), so we will only provide the constructions and will omit a verification of the

axioms. The easiest way to derive the continuation monad is by considering the functor

P : X → Xop defined by

PX := (X → R).

This is an X-enriched functor, since its action Pf = (q �→ q ◦ f) on morphisms,

P (X
f

−→ Y) =

(
(Y

q
−→ R) �→ (X

f
−→ Y

q
−→ R)

)
,

is tracked by a morphism (X → Y) → (PY → PX) of X. This functor is self-adjoint on

the right,

X(A, PX) ∼= X(X, PA),

and the adjunction induces the continuation monad K = PP .

For a morphism f : X → Y , the morphism Kf : KX → KY is given by

Kf(φ)(q) = φ(λx.q(f(x))).

Because f �→ Kf is λ-definable, it is a morphism of the category and hence the monad is

strong, with strength tX,Y : X × KY → K(X × Y) given by

tX,Y (x, γ) = K(λy.(x, y))(γ)

= λp.γ(λy.p(x, y)).

The unit ηX : X → KX is defined by

ηX(x)(p) = p(x).

The multiplication µX : KKX → KX is defined by

µ(Φ)(p) = Φ(λφ.φ(p)).

Remark 6.3. It is easy to verify that the morphism mX,Y : KX ×KY → K(X ×Y) defined

in Definition 6.1 satisfies

mX,Y (φ, γ) = φ ⊗ γ,

where ⊗ is defined in Section 2.1, and hence tX,Y (x, γ) = η(x) ⊗ γ. By Remark 6.2, we

conclude that the product of quantifiers is associative: (φ0 ⊗ φ1) ⊗ φ2
∼= φ0 ⊗ (φ1 ⊗ φ2).

We now illustrate the meaning of these constructions in the context of the current

paper.

Examples 6.4. Consider R = Ω in the category of sets or any topos.

1 For any A ⊆ X and f : X → Y , we have that the bounded quantifiers ∃A, ∀A ∈ KX and

∃f(A), ∀f(A) ∈ KY satisfy

Kf(∃A) = ∃f(A)

Kf(∀A) = ∀f(A),

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 160

since

∃y∈f(A)(q(y)) = ∃x∈A(q(f(x))),

and similarly for ∀. In this sense, Kf behaves like an f-image operator, and functoriality

says that the g-image of the f-image is the same as the (g ◦ f)-image.

2 For the strength tX,Y : X × KY → K(X × Y), we have, for any x ∈ X and any B ⊆ Y ,

t(x, ∃B) = ∃{x}×B

t(x, ∀B) = ∀{x}×B .

Similarly, by Example 2.3, for the operation mX,Y : KX × KY → K(X × Y), we have

for any A ⊆ X,

m(∃A, ∃B) = ∃A ⊗ ∃B = ∃A×B

m(∀A, ∀B) = ∀A ⊗ ∀B = ∀A×B .

3 The unit produces the bounded existential/universal quantifier for the singleton set:

ηX(x) = ∃{x} = ∀{x}

since ηX(x)(p) = p(x) = ∃x∈{x}(p(x)) = ∀x∈{x}(p(x)).

4 The multiplication µX : KKX → KX involves the perhaps unfamiliar concept of

quantification over quantifiers. Suppose A ⊆ KX is a set such that each φ ∈ A is

the bounded existential quantifier of a set Bφ ⊆ X, that is,

φ = ∃Bφ
.

Then the bounded universal quantifier ∀A ∈ KKX of the set A ⊆ KX satisfies

µ(∀A)(p) = ∀φ ∈ A ∃x ∈ Bφ(p(x)).

6.3. The selection monad

To prove that J is a monad, we construct a new category, which will turn out to be

the Kleisli category of J , and show that there is an adjunction with X. In order to

define this manifestation of the Kleisli category of J , we will work simultaneously with a

manifestation of the Kleisli category of K .

We have used letters X, Y , Z for the objects of our underlying category X. In order

both to avoid confusion and to be compatible with the notational conventions used in

Mac Lane (1971) for the objects of two different categories related by an adjunction,

we will now also adopt the letters A, B, C . These new letters will stand for objects of

a Kleisli category, or, equivalently, the category of free algebras. Similarly, in an adjoint

situation, we will use the letter f for morphisms of X and the letter g for morphisms of

free algebras.

A morphism A → B of the Kleisli category of K is a morphism A → KB of the

underlying category X, which, by transposition, amounts to a morphism

(B → R) → (A → R).

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 161

For the proof that J is a monad that we are about to develop, it is convenient to abstract

from this situation by considering an arbitrary functor

P : X → Xop,

and hence morphisms of the form

PB → PA.

We will recover the intended results by considering PX = (X → R) as in Section 6.2.

For the remainder of this section, let P : X → Xop be an enriched functor that is

self-adjoint on the right in the sense that there is a natural isomorphism

X(X, PA) ∼= X(A, PX).

Note that the following definition does not require that the functor P be enriched or

self-adjoint on the right, but everything else does. The enrichment is needed in order to

define new morphisms and enriched functors using the lambda-calculus.

Definition 6.5. Define a new category K from our underlying category X and the functor

P : X → Xop as follows:

1 Objects of K: the same as those of X.

2 Morphisms of K: A morphism f : A → B of K is a morphism f : PB → PA of X:

K(A,B) = X(PB, PA).

3 Composition of K: For f : A → B and g : B → C in K, that is, f : PB → PA and

g : PC → PB in X, define

g � f = f ◦ g.

4 Identities of K: Of course, the identity of A in K is the identity of PA in X.

Notice that in the following lemma, both adjuntions (P , P) and (F,G) induce the same

monad on X, namely K = PP , and that, by construction, K is isomorphic to the Kleisli

category XK .

Lemma 6.6. The functor F = FK : X → K that is the identity on objects and sends

f : X → Y to Pf : PY → PX, regarded as a morphism X → Y of K, has a right adjoint

G = GK : K → X.

Proof. On objects, GA = PPA, and G sends a morphism g : A → B of K, regarded

as a morphism g : PB → PA of X, to Pg : PPA → PPA. By construction, a natural

isomorphism K(FX,A) ∼= X(X,GA) amounts to a natural isomorphism X(X, PA) ∼=
X(A, PX), which is given by the assumption that P is self-adjoint on the right.

A morphism A → B of the Kleisli category of J is a morphism A → JB of the

underlying category, which, by transposition, amounts to a morphism

(B → R) → (A → B).

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 162

For our proof that J is a monad, we abstract from this situation as above, and consider

morphisms of the form

PB → (A → B).

Definition 6.7. We define a new category J from our underlying category X and the

enriched functor P : X → Xop as follows:

1 Objects of J: the same as those of X.

2 Morphisms of J: A morphism f : A → B of J is a morphism f : PB → (A → B) of X:

J(A,B) = X(PB,A → B).

We think of such a morphism as a kind of parametrised morphism of X, and we write

the parameter as a subscript: for f : PB → (A → B) and q : PB and a : A, we write

fq(a) = f(q)(a).

3 Auxiliary construction: This parameter q : PB can be ‘transferred back’ to a new

parameter p : PA using Pfq : PB → PA:

p = Hf(q) := Pfq(q)

4 Composition of J: For

f : PB → (A → B)

g : PC → (B → C)

in X, we define the composite

g � f : PC → (A → C)

by, for any r : PC ,

(g � f)r = gr ◦ fHg(r).

That is, we compose functions in the usual way, but transferring back the parameter.

5 Identities of J: The constant identities idq = id of X. It is clear that these act as left

and right identities of composition, because H id(p) = p.

6 Associativity. We first establish the following claim.

Claim.

H(g � f) = Hf ◦ Hg.

When we know that J is a category, this, together with the fact that H id = id, will

amount to saying that H is a covariant functor J → K with object part HA = A,

because Hf ◦ Hg = Hg � Hf by the definition of composition in K. But we will first

use this claim to prove that J is a category.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 163

Proof of the claim. We have

H(g � f)(r) = P (g � f(r))(r)

= P (gr ◦ fHg(r))(r)

= PfHg(r) ◦ Pgr(r)

= PfHg(r)(Hg(r))

= Hf(Hg(r)).

Proof of associativity. Let

f : PB → (A → B), g : PC → (B → C), h : PD → (B → D),

and s : PD, and calculate:

((h � g) � f))s = (h � g)s ◦ fH(h�g)(s)

= hs ◦ gHh(s) ◦ fHg(Hh(s))

= hs ◦ (g � f)Hh(s)

= (h � (g � f))s.

Hence J is indeed a category and H : J → K is a functor.

Notational warning. In the following proof, we use the letter epsilon for the counit, as is

customary, but using the typographical form ǫ. Recall that we also use the typographical

variant ε of the letter epsilon for selection functions, which in the following proof

correspond to functions PA → A.

Lemma 6.8. The functor F = FJ : X → J that is the identity on objects and that sends

a morphism f : X → Y to the constant f morphism PY → (X → Y) of X has a right

adjoint G = GJ : J → X.

Proof. We describe G and the required natural isomorphism

J(FX,A) ∼= X(X,GA)

by a universal property, appealing to Mac Lane (1971, Theorem IV-2(iv), page 81). It

suffices to show that for every J-object A there is a universal morphism from F to A.

By definition, this amounts to saying that there is an X-object GA and a J-morphism

ǫ = ǫA : FGA → A such that for every J-morphism f : FX → A, the equation ǫ� Fg = f

holds for a unique X-morphism g : X → GA. Considering X = 1 in the desired natural

isomorphism, this suggests we choose GA to be

GA = (PA → A).

We define ǫ : FGA → A in J, or, equivalently, ǫ : PA → ((PA → A) → A) in X, to be, for

any p : PA and ε : (PA → A),

ǫp(ε) = ε(p).

For any g : X → GA in X, that is, g : X → (PA → A),

(ǫ � Fg)p(x) = (ǫp ◦ (Fg)Hǫ(p))(x) = (ǫp ◦ g)(x) = ǫp(g(x)) = g(x)(p).

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 164

Hence, given any f : FX → A in J, or, equivalently, f : PA → (X → A) in X, we are

forced to define g : X → GA, by

g(x)(p) = fp(x).

With this, not only does the equation ǫ � Fg = f hold, but it also uniquely determines g,

as required to conclude the existence of a right adjoint.

The above proof does not say explicitly how G acts on morphisms. By the proof

of Mac Lane (1971, Theorem IV-2(iv), page 81), its action on morphisms is uniquely

determined by its action on objects and the requirement that ǫ : FGA → A be a natural

transformation in A, as follows. Given a morphism h : A → B in J, the morphism Gh in

X is the unique g : GA → GB such that ǫ�Fg = f, where f = h� ǫ : FGA → B. Now, by

the construction of g from f in the proof of Lemma 6.8, expanding all the definitions and

using the fact that a morphism h : A → B of J is a morphism h : PB → (A → B) of X,

we have that, for all q ∈ PB and ε ∈ GA = (PA → A),

Gh(ε)(q) = g(ε)(q)

= fq(ε)

= (h � ǫ)q(ε)

= (hq ◦ ǫHh(q))(ε)

= hq(ε(Hh(q)))

= hq(ε(Phq(q))).

The proof of Lemma 6.8 does not say explicitly what the unit ηX : X → GFX of the

adjunction is either. By the proof of Mac Lane (1971, Theorem IV-2(iv), page 81), it is the

unique morphism such that ǫ�Fg = ηX for g = idFX : FX → FX. By the construction of

g from f in the proof of Lemma 6.8 and the definition of the identities of J,

ηX(x)(p) = (idFX)p(x) = x.

Applying the standard construction of a monad from a given adjunction, we get the

following lemma.

Lemma 6.9. JX = GFX = (PX → X) is a strong monad on X, with its action on

morphisms f : X → Y given by, for all ε : JX and q : PY ,

Jf(ε)(q) = f(ε((Pf(q)))),

and with units ηX : X → JX and multiplications µX : JJX → JX given by, for all x : X,

p : PX and E : JJX,

ηX(x)(p) = x

µX(E)(p) = E(Pǫp(p))(p).

Proof. Let f : X → Y in X and h = Ff. We have hq = f by the definition of F , so we

can conclude that

GFf(q) = hq(ε(Phq(q))) = f(ε(Pf(q))),

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 165

as claimed. The multiplication is given by, for any E : JJX and p : PX,

µ(E)(p) = Gǫ(E)(p) = ǫp(E(Pǫp(p))) = E(Pǫp(p))(p),

as claimed. The monad is strong because the action of J on morphisms is clearly λ-

definable, and hence tracked by a morphism of X.

Lemma 6.10. There is a monad morphism θX : JX → KX, given by the adjoint transposes

of the family of maps

λp.P (λε.ε(p))(p) : PX → PJX.

Proof. We apply Moggi (1990, Proposition 4.0.10), which shows that monad morphisms

θ : J → K are in bijection with functors H : XJ → XK of the Kleisli categories that are

the identity on objects and such that the equation H ◦ FJ = FK holds. The direction

of the bijection that we need constructs the component θX : JX → KX of the natural

transformation as Hh, where the morphism h in XJ is the identity JX → JX of X in X,

regarded as a morphism JX → X of the Kleisli category XJ of J . In the manifestation

J of XJ , this amounts to a morphism h : PX → (JX → X) of X, which is readily

seen to be hp(ε) = ε(p). Note that Hh : JX → X, because H is the identity on objects,

so Hh : JX → KX regarded as a morphism of the Kleisli category of K , and hence

Hh : PX → PJX regarded as a morphism of X. Now, for H : J → K constructed as in

Definition 6.7, we have

H(FJf)(q) = Pf(q) = FKf(q),

and hence the above is applicable. We thus get θ as the adjoint transpose JX → PPX of

Hh = λp.Php(p) = λp.P (λε.ε(p))(p),

which concludes the proof.

Theorem 6.11. JX = ((X → R) → X) is a strong monad on X, with action on morphisms

f : X → Y given by

Jf(ε)(q) = f(ε(q ◦ f)),

and with units ηX : X → JX and multiplications µX : JJX → JX given by

ηX(x)(p) = x

µX(E)(p) = E(λε.p(ε(p)))(p).

Moreover, the assignment ε → ε is a monad morphism from J to the continuation monad

KX = ((X → R) → R).

Proof. Take PX = (X → R) and Pf(q) = q ◦ f as in Section 6.2. Then

Pǫp(p) = p ◦ ǫp = λε.p(ǫp(ε)) = λε.p(ε(p)),

which gives the above definition of µ. Now

λp.P (λε.ε(p))(p) = λp.λε.p(ε(p)),

whose transpose is λε.λp.p(ε(p)), so we get the desired monad morphism.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 166

Remarks 6.12.

1 Because a monad morphism commutes with the functors that define the monads,

Theorem 6.11 gives, for any f : X → Y and ε ∈ JX:

Jf(ε) = Kf(ε).

Hence, if ε ∈ JX is a selection function for the quantifier φ ∈ KX, we have that Jf(ε)

is a selection function for the image quantifier Kf(φ). In particular, by Example 6.4(1),

for any A ⊆ X, if ε is a selection function for ∃A, then Jf(ε) is a selection function for

∃f(A), which is the content of the proof of Escardó (2008, Proposition 4.3).

2 Theorem 3.8 follows directly from Theorem 6.11 and Remarks 6.2.

3 The construction of the strength and of the monoidal monad structure given in

Definition 6.1 is characterised as follows, where ⊗ is defined as in Section 3.1:

(a) The morphism tX,Y : X × JY → J(X × Y) satisfies

t(x, δ) = λp.(x, δ(λy.p(x, y))) = η(x) ⊗ δ.

(b) The morphism mX,Y : JX × JY → J(X × Y) satisfies

m(ε, δ) = ε ⊗ δ.

(c) Hence, by Remark 6.2, we conclude that the product of selection functions is

associative: (ε0 ⊗ ε1) ⊗ ε2 ∼= ε0 ⊗ (ε1 ⊗ ε2).

7. Further work

The work presented here lays the foundations for applications to proof theory that we

are currently developing. We are studying the role of the monad J in the translation of

proofs in the context of minimal logic ML, where monad algebras JA → A are objects

with a realiser/proof of the instance

PLRA : ((A → R) → A) → A

of Peirce’s law. Also, in the same way that the monad K gives rise to the well-known

negative translation, the monad J defines a proof translation of ML + PLR into ML. We

also know that the infinite product functional
⊗

realises (in the sense of Kreisel’s modified

realisability) the J-shift

∀n(JA(n)) → J (∀nA(n)) .

The J-shift is more general than the double negation shift (K-shift), and gives the K-shift

in the cases it exists, like the relation between countable products of selection functions

and quantifiers discussed in Section 5.6. This leads to a natural construction based on

the product of selection functions that realises the axiom of countable (and dependent)

choice.

We are also investigating the inter-definability (over Gödel’s system T) of the new

instance of bar recursion presented here and traditional instances (cf. Section 5.7).

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

Selection functions, bar recursion and backward induction 167

Acknowledgements

We would like to thank Matı́as Menni for discussions on the subject of Section 6. We

also thank the anonymous referees for their careful reading of the paper and for helpful

suggestions.

References

Abramsky, S. and Jung, A. (1994) Domain theory. In: Abramsky, S., Gabbay, D. and Maibaum, T.

(eds.) Handbook of Logic in Computer Science 3, Oxford science publications 1–168.

Avigad, J. and Feferman, S. (1998) Gödel’s functional (“Dialectica”) interpretation. In: Buss, S. R.

(ed.) Handbook of proof theory, Studies in Logic and the Foundations of Mathematics 137,

North-Holland 337–405.

Battenfeld, I., Schröder, M. and Simpson, A. (2006) Compactly generated domain theory.

Mathematical Structures in Computer Science 16 (2) 141–161.

Battenfeld, I., Schröder, M. and Simpson, A. (2007) A convenient category of domains. In:

Computation, meaning, and logic: articles dedicated to Gordon Plotkin. Electronic Notes in

Theoretical Computer Science 172 69–99.

Bauer, A. (2002) A relationship between equilogical spaces and type two effectivity. MLQ Math.

Log. Q. 48 (suppl. 1) 1–15.

Bekič, H. (1984) Programming languages and their definition – H. Bekič (1936–1982) Selected Papers

edited by C. B. Jones. Springer-Verlag Lecture Notes in Computer Science 177.

Berardi, S., Bezem, M. and Coquand, T. (1998) On the computational content of the axiom of

choice. The Journal of Symbolic Logic 63 (2) 600–622.

Berger, U. and Oliva, P. (2005) Modified bar recursion and classical dependent choice. In: Baaz, M.,

Friedman, S.D. and Kraijcek, J. (eds.) Logic Colloquium ’01. Springer-Verlag Lecture Notes in

Logic 20 89–107.

Berger, U. and Oliva, P. (2006) Modified bar recursion. Mathematical Structures in Computer Science

16 (2) 163–183.

Bezem, M. (1985) Strongly majorizable functionals of finite type: a model for bar recursion

containing discontinuous functionals. The Journal of Symbolic Logic 50 652–660.

Bove, A. and Dybjer, P. (2008) Dependent types at work. Lecture notes from the LerNET Summer

School, Piriapolis, available at the authors’ web pages.

Escardó, M. (2007) Infinite sets that admit fast exhaustive search. In: Proceedings of the 22nd Annual

IEEE Symposium on Logic In Computer Science, IEEE Computer Society 443–452.

Escardó, M. (2008) Exhaustible sets in higher-type computation. Logical Methods in Computer

Science 4 (3:3) 1–37.

Escardó, M., Lawson, J. and Simpson, A. (2004) Comparing Cartesian closed categories of (core)

compactly generated spaces. Topology Appl. 143 (1–3) 105–145.

Hutton, G. (2007) Programming in Haskell, Cambridge University Press.

Johnstone, P. (2002) Sketches of an Elephant: a Topos Theory Compendium, Oxford University Press.

Kock, A. (1970a) Monads on symmetric monoidal closed categories. Arch. Math. (Basel) 21 1–10.

Kock, A. (1970b) On double dualization monads. Math. Scand. 27 151–165.

Kock, A. (1972) Strong functors and monoidal monads. Arch. Math. (Basel) 23 113–120.

Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical Logic, Cambridge

University Press.

Mac Lane, S. (1971) Categories for the Working Mathematician, Springer-Verlag.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 30 Jul 2014 IP address: 147.188.224.215

M. Escardó and P. Oliva 168

Moggi, E. (1990) An abstract view of programming languages. Technical Report ECS-LFCS-90-113,

Laboratory for Foundations of Computer Science, University of Edinburgh.

Moggi, E. (1991) Notions of computation and monads. Information and Computation 93 (1) 55–92.

Nisan, N. et al. (2007) Algorithmic Game Theory, Cambridge University Press.

Normann, D. (1980) Recursion on the countable functionals. Springer-Verlag Lecture Notes in

Mathematics 811.

Normann, D. (1999) The continuous functionals. In: Griffor, E.R. (ed.) Handbook of Computability

Theory, Chapter 8, North-Holland 251–275.

Oliva, P. (2006) Understanding and using Spector’s bar recursive interpretation of classical

analysis. In: Beckmann, A., Berger, U., Löwe, B. and Tucker, J. V. (eds.) Logical approaches

to computational barriers. Proceedings second conference on computability in Europe, CiE 2006,

Swansea. Springer-Verlag Lecture Notes in Computer Science 3988 423–434.

Schröder, M. (2002) Extended admissibility. Theoretical Computer Science 284 (2) 519–538.

Smyth, M. (1977) Effectively given domains. Theoretical Computer Science 5 (1) 256–274.

Spector, C. (1962) Provably recursive functionals of analysis: a consistency proof of analysis by an

extension of principles in current intuitionistic mathematics. In: Dekker, F.D. E. (ed.) Recursive

Function Theory: Proc. Symposia in Pure Mathematics 5, American Mathematical Society 1–27.

Valiente, G. (2002) Algorithms on Trees and Graphs, Springer-Verlag.

http://journals.cambridge.org

