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Abstract—In this paper, we present quantitative models for the
selection pressure of cellular evolutionary algorithms on regular
one- and two-dimensional (2-D) lattices. We derive models based
on probabilistic difference equations for synchronous and several
asynchronous cell update policies. The models are validated using
two customary selection methods: binary tournament and linear
ranking. Theoretical results are in agreement with experimental
values, showing that the selection intensity can be controlled by
using different update methods. It is also seen that the usual lo-
gistic approximation breaks down for low-dimensional lattices and
should be replaced by a polynomial approximation. The depen-
dence of the models on the neighborhood radius is studied for both
topologies. We also derive results for 2-D lattices with variable grid
axes ratio.

Index Terms—Asynchronous dynamics, cellular evolutionary al-
gorithms (cEAs), regular lattices, selection intensity, synchronous
dynamics.

I. INTRODUCTION

CELLULAR evolutionary algorithms (cEAs) use popula-
tions that are structured according to a lattice topology.

The structure may also be an arbitrary graph, but more com-
monly it is a one-dimensional (1-D) or two-dimensional (2-D)
grid. This kind of spatially structured EA has been introduced
in [1] and [2]. A distinctive feature of cEAs is slow diffusion of
good individuals through the population and, thus, for a given
selection method, they are more explorative than panmictic
(i.e., standard mixing population) EAs. These aspects have
been found useful for multimodal and other kinds of problems
(see, for instance, [3]). Cellular evolutionary algorithms have
become popular because they are easy to implement on par-
allel hardware [4], [5]. However, it is clear that the search is
performed by the model, not by its implementation. Thus, in
this paper, we will focus on cEA models and on their properties
without worrying about implementation issues.

Several results have appeared on selection pressure and con-
vergence speed in cEAs. Sarma and De Jong performed empir-
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ical analyses of the dynamical behavior of cellular genetic al-
gorithms (cGAs) [6], [7], focusing on the effect that the local
selection method, and the neighborhood size and shape have on
the global induced selection pressure. Rudolph and Sprave [8]
have shown how cGAs can be modeled by a probabilistic au-
tomata network and have provided proofs of complete conver-
gence to a global optimum based on Markov chain analysis for
a model including a fitness threshold. Recently, Giacobini et al.
[9] have successfully modeled the selection pressure curves in
cEAs on 1-D ring structures. Also, a preliminary study of 2-D,
torus-shaped grids has appeared in [10] and [11].

Our purpose here is to investigate in detail, selection pressure
in 1-D and 2-D population structures for two kinds of dynam-
ical systems: synchronous and asynchronous. These two kinds
of systems differ in the policies used to update the population
at every step of the search. Our main contribution, thus, lies in
providing mathematical models for the different update policies
(and several selection strategies) that more accurately predict
the experimentally observed takeover time curves with simple
difference equations describing the propagation of the best in-
dividual under probabilistic conditions.

The paper proceeds as follows. In Section II, we summarize
the main features relevant to our study. We discuss the takeover
time concept in Section III, followed in Section IV by the in-
troduction of the background ideas sustaining our mathemat-
ical models. Section V contains a discussion on the limitations
of directly applying the logistic model to cEAs. This justifies
the necessity of new mathematical models that are developed
in the next two sections, for a ring (Section VI) and for a torus
(Section VII). In Section VIII, we validate our models exper-
imentally for two standard selection mechanisms: binary tour-
nament and linear ranking. Also, because of the high interest of
rectangular toroidal structures for the population in cEAs, we
devote Section IX to such shape to enlarge the spectrum of in-
terest of this paper. We conclude our analysis by exploring the
theoretical implications of changing the radius of the neighbor-
hood in the considered models (Section X). Section XI offers
our concluding remarks and future research lines.

II. SYNCHRONOUS AND ASYNCHRONOUS CEAS

Let us begin with a description of how a cEA works. A
cEA maintains a population whose individuals are spatially
distributed in cells. Each cell is occupied by one individual;
therefore, the terms cell and individual may be used inter-
changeably without possibility of confusion.

A cEA starts with the cells in a random state and proceeds by
successively updating them using evolutionary operators, until
a termination condition is met. Updating a cell in a cEA means

1089-778X/$20.00 © 2005 IEEE
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Fig. 1. (a) A ring cellular structure and (b) a grid cellular structure with a
von Neumann neighborhood highlighted.

selecting two parents in the individual’s neighborhood, applying
genetic operators to them, and finally, replacing the individual
if the obtained offspring has a better fitness (other replacement
policies can also be used).

Before engaging in a description of the update policies, let us
focus on the geographical distribution of the individuals them-
selves, a distinguishing feature of cEAs with respect to other
population-based heuristics. Here, we consider cEAs defined on
a 1-D lattice of size or a square lattice of size , as de-
picted in Fig. 1. In this study, both the linear cEA, as well as the
2-D case have periodic boundary conditions, i.e., the structures
are respectively a ring and a torus.

Let us call the (finite) set of states that a cell can take up
or, equivalently, the set of different individuals that can occupy
a cell at any given time: this is the set of points in the (discrete)
search space of the problem. Let be the set of neighbors of a
given cell , and let be its size. Note that all the cells in
the lattice have identical neighborhood geometry and size. The
local transition function can then be defined as

which maps the state of a given cell into another state
from , as a function of the states of the cells in the neigh-
borhood . The main neighborhoods we consider in this paper
are the radius-one neighborhood in the linear case, which com-
prises the cell itself and its first right and left neighbors and in
the 2-D case, the von Neumann neighborhood, also called linear
5 ( ), which is constituted by the central cell and the four
first neighbor cells in the directions north, east, south, and west
(see Fig. 1). Thus, the implicit form of the stochastic transition
function is

where is the conditional probability that cell will assume
a certain value from the set at the next time step , given
the current (time ) values of the states of all the cells in the
neighborhood. We are, thus dealing with probabilistic automata
[12], [13], and the set should be seen as a set of values of
a random variable. The probability will be a function of the
particular selection and variation methods.

With respect to time, cells can be updated either synchro-
nously or asynchronously. In the synchronous case, all the cells
change their states simultaneously, while in the asynchronous
case cells are updated one at a time in some order.

The most mathematically satisfying asynchronous update
method would be to use exponentially distributed waiting times,

in which each cell has its own clock ticking according to an
exponential distribution of mean [14]. This method is com-
monly used to simulate continuous time stochastic processes.
Since we deal with finite-size populations evolving in discrete
time steps here, we prefer to use step-based methods in which
time is not explicitly defined.

There are many ways for sequentially updating the cells of
a cEA. We consider four commonly used asynchronous update
methods [15].

• In fixed line sweep (LS), the cells are updated sequen-
tially from left to right and line after line starting from the
upper left corner cell.

• In fixed random sweep (FRS), the next cell to be updated
is chosen with uniform probability without replace-
ment; this will produce a certain update sequence
( ), where means that cell number is
updated at time and ( ) is a permutation of
the cells. The same permutation is then used for all
update cycles.

• The new random sweep method (NRS) works like FRS,
except that a new random cell permutation is used for each
sweep through the array.1

• In uniform choice (UC), the next cell to be updated is
chosen at random with uniform probability and with re-
placement. This corresponds to a binomial distribution for
the updating probability.

A time step is defined as updating times sequentially, which
corresponds to updating all the cells in the grid for LS, FRS,
and NRS, and possibly less than different cells in the uniform
choice method, since some cells might be updated more than
once.

III. TAKEOVER TIME

The takeover time is defined as being the time it takes for a
single best individual to take over the entire population. It can be
estimated experimentally by measuring the propagation of the
proportion of the best individual under the effect of selection
only, without any variation operator. Shorter takeover times in-
dicate higher selection pressures and, thus, more exploitative al-
gorithms. By lowering the selection intensity, the algorithm be-
comes more explorative. Theoretical takeover times have been
derived by Deb and Goldberg [16] for panmictic populations
and for the standard selection methods. These times turn out to
be logarithmic in the population size, except in the case of pro-
portional selection, which is a factor of slower, where is the
population size.

It has been empirically shown in [6] that the selection pressure
induced on the entire population becomes weaker as we move
from a panmictic to a square grid population (both of the same
size, with synchronous updating of the cells).

A study on the selection pressure in the case of ring and array
topologies in 1-D cEAs has been done by Rudolph [17]. Ab-
stracting from specific selection methods, he splits the selec-
tion procedure into two stages: in the first stage an individual is

1Note that over many sweeps the FRS method has a larger variance than the
NRS since the FRS sequence could be an extremely favorable or defavorable
one, while in NRS these effects would be smoothed out.



GIACOBINI et al.: SELECTION INTENSITY IN CELLULAR EVOLUTIONARY ALGORITHMS FOR REGULAR LATTICES 491

chosen in the neighborhood of each individual, and then, in the
second stage, for each individual it is decided whether the pre-
viously chosen individual will replace it in the next time step.
Using only replacement methods in which extinction of the best
by chance cannot happen, i.e., nonextinctive selection, Rudolph
derives the expected takeover times for the two topologies as a
function of the population size and the probability that in the
selection step the individual with the best fitness is selected in
the neighborhood.

In this paper, we complete and extend the previous investi-
gations to comprise synchronous and asynchronous cell update
modes for 1-D and 2-D torii (i.e., rings and wrapped 2-D grids).
In the next sections, we introduce quantitative models for the
growth of the best individual in the form of difference stochastic
equations.

IV. MATHEMATICAL MODELS

Let us consider the random variables indi-
cating the presence in cell ( ) of a copy of the best
individual ( ) or of a worse one ( ) at time step
, where is the the population size. The random variable

denotes the number of copies of the best individual in the pop-
ulation at time step . Initially, for some individual ,
and for all .

Following Rudolph’s definition [17], if the selection mecha-
nism is nonextinctive, the expectation with

is called the takeover time of the selection method. In the case
of spatially structured populations, the quantity , denoting
the takeover time if cell contains the best individual at time step
1, is termed the takeover time with initial cell . Assuming a uni-
formly distributed initial position of the best individual among
all cells, the takeover time is, therefore, given by

In the following sections, we give the recurrences describing
the growth of the random variable in a cEA with different
regular lattice topologies for the synchronous and the four asyn-
chronous update policies described in Section II. We consider
nonextinctive selection mechanisms that select the best indi-
vidual in a given neighborhood with probabilities in the interval
(0,1].

V. LIMITATIONS OF THE LOGISTIC MODELING

It is well known since the work of Verhulst [18], that the as-
sumption of logistic growth is a reasonable model for biological
populations within bounded resources [19]. It is easy to see that
this behavior also holds for the best individual growth in the ar-
tificial evolution of a finite-panmictic population [16]. In fact, if

we consider a population of size , the number of copies
of the best individual in the population at time step is given by
the following recurrence:

where is the probability that the best individual is chosen.
This recurrence can be easily transformed into one that de-
scribes a discrete logistic population growth in discrete time

Such a recurrence can be approximated in analytical form by
the standard continuous logistic equation2:

where the growth coefficient depends on the probability .
This happens to be the approach taken in [7] for synchronous
cEAs in order to fit the measured growth curves as a function of
a single structural parameter.

This can be useful as a first approximation but, as suggested
by Spiessens and Manderick [20], the growth of individuals
propagation in a 2-D grid under local fitness-proportionate se-
lection should follow a quadratic law. Gorges–Schleuter in [21],
made similar remarks, noting that in the artificial evolution of lo-
cally interacting, spatially structured populations, the assump-
tion of a logistic growth does not hold anymore.

Indeed, in these locally interacting structures, although the
curves do have the familiar “S-shape” denoting growth followed
by saturation, they are not exponential but rather polynomial
with a time dependence , with the lattice dimension.

In fact, in the case of a ring or a torus structure, we have,
respectively, a linear and a quadratic growth. We complete here
their analysis which holds for unrestricted growth, extending it
to bounded synchronously updated spatial populations.

For a structured population, let us consider the limiting case,
which represents an upper bound on growth rate, in which the
selection mechanism is deterministic (i.e., where ), and
a cell always chooses its best neighbor for updating. If we con-
sider a population of size with a ring structure and a neigh-
borhood radius of (i.e., a neighborhood of a cell contains

cells), the following recurrence describes the growth of
the number of copies of the best individual:

This recurrence can be described by the closed equation
, which clearly shows the linear character of the

growth rate.
In the case of a population of size disposed on a toroidal

grid of size (assuming odd) and a von Neumann
generalized neighborhood structure of radius (see Section X),

2Note that this is not true in a rigorous sense. The discrete logistic map can
give rise to chaotic behavior for a range of the parameters [19]. This is ignored
in the previous qualitative discussion.
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Fig. 2. Example of a deterministic growth of N(t) for a population of 81
individuals on a 9� 9 torus structure.

the growth of the number of copies of the best individual can be
described by the following recurrence:

for

for

which reduces to the first equation at the bottom of the page.
This growth is described by a convex quadratic equation
followed by a concave one, as the two closed forms of the
recurrence clearly show in the second equation at the bottom
of the page. Fig. 2 graphically depicts the growth described
by the above equations for a population of 81 individuals dis-
posed on a 9 9 torus structure using a radius 1 von Neumann
neighborhood.

Thus, a more accurate fitting should take into account the non-
exponential growth followed by saturation (crowding effect).
We address such study in the following sections in the cases
of 1-D and 2-D regular lattice topologies for synchronous and
asynchronous evolution.

VI. RING STRUCTURE

In a ring topology, each cell has the same number of neighbors
on both sides, and this number depends on the radius . We will
first consider the simplest case , which means that there
are three neighbors, including the central cell itself.

At each time step , the expected number of copies of the
best individual is independent from its initial position. There-
fore, the expected takeover time is , .

A. Synchronous Takeover Time

Since we consider neighborhoods of radius 1, the set of cells
containing a copy of the best individual will always be a con-
nected region of the ring. Therefore, at each time step, only two
more cells (the two adjacent to the connected region of the ring)
will contain a copy of the best individual with probability . The

growth of the quantity can be described by the following
recurrence:

where is the probability that the random
variable has the value at time step . Since

, and the expected number
of copies of the best individual at time step is

by definition , the previous recurrence
is equivalent to

The closed form of this recurrence is trivially

therefore, the expected takeover time for a synchronous
ring cEA with cells is

Rudolph [17] gave analytical results for the ring with syn-
chronous update for a generic probability of selection . Al-
though obtained in a different way, the previous expression and
his equation give nearly the same results for large population
sizes . In fact, his equation, for large , reduces to

, while our equation gives . Given that
the first term quickly dominates the second for large , the two
expressions are considered equivalent.

B. Asynchronous Fixed Line Sweep Takeover Time

Let us consider the general case of an asynchronous fixed
line sweep cEA, in which the connected region containing the
copies of the best individual at time step is ,

. At each time step the cell will contain
a copy of the best individual with probability , while the cells

(with ) will contain a copy of the best
individual with probability . The recurrence describing the
growth of the random variable is, therefore

for

for

for

for
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Since is a geometric progression, for large we can
approximate this quantity by the limit value of the
summation. The recurrence is, therefore, equivalent to the fol-
lowing equation:

The closed form of the previous recurrence being

we conclude that the takeover time for an asynchronous fixed
line sweep cEA with a population of size is

C. Asynchronous Fixed and New Random Sweep Takeover
Times

The mean behaviors of the two asynchronous fixed and new
random sweep update policies among all the possible permu-
tations for the sweeps are equivalent. We, therefore, give only
one model describing the growth of the random variable
for both policies.

Let us again consider the general case in which the connected
region containing the copies of the best individual at time step

is (with ). The cells
and have a probability of containing a copy of

the best individual at the next time step. Because of symmetry
reasons, let consider only the part of the ring at the right side of
the connected region. The cell has a probability 1/2 to be
contained in the set of cells after cell in the sweep, so it has
a probability to contain a copy of the best individual in
the next time step. In general, a cell has a probability 1/2
to be after cell in the sweep, so it has a probability
to contain a copy of the best individual in the next time step. The
recurrence describing the growth of the random variable
is, therefore

which can be transformed into the recurrence

Since is a geometric progression for large , we
can approximate this quantity by the limit value of the
summation. The recurrence is, thus, equivalent to the following
one:

The closed form of the previous recurrence is

and we conclude that the expected takeover time for a fixed (or
new) random sweep asynchronous cEA with a population of size

is

D. Asynchronous Uniform Choice Takeover Time

To model takeover time for asynchronous uniform choice
cEAs it is preferable to use cell update steps instead of time
steps in the recurrences. As for the other update policies, the
region containing the copies of the best individual at update
step is a connected part of the ring (with

). At each update step the two cells and
have probability to be selected, and each cell has a

probability , if selected, to contain a copy of the best individual
after the selection and the replacement phases. The recurrence
describing the growth of the random variable , counting
the number of copies of the best individual at update step ,
thus, becomes

which can be transformed into

We can easily derive the closed form of the previous recurrence

Since a time step is defined as update steps, where is the
population size, the expected takeover time for a uniform choice
asynchronous cEA in terms of time steps is

We notice that the expected takeover time for a uniform choice
asynchronous cEA is equal to the expected takeover time for a
synchronous cEA.

It should be noted also that the present asynchronous uniform
choice update model is very similar to what goes under the name
of nonlinear voter model in the probability literature [22]. As
well, it can be considered analogous to a steady-state cellular
EA with a generation gap of .

VII. TORUS STRUCTURE

We consider cEAs defined on a square lattice of finite-size
. The neighborhood we consider in this paper is the

von Neumann neighborhood, which is constituted by a central
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Fig. 3. Example of a probabilistic selection growth of N(t) for a population
of 81 individuals on a 9� 9 torus structure.

Fig. 4. Geometric approximation of a probabilistic selection growth in a torus
structured population: a rotated square grows as a function of time, starting as
an unrestricted growth until the square reaches the edges of the grid, and then
saturating the population.

cell plus the four first neighbor cells in the directions north, east,
south, and west [see Fig. 1(b)].

Because of the torus wrap-up properties, at each time step
the expected number of copies of the best individual is
independent from its initial position. Therefore, the expected
takeover time is , .

We have seen in Section V the limiting case of the growth
with a deterministic selection (i.e., a mechanism that selects the
best individual in the neighborhood with probability ).
It should be noted that, in that case, the time variable in the
equations determines the measure of the half diagonal of the
45 rotated square (see Fig. 2). When modeling a probabilistic
selection method, the exact recurrences, as derived for the ring
topology in the previous section, become very complicated. In
fact, as it can be seen in Fig. 3, the phenomenon that has to
be modeled implies different selection probabilities in different
locations in the grid.

Since we wanted to keep the models simple and easily inter-
pretable, we decided to approximate the geometry of the propa-
gation as the growth of a rotated square in the torus (see Fig. 4).

Using this geometric growth, we can approximate the mea-
sures of the side and the half diagonal of the 45 rotated
square in the following way:

With these quantities, in the next sections we will focus on syn-
chronous and asynchronous takeover times, using the relevant
probabilities in each case.

A. Synchronous Takeover Time

Let us consider the growth of such a region with a selection
mechanism of probabilities , , , , and of selecting
the best individual when there are, respectively, 1, 2, 3, 4, and 5
copies of it in the neighborhood.

Assuming that the region containing the copies of the best
individual expands keeping the shape of a 45 rotated square,
we can model the growth of with the following recurrence:

for

for

It is practically impossible to find the closed analytical form of
these recurrences, as it will be the case for the asynchronous
models of the next sections. Therefore, we only give the explicit
recurrences in each case.

B. Asynchronous Fixed Line Sweep Takeover Time

This update method, which is meaningful in a ring topology,
in the case of a toroidal topology can be criticized. In fact, there
is no biological parallelism for this update mechanism. A pre-
cise model for such update would be very complicated, since
it is difficult to approximate the shape of the region containing
the copies of the best individual. We have, therefore, decided
to keep the model simple and understandable, to roughly ap-
proximate the shape of the region with a square stretched to the
southeast direction, growing with probability on the north-
east side, on the southeast side, and in the south direction.

Let us suppose that in any line the cells containing a copy of
the best individual at time step have index to . In the next
time step, the cell will contain a copy of the best individual
with probability , while the cells (with )
will contain a copy of the best individual with probability .
The number of copies of the best individual in the considered
line in the next time step is

For large , we can approximate this quantity by the limit
. Therefore, we can model the growth of with

the following recurrence shown in the equation at the bottom of
the page.

C. Asynchronous Fixed and New Random Sweep Takeover
Time

The behaviors of fixed random sweep and new random sweep
averaged over all the possible permutations of the individuals on
the grid are equivalent also in the toroidal case. We, therefore,
give only one model describing the growth of the random vari-
able for both policies.

In one time step, following the geometrical approximation,
the probability of one individual on the border of the region
being taken over by the best is , while an individual at distance
2 from the region can be replaced by the best if one or two of its

for

for
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Fig. 5. Probability of an individual being replaced by a copy of the best
individual (y axis) with respect to distance (x axis) from the region formed
by copies of the best for asynchronous fixed (and new) random sweep. Note
that the curve is traced continuously for clarity but the probability is calculated
only at discrete points.

neighbors have already been replaced during the sweep. One of
its neighbors is replaced if:

• only one neighbor comes before in the sweep (and it has
been replaced);

• two neighbors come before in the sweep but just one has
been replaced.

Two of its neighbors are replaced if the two come before in
the sweep and the two have been replaced. The average proba-
bility for a couple of individuals of being before one another in
a sweep is 1/2; therefore, an individual at distance 2 from the
region is replaced with probability

At distance 3 or more of the same reasoning can be done, but we
have decided to model the growth up to distance 2 because, as it
can been seen in Fig. 5, the probability at distances becomes
negligible.

Thus, we can model the growth of with the following
recurrence, as shown in the first equation at the bottom of the
page.

Fig. 6. Probability of an individual being replaced by a copy of the best
individual (y axis) with respect to distance (x axis) from the region formed by
copies of the best for uniform choice. Probability is discrete but the curve is
continuous for clarity.

D. Asynchronous Uniform Choice Takeover Time

The ways in which an individual can be replaced in a time step
for this update case are the same as for fixed and new random
sweep (see before). In the present case, the average probability
of an individual coming before a given other individual in a time
step is ; therefore, an individual at distance 2 from the region
is replaced with probability

The probability is already very small at distance 2 (see Fig. 6).
Thus, in our model we only take into account individuals at dis-
tance 1 from the region.

In terms of time steps, the growth of can be modeled
with the following recurrence, as shown in the second equation
at the bottom of the page.

VIII. EXPERIMENTAL VALIDATION

In this section, we provide a set of validation tests intended
to demonstrate the accuracy of the developed mathematical
models. Since cEAs are good candidates for using selection
methods that are easily extensible to small local pools, we
use binary tournament and linear ranking in our experiments.
Fitness-proportionate selection could also be used but it suffers

for
for

for
for
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Fig. 7. Takeover times with binary tournament selection: mean values over
100 runs. The vertical axis represents the number of copies N(t) of the best
individual in each population as a function of the time step t. Synchronous and
UC curves are superposed (rightmost curves).

from stochastic errors in small populations (e.g., at a neighbor-
hood level), and it is more difficult to model theoretically since
it requires knowledge of the fitness distribution function.

We have used the binary tournament selection mechanism de-
scribed by Rudolph [17]: two individuals are randomly chosen
with replacement in the neighborhood of a given cell, and the
one with the better fitness is selected for the replacement phase.

In linear ranking selection the individuals in the neighbor-
hood of a considered cell are ranked according to their fitness:
each individual then has probability

to be selected for the replacement phase, where is the
number of cells in the neighborhood and is its rank in the
neighborhood.

A. Ring Structure

For this study the cEA structure has a ring topology of size
1024 with neighborhood of radius 1. Only the selection oper-
ator is active: for each cell it selects one individual in the cell
neighborhood (the cell and its two adjacent cells situated at its
right and left). The selected individual replaces the old indi-
vidual only if it has a better fitness.

1) Binary Tournament Selection: Fig. 7 shows the experi-
mental growth curves of the best individual for the synchronous
and the four asynchronous update methods. We can notice that
the mean curves for the two asynchronous fixed and new random
sweep show a very similar behavior. The graph also shows that
the asynchronous update methods give an emergent selection
pressure greater than that of the synchronous case, growing from
the uniform choice to the line sweep, with the fixed and new
random sweep in between.

The numerical values of the mean takeover times for the five
update methods, along with their standard deviations, are shown
in Table I, where it can be seen that the fixed random sweep and
new random sweep methods give results that are statistically

TABLE I
MEAN ACTUAL TAKEOVER TIME AND STANDARD DEVIATION

OF THE TOURNAMENT SELECTION FOR THE FIVE UPDATE

METHODS. MEAN VALUES OVER 100 INDEPENDENT RUNS

indistinguishable, and can therefore be described by a single
model, as we assumed in Section VI-C. The same can be said for
the synchronous and the uniform choice methods, as our models
predicted.

Sinceweuseaneighborhoodof radius1, atmostone individual
with the best fitness will be present in the neighborhood of
a considered cell, except for the last update when there are
two of them. It turns out that the probability for an individual
having a copy of the best individual in its neighborhood to
select it is . Using this probability in the models
described in Section III, we calculated the theoretical growth
curves. Fig. 8 shows the predicted and the experimental curves
for the five update methods, and the mean-square error (mse)
between them.

Looking at the curves, and taking into account the small value
of the mse, it is clear that the models faithfully predict the ob-
served takeover times. Moreover, the equivalence between new
random sweep and fixed random sweep, as well as that of syn-
chronous and uniform choice are fully confirmed.

2) Linear Ranking Selection: Fig. 9 shows the experimental
growth curves of the best individual for the synchronous and the
four asynchronous update methods. We can observe in the linear
ranking case the same behavior that previously emerged in the
binary tournament case: the mean curves for the synchronous
and the asynchronous uniform choice cases are superposed, and
the mean curves for the two asynchronous fixed and new random
sweep show very similar behaviors. The graph shows that the
asynchronous update methods give an emergent selection pres-
sure greater than that of synchronous one, growing from the uni-
form choice to the line sweep, with the fixed and new random
sweep in between.

The numerical values of the mean takeover times for the five
update methods, along with their standard deviations, are shown
in Table II. Again, the results show that the two random sweep
methods are statistically equivalent, which is also the case for
the synchronous and uniform choice methods.

With this linear ranking selection method, a cell having a
copy of the best individual in its neighborhood has a probability

of selecting it. Using this value in the models described
in Section III, we can calculate the theoretical growth curves.
Fig. 10 shows the predicted and the experimental curves for
the five update methods, and the mse between them. As it
can be seen, the agreement between theory and experiment
is excellent.

B. Torus Structure

We now describe the validation of the models for the torus
structure in the same conditions that we used for the ring
topology. The cEA structure has torus topology of size 32 32
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Fig. 8. Comparison of the experimental takeover time curves (full) with the model (dashed) in the case of binary tournament selection for four update methods.
(a) Synchronous. (b) Asynchronous line sweep. (c) Asynchronous fixed random sweep. (d) Asynchronous new random sweep. Asynchronous uniform choice gives
the same curve as the synchronous update, therefore, it is omitted. In each figure, the mse between the predicted and the actual curves is shown.

Fig. 9. Takeover times with linear ranking selection: mean values over 100
runs. The vertical axis represents the number of copies N(t) of the best
individual in each population as a function of the time step t. Synchronous and
UC curves are superposed (rightmost curves).

TABLE II
MEAN TAKEOVER TIME AND STANDARD DEVIATION OF

THE LINEAR RANKING SELECTION FOR THE FIVE UPDATE

METHODS. MEAN VALUES OVER 100 INDEPENDENT RUNS

with von Neumann neighborhood. Only the selection operator
is active: for each cell it selects one individual in the cell neigh-
borhood, and the selected individual replaces the old individual
only if it has a better fitness. This study is addressed separately
for the two selection methods, binary tournament and linear
ranking, in the forthcoming two sections.

1) Binary Tournament Selection: Fig. 11 shows the growth
curves of the best individual for the panmictic, the synchronous,
and three asynchronous update methods. In all cases the same
set of parameters has been used. The mean curves for the two
asynchronous methods, fixed and new random sweep, show a
very similar behavior, so we have decided to plot only the new
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Fig. 10. Comparison of the experimental takeover time curves (full) with the model (dashed) in the case of linear ranking selection for four update methods.
(a) Synchronous. (b) Asynchronous line sweep. (c) Asynchronous fixed random sweep . (d) Asynchronous new random sweep. Asynchronous uniform choice
gives the same curve as the synchronous update, therefore, it is omitted. In each figure, the mse between the predicted and the actual curves is shown.

random sweep results. The graph shows that the asynchronous
update methods give an emergent selection pressure greater than
that of the synchronous case, growing from the uniform choice
to the line sweep, with the fixed and new random sweep in be-
tween (similar to our findings for the ring topology).

The numerical values of the mean takeover times for the
five update methods, together with their standard deviations
are shown in Table III, where it can be seen that the fixed
random sweep and new random sweep methods give results
that are statistically indistinguishable. However, this time the
differences between the uniform choice and the synchronous
update are meaningful in a torus.

Since we use a von Neumann neighborhood, the probabilities
, , and of selecting the best individual when there are,

respectively, 1, 2, and 3 copies of it in the neighborhood are, re-
spectively, 9/25, 16/25, and 21/25. Using these probabilities in
the models, we calculated the theoretical growth curves. Fig. 12
shows the predicted and the experimental curves for the five up-
date methods. It can be observed that the agreement between

Fig. 11. Takeover times with binary tournament selection. Mean values over
100 runs. The vertical axis represents the number of copies N(t) of the best
individual in each population as a function of the time step t.
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Fig. 12. Comparison of the experimental takeover time curves (full) with the model (dashed) in the case of binary tournament selection for four update methods.
(a) Synchronous. (b) Asynchronous line sweep. (c) Asynchronous fixed random sweep. (d) Uniform choice.

theory and experiment is very good, in spite of the approxima-
tions made in the models.

2) Linear Ranking Selection: Fig. 13 shows the growth
curves of the best individual for the panmictic, the synchronous,
and three asynchronous update methods, using the same param-
eter set in all cases. We can observe in the linear ranking case
the same behavior that emerged in the binary tournament case:
the average curves for the two asynchronous updates, fixed and
new random sweep, show a very similar behavior. We have,
therefore, decided to plot only the new random sweep results.
The graph shows that the asynchronous update methods give
an emergent selection pressure greater than that of synchronous
one, growing from the uniform choice to the line sweep, with
the fixed random sweep in between. The numerical values of
the mean takeover times for the five update methods, together
with their standard deviations are shown in Table IV. Again, the
results show that the two random sweep methods are statistically
equivalent, while the uniform choice and synchronous are not.

Since we use a von Neumann neighborhood, the probabilities
, , and of selecting the best individual when there are,

Fig. 13. Takeover times with linear ranking. Mean values over 100 runs. The
vertical axis represents the number of copies N(t) of the best individual in each
population as a function of the time step t.
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Fig. 14. Comparison of the experimental takeover time curves (full) with the model (dashed) in the case of linear ranking selection for four update methods.
(a) Synchronous. (b) Asynchronous line sweep. (c) Asynchronous fixed random sweep. (d) Uniform choice.

TABLE IV
MEAN TAKEOVER TIME AND STANDARD DEVIATION OF THE LINEAR RANKING

SELECTION FOR THE FIVE UPDATE METHODS. MEAN VALUES OVER 100
INDEPENDENT RUNS

respectively, 1, 2, and 3 copies of it in the neighborhood are,
respectively, 2/5, 7/10, and 9/10. Using these probabilities in
the models, we calculated the theoretical growth curves. Fig. 14
shows the predicted and the experimental curves for the five
update methods. The agreement between theory and experiment
can be considered very good.

IX. RECTANGULAR TOROIDAL STRUCTURES

It has been shown in the literature [3], [23] that varying the
ratio of the grid axes in a 2-D cEA is another simple way for con-
trolling the global induced selection pressure. In this section, we

Fig. 15. Geometric approximation of a probabilistic selection growth in a
rectangular toroidal structured population.

address with our models the prediction of takeover regimes for
cEAs whose population shape is toroidal but not square. Since
different kinds of rectangular shapes could be used in a toroidal
cEA, we here analyze the behavior of the mathematical models
in such scenarios.

Let us suppose a rectangular toroidal structure of size equal to
, with ; the same geometrical approximation, done in

the case of a square toroidal structure (see Fig. 4), can be applied
to this case. This time the models will describe the growth of
a rotated square until its area is equal to , followed by a
composition of linear growths until the area of the region is

, plus a final quadratic saturation (see Fig. 15).
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Fig. 16. Growth curves of synchronous evolutions on toroidal structures with different axis sizes using (a) binary tournament selection, and (b) linear ranking
selection.

The recurrences modeling the synchronous and the three
asynchronous evolutions will, therefore, be composed by
the initial condition ( ), followed by the equa-
tion describing the unrestricted growth of the square (until

), then the composition of linear growths (until
), and finally, the saturation equation.

For a synchronous evolution the recurrences are

For an asynchronous fixed line sweep update the model is

For asynchronous fixed and new random sweeps updates the
recurrences are shown in the equation at the bottom of the page.
For asynchronous uniform choice evolutions the model is

As it was the case for the models of the square toroidal struc-
ture, also for these recurrences the closed analytical form of the
recurrences is practically impossible to be derived.

TABLE V
MEAN TAKEOVER TIME WITH STANDARD DEVIATION IN PARENTHESIS OF THE

BINARY TOURNAMENT SELECTION FOR THE FIVE UPDATE METHODS ON THE

64� 16 AND THE 128� 8 RECTANGULAR TOROIDAL TOPOLOGIES.
MEAN VALUES OVER 100 INDEPENDENT RUNS

TABLE VI
MEAN TAKEOVER TIME WITH STANDARD DEVIATION IN PARENTHESIS OF THE

LINEAR RANKING SELECTION FOR THE FIVE UPDATE METHODS ON THE

64� 16 AND THE 128� 8 RECTANGULAR TOROIDAL TOPOLOGIES.
MEAN VALUES OVER 100 INDEPENDENT RUNS

A. Rectangular Toroidal Models Validation

The cEA structures have now rectangular torus topologies of
sizes 64 16 and 128 8 with von Neumann neighborhood.
On the two topologies the cEA has been run, as in the pre-
vious experiments, using the binary tournament and the linear
ranking selections. The results (summarized in Table V for the
binary tournament and in Table VI for the linear ranking) show
a similar behavior as the one observed in the ring and torus
topologies. In fact, to the synchronous updates always corre-
sponds the greater takeover time, and the four asynchronous
evolutions takeover times are ranked with the fixed line sweep
being the faster, the uniform choice the slowest and the fixed
and new random sweeps, that are statistically indistinguishable
in between.
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Fig. 17. (a) Experimental curves for rectangular 64� 16 with binary tournament. Comparison of the experimental takeover time curves (full) with the model
(dashed) in the case of linear ranking selection for four update methods. (b) Synchronous. (c) Asynchronous line sweep. (d) Asynchronous fixed random sweep.
(e) Asynchronous new random sweep. (f) Uniform choice.

Fig. 18. (a) Experimental curves for rectangular 128� 8 with binary tournament. Comparison of the experimental takeover time curves (full) with the model
(dashed) in the case of linear ranking selection for four update methods. (b) Synchronous. (c) Asynchronous line sweep. (d) Asynchronous fixed random sweep.
(e) Asynchronous new random sweep. (f) Uniform choice.

As expected, the selection pressure induced by the different
sizes of the grids reduces as the grid gets thinner [3], [23].
Fig. 16 shows the different growth curves that result in changing

the grid axis values from those of a square to a thin rectangle,
when using the binary tournament and the linear ranking selec-
tion schemes.
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Fig. 19. Comparison of the experimental takeover time curves (full) with the model (dashed) in the case of binary tournament selection for synchronous in case
of a ring with (a) radius 1 and (b) radius 2 neighborhoods, and in a torus with (c) radius 1 and with (d) radius 2 generalized von Neumann neighborhoods.

As it can be seen in Figs. 17 and 18, the models successfully
predict the experimental curves. When using linear ranking se-
lection, the accuracy of the models is comparable, therefore, we
decided not to show the relative graphs.

X. VARYING THE RADIUS

SarmaandDeJonghaveshownconvincingly that theneighbor-
hood’s size and shape have an important influence on the induced
global selection pressure in the grids [6], [7]. For this reason, and
to complete our study, in this section, we turn to change the basic
value for the radius used until now. We, therefore, use general-
ized von Neumann neighborhood of radius 2 in both 1-D and 2-D
regular lattices. Such neighborhood is defined as containing all
the individual at distance smaller or equal to the radius, where
the Manhattan distance is used on the 2-D grid.

The equation for a ring with radius 2 is as follows:

where is the probability that a copy of the best individual is
selected when copies of it are present in the neighborhood.

On the other hand, if we use the same geometrical approx-
imation described in Section VII, the model equations for a
torus with a radius 2 generalized von Neumann neighborhood
is shown in the equation at the top of the next page, where
is the probability that a copy of the best individual is selected
when copies of it are present in the neighborhood.

The two previous models have been tested using a binary
tournament selection mechanism: the comparisons between
the predicted and the actual curves are shown in Fig. 19. The
models are still accurate, and could be extended to generalized
von Neumann neighborhoods with larger radii.

Although this is not apparent from the explicit recurrences,
looking at the curves one can infer that when the radius tends to

in the ring case, and when radius tends to in the grid
case, then the curves tend to the panmictic limit.

XI. CONCLUDING REMARKS

In this paper, we offer a set of mathematical models that pre-
dict the growth curves and the takeover time regime and value
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for

for

for a broad range of cEAs on regular lattices. We consider ring,
as well as toroidal topologies, both under tournament and linear
ranking methods for selection in the neighborhood.

We have shown that basic logistic models cannot predict the
actual behavior of these algorithms, and we propose difference
equations that model observed growth curves in a highly accu-
rate manner. To sustain our claims, we include detailed graphs
of the errors, all of them proving excellent agreement between
theory and practice. The similarities and differences between
the ring and the toroidal models are discussed. In addition, the
results show comparable behavior between the two selection
methods under investigation.

Finally, we have mathematically explained the global induced
selection pressure when a nonsquare topology is used in toroidal
cEAS, an important factor describing their performance. Just
in the same line, different radius values are studied to offer a
complete work on this topic.

The main observation, already noted before by several re-
searchers, is that the selection intensity in the population is
lower in lattices than in panmictic populations. We have also
seen that different asynchronous policies give rise to signifi-
cantly different global emergent selection pressures and can,
thus, be used to control the explorative or exploitative character
of the algorithm to some extent, without resorting to ad hoc
tricks in selection methods.

Another way that can be used to control the selection intensity
in cEAs is through the size and shape of the neighborhood or,
in the 2-D case, by statically or dynamically adapting the ratio
of the grid axes, with “flatter” rectangular shapes giving lower
global pressures [24].

As future research, it could be useful to find out the impli-
cations of using fitness proportionate selection mechanisms. It
would also be worthwhile to study possible extensions of the
logistic models that could fit the actual selection curves as ac-
curately as the offered models do in this work, but with simpler
analytical forms.
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