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Abstract-In fields ranging from radio astronomy to magnetic 
resonance imaging, Fourier inversion of data not falling on a 
Cartesian grid has been a prbblem. As a result, multiple algo- 
rithms have been created for reconstructing images from non- 
uniform frequency samples. In the technique known as grid- 
ding, the data samples are weighted for sampling density and 
convolved with a finite kernel, then resampled on a grid pre- 
paratory to a fast Fourier transform. This paper compares the 
utility of several convolution functions, including one that out- 
performs the “optimal” prolate spheroidal wave function in 
some situations. 

I. INTRODUCTION 

N FIELDS ranging from radio astronomy to comput- I erized tomography and magnetic resonance imaging, 

spatial frequency data is used to generate images. In order 
to take advantage of the great computational speed af- 
forded by the fast Fourier transform [ 11, the data must lie 
on a Cartesian grid. However, because of hardware con- 
straints or practical considerations, this is not always fea- 
sible. Accordingly, many algorithms have been devel- 
oped for reconstruction from nonuniform samples. Some 
methods use various interpolation schemes, such as near- 
est-neighbor, bilinear interpolation, and truncated sinc 

function finite impulse response interpolators [2]-[4]. 
Other techniques include gradient descent methods [5], or 
reconstruction using coordinate transformation [6]. For 
data on a polar grid, such as may be encountered in com- 
puterized tomography or diffraction tomography, filtered 
back-projection [7] may be used for reconstruction. 

In this paper we consider the algorithm known as 
“gridding.” In its earliest form, as first used by radio 
astronomers, the spatial frequency plane was divided into 
a grid, and the point in the center of each “cell” was then 
assigned a value equal to the sum of all of the data points 
falling within the grid [8]. Later improvements included 
the use of the average value of the data within the cell [9], 
or weighting the sampling points based on the distance 
from array points, such as with a Gaussian function [lo].  

To account for variations in the spectral sampling density, 
a further modification of the Gaussian weighting method 
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normalizes the sum of the coefficients to be applied to the 

sampling points to unity. These cell summing, cell aver- 
aging, and Gaussian methods have been compared by 
Thompson and Bracewell [ 113. 

An overview of the gridding operation is given by 
O’Sullivan [ 121, who shows that the optimal gridding 
method is convolution with a sinc (sin T X / T X )  function 

of infinite extent, followed by sampling onto a Cartesian 
grid. Practical considerations require that the infinite sinc 
function be replaced with a finite convolving function. 
This paper compares the artifact introduced into the image 
for various convolving functions of different sizes, in- 
cluding the Kaiser-Bessel window and the zero-order pro- 

late spheroidal wave function (PSWF). We also show a 
convolving function that improves upon the PSWF in 
some circumstances. 

11. GRIDDING ALGORITHM 

Consider a two-dimensional function m ( x ,  y) with Fou- 
rier transform M ( u ,  U )  given by 

M ( u ,  U) = im m ( x ,  y) exp [-27ri(ux + vy)] a!x dy, 
--o) 

(1) 

and a sampling function S consisting of P two-dimen- 
sional delta functions at positions uI , uJ , 

P 

S(u, U )  = c 26(u - UJ, U - U ] ) .  (2) 
J =  I 

The sampled Fourier data is given by 

Ms(u,  U )  = M ( u ,  U )  * S(u,  U ) .  (3) 

In gridding, the sampled data is convolved with a function 
C(u,  U )  [such as a Gaussian, a sinc, or a small finite win- 
dow] and sampled onto a unit spaced grid, 

Mscs(u, 4 = [Ms(u, U )  * C(u, U13 * III(u, U )  

= ( [ M  . SI * C} * III (4) 

where * denotes two-dimensional convolution, and the 
shah or comb function III(u, U )  is defined as a sum of 
equally spaced two-dimensional delta functions: 

III(u, U )  = c c %(U - i, U - J ) .  ( 5 )  
1 1  
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The corresponding reconstructed image mScS is given by 
the inverse Fourier transform of MsCs, 

m s c s k  Y )  = { [ m k  Y )  * s(x, VI1 c (x ,  Y ) }  * m(x, Y ) .  

(6 )  

Here we can observe the effect of S(u, U )  on the recon- 
structed image. First, the inverse Fourier transform of the 
original sampling function S(u, U ) ,  which we refer to as 
s (x, y), affects the aliasing of m (x, y) at a level that cannot 
be recovered. Thus, as expected, if the function M ( u ,  U )  

is not sufficiently sampled, the aliasing cannot be cor- 
rected via postprocessing. We can, however, make a cor- 
rection for a nonuniform sampling density in S(u,  U )  by 
introducing an area densityfunction p (U, U ) .  By defining 

P ( U ,  U )  = S(u ,  U )  * C(u, U ) ,  (7) 

areas that are oversampled will have a large area density, 
while areas that are undersampled will have a small area 
density. As discussed by Bracewell and Thompson [13], 
the principal rransfer function (PTF) is given by S(u, 

v ) / p  (U, U ) ,  and the principal response pattern by the two- 
dimensional Fourier transform of the PTF. Introducing 

the area density function into the reconstruction, we gen- 
erate the sampled, weighted, convolved, and sampled M, 

Note that the weighted and convolved Ms can be consid- 
ered a moving weighted average where the sum of the 
weighting coefficients as determined by C(u,  U )  has been 
normalized to one. The corresponding image is given by 

mswcs(x9 Y )  = ({m(x, Y )  * 1s * - I  (s c>l} * c )  * m 
(9) 

where * - I  refers to a deconvolution. 
We now consider the effect of C(u,  U )  on the recon- 

structed image. As noted by O’Sullivan [12], the optimal 
convolution function is an infinite sinc, but this function 
is computationally impractical. A finite convolving func- 
tion will contribute sidelobes, which will be aliased back 
into the image by the shah function. Also, any rolloff in 
the central lobe of c ( x ,  y) will show up as an attenuation 
towards the sides of the image. This rolloff can be cor- 
rected by dividing by c ( x ,  y). This flattens the response 
across the central lobe, but amplifies the effective ampli- 
tude of the aliasing sidelobes, as shown in Fig. 1 for a 

Hamming window. As is usually done, we will also limit 
the image to a finite region of interest containing only one 
“replication” of the object. This is represented mathe- 

matically by multiplying by a two-dimensional rect or 
boxcar function ’n (x, y) where 

1 

0 otherwise 

if 1x1 < 0.5 and (yI < 0.5 
. (10) 2n(x, Y )  = 

1\ 

AA 

(C)  

Fig. 1 .  (a) The log-scale inverse Fourie transform of a Hamming win- 

dow. The dotted lines represent the edges of the image, with energyin the 

inverse Fourier transform outside of the dotted lines aliasing back into the 
image. (b) The convolution rolloff correction for the image. (c) The effec- 
tive inverse Fourier transform after multiplying by the rolloff correction. 

We call the generated image m*, 

’rl 
c) * IIII * c, 

(11) 

and we refer to the method of generating this image as the 
gridding algorithm. The process is illustrated in Fig. 2. 

= [({m(x, y) * [s *-’ (s c ) ] }  

111. CONVOLUTION FUNCTION COMPARISON 

The utility of any convolution function is determined 
by the amplitude and placement of the aliasing sidelobes 

after the image has been corrected for rolloff near the 
edges. For example, gridding using a n(x) function will 
suffer from large aliased sidelobes in the image, but none 

of the sidelobes will alias into the center of the image. If 
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Image 

Fig. 2. The gridding algorithm. The signal is sampled by a function !?(U, 

2 1 ) .  The resulting data samples are convolved by the function C(u, U), which 
is also used to generate the area sampling density weighting. The con- 
volved data are sampled onto a Cartesian grid by multiplying by m ( u ,  U ) .  

Finally, the inverse Fourier transformed data are divided by c(x,  y) to com- 
pensate for rolloff in the inverse Fourier transform of C(u,  21). 

the inverse Fourier transform of the convolution function 
rolls off too much within the bounds of the image, the 
aliasing into the sides of the image will be greatly ampli- 
fied when the rolloff is compensated. 

We will compare one-dimensional inverse Fourier 
transforms from separable functions, so C ( u ,  U )  = 

C(u)  C ( U ) ,  and c (x, y) = c (x) c ( y ) .  For convenience in 
working with scale factors, we define the width of the 
desired image to be 1 unit. The inverse of this, 1 unit of 
spatial frequency, is the spacing between sampling points 
in the shah function. 

The performance measure that we will use is the rela- 
tive amount of aliasing energy, including the effect of the 
rolloff correction. The corresponding functional to be 

minimized is 

and this is the measure that we will use for comparison. 
If all regions within the image are not of equal interest, 

the performance measure can include a spatially varying 
weight function, such as Schwab’s w(x, y )  = [ l  - 

(2x)’]”[ 1 - (2y)’]” (where CY is a design parameter) [ 141, 
which is included in the functional 

where A is the region of interest. Our equation (12) is 
similar to (13) where all regions within the image are of 

equal interest (so w(x, y) = I ) ,  except that (12) includes 
the rolloff correction effect on the image, and we are con- 
sidering separable convolving functions, which simplifies 
the problem to one dimension. 

We will consider the following convolving functions: 

1) two-term cosine, 

CY + (1 - CY) cos ($ U), 
2) three-term cosine, 

CY + p cos ($ .) + (1 - CY - p )  cos (g U ) ,  

3 )  Gaussian, 

4) Kaiser-Bessel, 

1 
- Z o [ P  J 1  - ( ~ u / W ) ~ ] ,  and 
W 

5 )  prolate spheroidal wave function, see [ 151-[17]. 

All functions are defined over \U\ I W/2, giving each a 
width W ,  with CY, p, and U as free design parameters. The 
well-known Hamming and Hanning windows are exam- 
ples of the two-term cosine function (with CY = 0.54 and 
CY = 0.50, respectively), and the Blackman window is an 
example of the three-term cosine function (with CY = 0.42 

and /3 = 0.50) [18]. For a given window width and de- 
sired bandwidth B the truncated zero-order PSWF of the 

first kind contains the least amount of energy outside of 
the desired passband, i.e., it minimizes 

0 

I,,,,, dx 
P W  

1 lC(X)l2 dx 
-m 

The PSWF is quite difficult to compute, but the Kaiser- 
Bessel function [I91 is a good approximation, and both it 
and its inverse transform are easily calculated. The func- 

tion itself is based on Zo, the zero-order modified Bessel 
function of the first kind, and the inverse transform is 
given by 

sin Ja2w2x ’  - p’ 
c(x) = (15) 

JT2w2x2  - 0’ 

For each of the functions, the parameters CY, p, and (T 

were varied to determine the best possible performance, 
as measured by J in (12), at each function width. The 
resulting values of J are shown in Fig. 3 for the parameter 
values given in Table I. The relatively poor results are 
because of the difficulty in generating a finite function 

whose inverse Fourier transform goes immediately from 
a near unity passband to a very low amplitude stopband, 
without allowing for a transition band. The consequence 
is relatively large errors from the aliasing sidelobes that 
appear near the edges of the image where the division by 
c(x), to make the passband uniform, also amplifies the 
corresponding portions of the sidelobes. 
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a + B "U) 
- - - a + p cos(u) + ~ c o s ( ~ u ) -  

- Kaiser-Bessel 
Gaussian 

0 PSWF 

A 

10-21 
L 1 

1 0 3  ' I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

Window Width 

Fig. 3. A comparison of several convolving functions of varying widths, 
showing the relative amount of unwanted sidelobe energy that will alias 
into the image if that convolving function is used in the gridding algorithm. 
Note that when the two-term cosine function reaches a width of four, or 
when the three-term cosine function reaches a width of six, the first side- 
lobe of the function's inverse Fourier transform occurs within the image. 

TABLE I 
THE PARAMETER VALUES FOR EACH FUNCTION TYPE THAT PROVIDE THE 

LEAST RELATIVE ALIASED ENERGY WHEN GRIDDING ONTO A REGULAR GRID 

Three-Term cos 

Window Two-Term cos Gaussian Kaiser-Bessel 
Width CY a P U P 

1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.7600 0.8701 
0.7146 0.8099 
0.6185 0.6932 
0.5534 0.5995 
0.5185 0.5383 

0.4998 
0.4653 
0.4463 

0.231 1 
0.3108 
0.4176 
0.4675 
0.483 1 
0.4891 
0.4972 
0.4985 

0.4241 
0.4927 
0.4839 
0.5063 
0.5516 
0.5695 
0.5682 
0.5974 

1.9980 
2.3934 
3.3800 
4.2054 
4.9107 
5.7567 
6.6291 
7.4302 

A simple solution to this problem, alluded to by 
O'Sullivan [12], is to increase the image field-of-view by 
sampling onto a smaller grid, and then ignore the outer 
portion of the image. By doubling the image field-of-view, 
the central lobe of c(x) can be three times as wide (since 

it can partially alias around both sides of the image and 
still not enter the region of interest), which makes possi- 
ble much smaller amplitude sidelobes [ 161. Additionally, 
c(x) does not taper as much within the region of interest, 
so less rolloff correction is needed. Conversely, if the for- 
mer method required Fourier transformation of an N X N 
image, subsampling the data in the manner proposed will 
require transformation of a 2 N x 2 N image, in addition 
to computing Mswcs at four times as many points. The 
computation of Mswcs at each point may be somewhat 
easier, however, since the subsampling method permits 
the use of a smaller convolving function for any given 
error bound. 

In addition to the functions previously discussed, we 
have added a convolving function of our own design. The 
function was generated in an iterative manner. Starting 

with any even function, the function was inverse Fourier 

I 

A A  

(b) 

Fig. 4. Authors' width 2.5 convolving function (a) and the corresponding 
inverse Fourier transform (b). Note the suppression of the portions of the 
transform that will alias into the center region of the image. 

100 

10-3 

106 

10-9 

10-12 

a + p cos(u) 
- - - a + p cos(u) + ycos(2i 

- Kaiser-Bessel 
Gaussian 

0 PSWF 
* Authors'window 

10-15 ~ 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 

Fig. 5. A comparison of several convolving functions of varying widths, 
showing the relative amount of unwanted sidelobe energy that will alias 
into the center region of an image. This center region contains the entire 
region of interest if the sampled data was gridded onto a 2 X subsampled 
grid. 

Window Width 

transformed and those portions of the transformed func- 
tion that would alias into the region of interest were set 
to zero. The function was then Fourier transformed back 
to the original domain and spatially bounded. This pro- 
cess was then repeated many times. This is similar to the 

method used to generate the PSWF where an even func- 
tion is repeatedly low-pass filtered and spatially bounded. 
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Three Term cc11 

Windou T u o  Term L O \  Gau\\ian Kai\er-Bes$el 
Width N N 13 0 P 

1 5  

2 . 0  

2 . 5  
3.0 
3.5 
4.0 

4.5 
5 . 0  

0.5773 0 4715 
0.S1.25 0.4149 

0.5076 0.401 I 
0.5068 0.3954 
0.50s1 0.3897 

0.3 850 
0 3833 
0.3823 

0 4917 
0 4990 
0 4996 
0 4997 
0 3999 
0 5000 
0 so00 
0 5000 

0.2120 6.6875 
0.24 3 7 9.1375 

0.2691 I 1.5250 
0.2920 I3 90x6 
0.3135 16.7734 
0.3363 18.5547 
0.3557 
0.3737 

(C) (d )  

Fig. 6. Reconstructed image\ of a numerical phantom con\isting of four ellipses. ’Ihohing the e&ct that the con\olution func- 

tion has on the resulting image. Image ( a )  was recon\tructed u\ ing  a uidth three Kaiser-Bessel w i n d o h  ( i j ’  = 4.2053). without 
subsampling. Image (b )  15 the $ a i m  as image ( a ) .  hut scaled trom 0 to 5 %  10 \hou the error in the reconstruction. linage ( c )  
mas reconstructed using a uidth three. tho-term cosine hindou 10.5068 + 0.4932 cos ( m ! ’ l . 5 ) /  on a wbsampled grid. and is 

scaled the same as imagc ( b ) .  Image ( d )  ua5 reconstructed us ing  ii uidth three. Kaiser-Be\ssl u i n d o \ b  ( 3  = 13 9068) on a 
subsampled grid. and is also 5caled the wile a\ i r n q c  (b ) .  

The desired PSWF is the eigenfunction of this operation 
that has the largest eigenvalue. so all undesired portions 
of the function will gradually decay away relative to the 
desired function. In Fig. 4 our width 2.5 function is 

shown. For wider convolving functions. the sidelobes will 
be increasingly lower, and many more iterations will be 

required to generate the function. The function shown is 
the result after 1 000 000 iterations. 

As seen in Fig. 5. the reduction in aliased energy is 
rather dramatic when the gridding is performed on a sub- 

sampled grid. The parameters CY. P .  and n for each of the 
function widths are given in Table 11. 
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Fig. 6 shows the effect that the convolving function has 

on a reconstructed image. Reconstructions were done 
using a width three Kaiser-Bessel window on a regular 
grid, a width three two-term cosine window on a subsam- 
pled grid, and a width three Kaiser-Bessel window on a 
subsampled grid. Improvements in the reconstruction er- 
ror can be seen with each successive technique. 

IV. CONCLUSION 

The gridding algorithm can be implemented with vir- 
tually no adverse effects from aliasing sidelobes of the 

convolving function. This requires that the convolved data 
is sampled finely enough to yield an image field-of-view 
that is larger than the actual region of interest. We have 
found that oversampling by a factor of two in each direc- 
tion is sufficient to yield excellent sidelobe suppression. 

The selection of a convolving function requires two pri- 

mary considerations. First, the performance of the func- 
tion, and second, the computation time required to gen- 
erate the function. Although a (discretized) version of a 
convolving function needs to be computed only once, this 
can still be a limiting consideration if the generating com- 
putation time is extremely long, as is the case with the 

PSWF and the authors’ function. Only slightly poorer re- 
sults are achieved with the easily computable Kaiser-Bes- 
se1 window. Use of the Kaiser-Bessel window requires 
selecting the free parameter, p.  The best choice of p, in 
the sense of minimizing (12), is given in Table I1 for sev- 
eral window widths. 
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