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Selection of Controls in Case-Control Studies

I. Principles

Shdom WachokJer,1 Joseph K. McLaughlin,1 Debra T. Silverman,1 and Jack S. MandeP

A synthesis of classical and recent thinking on the issues involved in selecting
controls for case-control studies is presented in this and two companion papers (S.
Wachokter et al. Am J Epidemiol 1992;135:1029-50). In this paper, a theoretical
framework for selecting controls in case-control studies is developed. Three principles
of comparability are described: 1) study base, that all comparisons be made within the
study base; 2) deconfounding, that comparisons of the effects of the levels of exposure
on disease risk not be distorted by the effects of other factors; and 3) comparable
accuracy, that any errors in measurement of exposure be nondifferential between cases
and controls. These principles, if adhered to in a study, can reduce selection, confound-
ing, and information bias, respectively. The principles, however, are constrained by an
additional efficiency principle regarding resources and time. Most problems and contro-
versies in control selection reflect trade-offs among these four principles. Am J Epidemiol
1992;135:1019-28.

bias (epidemiology); epidemiotogic methods; prospective studies; retrospective studies

The purpose of this series of papers is to
present a theoretical framework for control
selection in case-control studies and show
how practical issues can be addressed within
this framework. We discuss controversial
areas of control selection using the frame-
work and attempt to offer advice when there
is relevant empiric information or experi-
ence to guide us. For the most part, issues
of analysis will not be addressed in the re-
view.
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In this paper, the first of three, the prin-
ciples underlying control selection are de-
veloped. These principles also apply to the
design of cohort studies, as would be ex-
pected since the case-control design is simply
an efficient sampling technique to measure
exposure-disease associations in a cohort or
study base. In theory, every case-control
study takes place within a cohort, although
in practice it can be difficult to characterize
the cohort or study base. The identification
of the appropriate study base from which to
select controls is the primary challenge in
the design of case-control studies.

In our second paper (1), we apply the
principles presented in this paper to the
selection of control groups used in case-
control studies, including population con-
trols, hospital controls, medical practice
controls, friend controls, and relative con-
trols. We also discuss the use of proxy re-
spondents and deceased controls.

In the third paper of the series (2), we
focus on issues encountered after a particu-
lar control group has been selected. Some of
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the areas discussed are matching, ratio of
controls to cases, number of control groups,
nested case-control studies, two-stage sam-
pling designs, and issues relating to infor-
mation bias such as contemporaneity of
cases and controls.

We do not intend the principles described
and illustrated in these papers to be used for
determining whether a study is up to stan-
dard. Perfect adherence to a principle can
be as difficult to achieve as perfect experi-
mental conditions in a laboratory. Some-
times, one principle can conflict with an-
other. Indeed, tolerating a minor violation
of a principle is often the only way to study
a particular exposure-disease association.
Such a study can still provide valuable in-
formation, particularly when the impact of
the violation can be evaluated or bounded.

COMPARABILITY PRINCIPLES

Three basic tenets of comparability un-
derlie attempts to minimize bias in control
selection. These are the principles of study
base, deconfounding, and comparable accu-
racy.

Study base principle. Cases and controls
should be "representative of the same base
experience" (3, p. 545). The base is the set
of persons or person-time, depending on the
context, in which diseased subjects become
cases. The base can also be thought of as the
members of the underlying cohort or source
population for the cases during the time
periods when they are eligible to become
cases (4). Typically in chronic disease epi-
demiology, membership in the base is dy-
namic in the sense that a subject may be in
the base at certain times and out of it at
other times. The simplest way to satisfy this
principle is to choose a random sample of
individuals from the same source as the
cases; if comparability of time, e.g., age or
calendar time, is essential, the sampling
should be from the members of the base at
risk at the same time as the case's diagnosis.
Immigration and emigration from the catch-
ment area affect whether someone is in the
study base at a particular time; a subject is
in the base only when he or she would be

enrolled as a case if diagnosed with disease
at the time. A useful paradigm with an ex-
plicitly defined study base is the "nested
case-control study" (2, 5-7) where controls
are selected randomly from the "risk set,"
the subjects in the cohort who are at risk at
the time of diagnosis of each case.

Deconfounding principle. Confounding
should not be allowed to distort the estima-
tion of effect. Confounders that are mea-
sured can be controlled in the analysis. Un-
known or unmeasured confounders should
have as little variability as possible. Since
this variability is measured conditionally on
the levels of other variables being studied,
the use of stratification or matching can, in
effect, reduce or eliminate the variability of
the confounder. For example, using siblings
as matched controls in a study of environ-
mental risk factors may result in less varia-
bility for genetic risk factors within the
matched set and, hence, less confounding
than using controls who are not siblings.
The extent of bias from an unmeasured or
uncontrolled confounder depends on the
strengths of the associations between it and
the study exposure and disease risk.

Comparable accuracy principle. The de-
gree of accuracy in measuring the exposure
of interest for the cases should be equivalent
to the degree of accuracy for the controls,
unless the effect of the inaccuracy can be
controlled in the analysis.

We believe that the results of a case-
control study become more credible to the
extent that these three principles are met.
Strict adherence to the principles of com-
parability outlined here ensures that an ap-
parent effect is not due to 1) differences in
the way cases and controls are selected from
the base; 2) distortion of the effect by other,
unmeasured, risk factors related to exposure;
or 3) differences in the accuracy of the in-
formation obtained from cases and controls.
The aim of the principles is to reduce or
eliminate, respectively, selection bias, con-
founding bias, and information bias.

However, there is an additional practical
principle that constrains attempts at com-
parability.

Efficiency principle. The study should be
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Principles of Control Selection 1021

implemented so as to learn as much as pos-
sible about the questions being investigated
for a fixed expenditure of time and re-
sources.

Study base principle

The importance of defining the study base
in epidemiologic investigations has been rec-
ognized for a long time (8). Miettinen (3, 9,
10) distinguishes between a primary base
and a secondary base. In a study with a
primary base, the base is defined by the
population experience that the investigator
wishes to target, with the cases being subjects
within the base who develop the disease. A
population-based case-control study is an
example of a study that uses a primary base,
where population experience is defined geo-
graphically and temporally. However, par-
ticularly when ascertainment of all cases in
a primary base is difficult or impractical, it
may be preferable to use a secondary base,
where the cases are defined before the base
is identified. In this approach, the base is
defined as the source of the cases, and con-
trols are individuals who would have be-
come study cases if they had developed dis-
ease during the time of the investigation (9).
For example, in a hospital-based study, the
cases might be all patients diagnosed with
the study disease at one hospital; the indi-
viduals contributing to the (secondary) base
would be all subjects who would be diag-
nosed at that hospital had they developed
the study disease.

Thus, while the major challenge with a
primary base is complete case identification
in the base, the major challenge with a sec-
ondary base is definition of the study base.
Sometimes it may not be possible to resolve
definitively whether and when a particular
person is in the secondary base. Whether the
base is primary or secondary, the critical
point is that the base and the cases need to
be defined so that the cases consist, exclu-
sively, of all (or a random sample of) subjects
experiencing the study outcome in the base,
and that the controls are derived from the
base and can be used to estimate the expo-
sure distribution in that base.

The fundamental trade-off between a pri-
mary base and a secondary base is that it is
easier to sample for controls from a well-
defined primary base than from a secondary
base, where it may not be obvious whether
or not an individual is a member of the base;
on the other hand, case ascertainment is
complete by definition in a secondary base
but can be problematic with a primary base.
Selection factors affecting which cases are
ascertained and included in the study or the
accuracy of identification of the base can
cause bias in either a primary or secondary
base setting. Identification of a setting where
no selection factor operates on the cases or
on the sample of the base is often a major
challenge in case-control studies, as in the
three following examples.

Referral hospital. In a study where the
cases are subjects who were treated at a
referral hospital, the (secondary) base con-
sists of those individuals who would have
been treated at that hospital had they been
diagnosed with the study disease. The diffi-
culty, of course, is in identifying exactly who
would have been referred to that hospital
had they developed the study disease.

Underascertainment of cases. Incomplete
case identification can be substantial for dis-
eases with mild symptoms and for those that
do not require medical attention; hence,
there could be a spurious association with
variables related to utilization of medical
services in a study using self-identified cases.
A primary base would be unworkable in a
study of male infertility, since infertile men
will not become cases unless they are at-
tempting to have children and seek medical
help (11). A secondary base approach would
restrict controls to men who, if they were
infertile, would seek help, just as all the cases
have. Failure to restrict the secondary base
accordingly, and thereby failure to exclude
controls who would not seek medical advice,
could result in a misleading association with
correlates of seeking medical attention.

Temporal differences. When cases are di-
agnosed long before controls are selected,
it can be difficult to reconstruct the base
that was contemporaneous with disease
incidence.
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Problems in identifying the base some-
times make it very difficult to choose the
study base that would be the most scientifi-
cally informative. This is particularly true
when becoming a case is contingent on a
previous condition, as in the following ex-
amples.

Screening. A simple and powerful ap-
proach to evaluate the efficacy of screening
for breast cancer would compare mortality
in screened and unscreened women in a base
of women who had developed early stage
breast cancer (12,13). However, it would be
difficult for a case-control study to use this
approach because of the problem in identi-
fying members of the base for the denomi-
nator of the mortality rate, particularly in
unscreened women. Thus, the standard but
less efficient approach for case-control stud-
ies is to choose controls from a broader base
consisting of women at risk for breast cancer
(14, 15).

Prenatal survival. Exposure to human ter-
atogens may affect prenatal survival and,
thus, the opportunity to observe a congenital
malformation. This can lead to misleading
estimates of effects in case-control studies
using livebirths as controls (16).

Spontaneous abortion. The ideal base for
a case-control study of previous therapeutic
abortion on risk of ectopic (tubal) pregnancy
would be women who conceive. However,
identification of women with intrauterine
pregnancies who spontaneously abort would
be incomplete, since the women themselves
may never become aware of the conception
(17). If women who had a previous thera-
peutic abortion are at extra risk for unnot-
iced spontaneous abortions, the proportion
of missed intrauterine conceptions will differ
by exposure, and use of this base could be
prone to bias. If the base is women who are
trying to conceive, it would be difficult to
separate the effects of factors related to con-
ception itself, such as contraceptive use,
from those leading to ectopic pregnancy in
women who do conceive.

Acquired immunodeficiency syndrome
(AIDS) after human immunodeficiency vi-
rus (HIV) infection. In studies of progression
to AIDS after HIV infection, the time of

seroconversion is typically unknown. Thus,
defining a base of HIV-positive subjects is
difficult (18).

Sampling from the study base. In simple
random sampling, controls are selected ran-
domly from the base. Therefore, each eligi-
ble individual has the same probability of
selection as a control, and the sampling is
independent; i.e., the presence of a specific
subject in the sample does not make the
presence of any other more or less likely. In
stratified sampling and frequency matching,
the base is subdivided into strata determined
by factors such as age and sex, and the
sampling fraction is allowed to vary across
strata. More complex sampling schemes,
such as two-stage (19-21) and cluster sam-
pling plans (22), can be used as long as the
joint distribution of the exposures of interest
in the base can be estimated without bias;
generally these require knowledge of the rel-
ative sampling fractions and a nonstandard
analysis.

Selection bias can be introduced when the
sampling fractions for individuals in the base
depend on an exposure variable in an un-
known way. This dependence is typically
indirect and inadvertent, such as when con-
trol selection by telephone tends to exclude
poor people without phones. However, an
analysis of the effects of other variables will
be unbiased when the source of the depen-
dence can be identified and handled in the
analysis as if it were a confounder (23, 24).
Unfortunately, recognizing the presence of
selection bias can be quite difficult, and this
solution requires identification of the selec-
tion factor. As with confounding, there is no
bias when the selection probability depends
on a factor that is unrelated to the exposure.

The study base principle entails the re-
quirement of representativeness of the base
but not necessarily of the general popula-
tion. Representativeness of the general pop-
ulation is crucial in estimating the preva-
lence of disease, the attributable risk, or the
distribution of a variable in a population
based on a sample (25). But representative-
ness, per se, is not needed in analytical stud-
ies of the relation between an exposure and
disease (9, 25). An association found in any
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subpopulation may be of interest in itself; in
a representative population, an association
that is limited to one group may be obscured
because the effect is weaker in other groups
or because of differences in the distribution
of the exposure. On the other hand, detec-
tion of variability of the strength of associa-
tion (effect modification) can be missed if
the study base is narrowly defined. If there
is reason to believe that an effect is strongest
in one particular subgroup, exclusion of
other subgroups might be the best strategy
for demonstrating that effect; thus, a study
of the effect of a possible risk factor for
myocardial infarction might restrict the base
to subjects who had a previous one. The
power of a study targeted at a subgroup can
even be greater than the power of a study of
the entire population, despite the reduced
number of subjects, when the effect is larger
in the subgroup (26). Other grounds for ex-
clusions that may increase statistical or eco-
nomic efficiency include 1) inconvenience
(e.g., subjects likely to be too hard to reach);
2) anticipated low or inaccurate responses
(e.g., exclusion of subjects who do not speak
the language of the interview); 3) lack of
variability in the exposure (27, 28) (e.g., a
study of the effects of oral contraceptives on
subsequent risk of breast cancer should
probably exclude women who were past re-
productive age when oral contraceptives
were introduced into common use); or 4)
subjects at increased risk of disease due to
other causes (e.g., subjects at high risk for
leukemia as a result of chemotherapy for
Hodgkin's disease), because cases from the
treated group are likely to be attributable to
the treatment and therefore may not con-
tribute much to the understanding of other
risk factors.

An exclusion rule that applies equally to
cases and controls is valid (29) because it
simply refines the scope of the study base.
One that applies to one but not the other
violates the study base principle. For exam-
ple, a study design that excludes potential
controls who had changed their residence
between the time of diagnosis of the matched
case and the time of selection but places no
analogous restriction on the residential mo-

bility of the cases (30) violates the study base
principle, and the estimate of effect for an
exposure associated with such residential
mobility could be biased (30).

Nonrandom selection from the study base.
In theory, choosing the controls to be a
random sample from the base ensures that
the controls are representative of the base.
When random selection is not practical, as
when identification of the base is difficult, a
nonrandom subset can be selected if a rep-
resentativeness assumption regarding the
study exposure is met: that the distributions
of the exposures of interest are the same in
the control series as in a random sample of
the (secondary) base (3, 9).

For example, hospital controls are a non-
random subset of the study base rather than
a random sample from the study base; the
validity of a hospital-based study rests on
the (perhaps tenuous) assumption that the
distribution of exposure among the chosen
hospital controls is the same as in the base
itself or differs because of measurable factors
(1, 9). This assumption is reasonable when
the following two conditions apply.

Identical catchment populations. Subjects
who are admitted to the hospital for the case
disease would have been admitted to the
same hospital for the control disease, and,
conversely, subjects who are admitted for
the control disease would have been admit-
ted for the case disease. Thus, determinants
of hospitalization and the choice of hospital
must be considered carefully in studies with
hospital controls.

Exposure independent of admission. The
exposure is unrelated to the reason for ad-
mission of the control.

In the male infertility example considered
above, a control series consisting of men
whose wives have been identified as infertile
at an infertility clinic (11) would be a non-
random sample of the appropriate secondary
base that would have the same determinants
of seeking medical attention as the cases.
However, it could introduce selection bias
for male correlates of causes of female infer-
tility, such as sexually transmitted disease in
the husbands of women with pelvic inflam-
matory disease (11).
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Use of deterministic (nonrandom)
schemes for control selection, such as choos-
ing the case's best friend or neighbors, can
avoid the need for a representativeness as-
sumption for exposure if 1) the base is di-
vided into nonoverlapping strata and 2) all
members of the base in the stratum that
includes the case are selected as controls
(31). Thus, instead of random selection, a
100 percent sample (31) from a (typically
very small) stratum of the study base is
chosen. (Strictly speaking, this would not be
a case-control study, since no sampling is
involved; it is a cohort study where all the
strata with no cases can be ignored.) To-
gether, these two requirements imply reci-
procity (31). If A is included as a control for
B, then B would have to have been included
as a control for A, if A had become the case;
this is exactly what is done in a cohort study.
In practice, selection of a subset of the stra-
tum deterministically would not produce
bias, unless the selection were related to
exposure (31). But the possibility of bias does
exist with any scheme that allows control
selection to be determined by the case or the
case's physician.

Controls from outside the study base. A
proxy control series from outside the base
can be used as an "indirect way to probe the
base" (9, p. 82), if the representativeness of
exposure assumption is met. For example,
in a study where blood group is the exposure
of interest, use of females as controls when
the actual base consists only of males would
be theoretically acceptable, under the as-
sumption that blood group distribution does
not vary by sex (32). (Of course, published
rates on the distribution of blood group
might obviate the need for any controls.) In
more common situations, it may not be
known whether the representativeness as-
sumption actually holds for a given expo-
sure. The validity of the assumption for each
exposure studied needs to be assessed indi-
vidually.

Controls currently living in a neighbor-
hood who are chosen to match cases diag-
nosed several years earlier should be ex-
cluded since they are outside the study base.
Excluding controls who have moved into

the neighborhood since diagnosis of the case
reduces the problem but does not solve it,
since people who moved out of the neigh-
borhood will still be missed.

Deconfounding principle

While the study base principle clarifies who
can be entered into the study, the decon-
founding principle addresses the problem
created when the study exposure is associ-
ated with other risk factors. The principle
applies to control selection with respect to
unmeasured confounders, since measured
confounders can be handled in the analysis.

Confounding can bias the results of any
epidemiologic study. Complete assurance of
control of confounding is achieved (in the-
ory) by eliminating the variability in the
confounding factor. Thus, if the study base
consists entirely of males, there can be no
confounding by sex. Some control for con-
founding by genotype might be achieved by
the use of relatives of the cases as matched
controls. Similarly, controls are sometimes
selected to match the neighborhood of the
case in order to control for unknown risk
factors relating to socioeconomic and ethnic
variables or, particularly, access to medical
care, which is difficult to control for other-
wise. However, controlling for the con-
founding effects of a risk or selection factor
by matching on its correlate or proxy does
not eliminate confounding bias (33).

This principle, however, can conflict with
the efficiency principle. Selecting controls to
have the same values of confounders as cases
results in controls who are likely to be more
similar to cases with respect to exposure (34);
i.e., restricting the variability of the con-
founding variable will also reduce the con-
ditional variability of the exposure of inter-
est when the exposure and con founder are
highly correlated. Studying a population that
is almost uniform with respect to unmea-
sured confounders but also nearly uniform
on the exposures of interest is not an effec-
tive strategy (35); it is a form of overmatch-
ing (in the sense that subjects are effectively,
if not deliberately, "matched" on the expo-
sure) that can reduce the precision of esti-
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mates of effect without affecting validity (2,
35, 36). Generally, matching on variables
that are not risk factors is also overmatching,
since the matching may reduce the variabil-
ity in the exposure of interest without con-
trolling for any confounding (2, 36, 37). On
the other hand, reduced precision might be
inevitable in the presence of confounding,
since it can be a consequence of control for
confounding in the design and analysis.

Comparable accuracy principle

Error in the measurement of variables is
unavoidable in epidemiologic studies, par-
ticularly when information is obtained ret-
rospectively. When the bias due to measure-
ment error can be removed in the analysis,
as when the relations between the observed
and true exposure measurements are known
for cases and controls or an appropriate
validation study can be used (38, 39), this
principle need not influence control selec-
tion. For example, measurements made us-
ing both "gold standard" and error-prone
methods on some study subjects can allow
unbiased estimation of the effects of a poorly
measured exposure (38-40). Even when
cases' information was obtained from one
clinic and that of controls from another,
subjects for whom information from both
clinics was available can be used as a vali-
dation study and can yield unbiased esti-
mates under the assumption that being in-
terviewed in both clinics is unrelated to the
responses given (41).

When no correction is possible in the
analysis, the comparable accuracy principle
calls for all measurement errors that result
in distortion of the estimates of effect to be
nondifferential; i.e., the error distributions
should be the same for cases and controls,
as seems reasonable when the mechanisms
generating the errors for both groups are the
same and are not influenced by disease sta-
tus. In control selection, one needs to con-
sider the accuracy of information that can
be obtained from the controls, e.g., whether
recollection of past exposures is better if
hospital controls are used rather than
healthy population controls.

With nondifferential errors, the bias is
typically (but not always) in a predictable
direction (toward lack of association) and,
unless the measurement is so bad as to be
negatively correlated with the truth, seldom
reverses the direction of the association (42,
43). On the other hand, the effect of differ-
ential measurement error on estimates of
association is usually unpredictable.

Thus, adherence to the comparable accu-
racy principle does not eliminate its corre-
sponding bias—information bias. Only
elimination of errors (or correction for bias
in the analysis using additional information
or assumptions (39)) can remove bias en-
tirely. Adherence to this principle may not
even reduce bias, as in the hypothetical ex-
ample presented in table 1. The true odds
ratio is 6. When the exposure of the cases is
misclassified with specificity and sensitivity
both equal to 80 percent, the observed odds
ratio from controls with 100 percent speci-
ficity and sensitivity will be 3.2 (table 2),
which is less biased than the 2.7 that would
be observed from controls with 80 percent
sensitivity and specificity (table 3). So why
make this a principle if adhering to it can
increase bias? The rationale is to ensure that
a positive finding cannot be induced simply
by differences in the accuracy of information
about cases and controls. While recent work
(42, 44) indicates that equal accuracy does
not guarantee bias toward the null, a reversal
of the direction of the association seems
unlikely.

Differential errors can be hard to avoid in
case-control studies in which exposure in-
formation is obtained from interviews with
the subjects. Even when interviewers can be
blinded to the disease status of a subject, the
case generally knows the diagnosis at the
time of interview. The disease itself and
hospitalization and treatment of the disease
may change actual habits as well as percep-
tion of current and past habits.

The comparable accuracy principle
should not be taken to mean that creating
strata within which the errors are equal will
be helpful. In fact, stratification designed to
achieve nondifferential error within strata
can increase bias (45). Thus, creating a stra-
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TABLE 1. Hypothetical example: exposure
classified correctly

Measured
exposure

Present
Absent

Total

No. of
cases

800
200

1,000

No. erf
controls

400
600

1,000

TABLE 2. Hypothetical example:
mlsdassltied for cases only*

Measured
exposure

Present
Absent

Total

No. of
cases

680
320

1,000

No. of
controls

400
600

1,000

Observed
odds ratio

6.00
1.00

exposure

Observed
odds ratio

3.19

1.00

• Specificity and sensitivity are 80% for cases and 100% for
controls.

TABLE 3. Hypothetical example: exposure
misclassrfled for cases and controls*

Measured
exposure

Present
Absent

Total

•Specificity and
controls.

No of
cases

680
320

1,000

sensitivity

No. of
controls

440
560

1,000

are 80% for

Observed
odds ratio

2.70
1.00

both cases and

turn of direct-interview cases and controls
and another for proxy-interview cases and
controls does not necessarily reduce bias.
Examining the interaction, however, may be
helpful since the bias will be greatest in the
strata with poorest classification (46).

Comparable opportunity for exposure?

Since the focus of a study should be on
whether the risk of disease is related to the
level of exposure actually received, cases and
controls do not need to have equal oppor-
tunity to be exposed (3, 25, 47). Thus, in a
study of cancer treatment on subsequent risk
of leukemia, a case who received a treatment
could be matched to a control whose physi-
cian never prescribed that treatment. Of
course, when it is easy to identify subsets of
subjects without exposure opportunity, they

can be excluded on efficiency grounds. For
example, in a study of oral contraceptive use
and risk of myocardial infarction, it would
be foolish to include males since sex is a
confounder and since there is no variability
in exposure in the male stratum.

Comment

The use of the term "comparability" in
the principles delineated above does not nec-
essarily entail equality. Instead, it means that
the study results should be as valid as those
that would be obtained under equality.
Therefore, our framework of comparability
principles, under certain assumptions, al-
lows controls to be selected from outside the
study base (1, 9); allows external informa-
tion to be used to correct for an unmeasured
confounder (48); and allows for the use of
separate validation studies of the exposure
for cases and controls to correct for unequal
accuracy (49, 50). Thus, violations of
"equality" do not always violate the com-
parability principles.

EFFICIENCY PRINCIPLE

Savings in money and time are two mo-
tivations for choosing a case-control design.
These factors also affect decisions about
other aspects of design, such as the ratio of
controls to cases, whether and on which
variables to match (3), the source of controls
(2), and how they will be recruited. The
efficiency principle calls for consideration of
costs as well as validity in selection of con-
trols. Statistical efficiency refers to the
amount of information obtained per subject;
more broadly, efficiency encompasses the
time and energy needed to complete the
study. For example, even when matching
can improve statistical efficiency, the payoff
may not be worth the extra effort needed to
recruit subjects (51).

We have already seen how the efficiency
principle can conflict with the deconfound-
ing principle. When control of confounding
is essential for bias reduction, the efficiency
principle must be subordinated. However,
the principle is important in choosing
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among control selection strategies, for ex-
ample, whether to match or to control in
the analysis for each potential confounder
(3, 52). Precision of the estimates of effect
of a given exposure depends on the variance
of the exposure, conditional on the matching
factors and the other variables that are ad-
justed for in the model, regardless of whether
or not they are confounders. When a second
risk factor is strongly related to exposure and
there is a need to control for its confounding
effect, any strategy for controlling the effects
of the confounder will reduce the condi-
tional variance of the exposure and can re-
duce efficiency substantially. In a matched-
pairs study, this phenomenon is manifested
as a reduction in the number of discordant
pairs.

SUMMARY

In this paper, we have presented and de-
scribed what we believe are the major prin-
ciples underlying control selection in case-
control studies. The principles of study base,
deconfounding, and comparable accuracy
all address the issue of comparability be-
tween cases and controls. Perhaps the key
concept is that of the study base. If the study
base is identified correctly and if controls
are chosen from it properly, the exposure
experience of the controls should be repre-
sentative of the individuals who compose
the base. At times, however, the pragmatic
principle of efficiency limits the investiga-
tor's ability to achieve comparability, re-
flecting the tension between efficiency and
comparability inherent in epidemiologic
research.
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