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 The article considers some issues related to replacement of electromechanical 

relays used for protection of power facilities with microprocessor relays. One 

of the urgent problems connected with implementation of microprocessor 

overcurrent protections is how to use current transducers other than usual 

current transformers and in particular Rogowski coils that become more and 

more widespread. In the article are compared twelve methods of synthesis of 

a digital filter basing on the analog prototype – second-order integrating 

filter. The bilinear filter and Boxer-Thaler filters are analyzed in respect to 

their use in microprocessor relays. Basing on the research results a technique 

for selection of parameters of digital integrating filters for microprocessor 

relays is proposed. Simulation results show that Boxer-Thaler and bilinear 

filters have better accuracy during transient current measurements than the 

analog filter. The study allows concluding that in many cases the digital 

second-order bilinear filter is the best choice for use in microprocessor 

relays. 
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1. INTRODUCTION 

Presently microprocessor-based protective relaying is becoming more and more widespread and 

continues to force out conventional relaying equipment. It is confirmed by the fact that for the last 10 years 

microprocessor-based relaying has been the mandatory subject for all students in the pertaining fields.  

The transition to digital relaying is inevitable [1], [2]. It is known that such large international relay 

vendors as ABB, General Electric, Siemens, Alstom may soon stop the production of electromechanical 

relays. This fact is mainly explained by the argument that it is much more profitable to manufacture complex 

microprocessor-based relays than their electromechanical or solid-state counterparts [1]-[3].  

It should be noted that transition to microprocessor-based systems is explained by modern 

requirements of main purchasers of protective systems (large industrial enterprises). For example, energy and 

resource-saving efficiency improving programs are now introduced in the Russian Federation, in accordance 

with the strategy of development of large industrial enterprises. Increasing energy-saving suggests integration 

of automated utility metering systems at enterprises. In connection with high costs of organizing an 

automated metering system in distribution networks of large industrial enterprises, the customers’ main 

requirement to such a system is execution of not only its inherent functions, but also power equipment 

monitoring and protection system functions.  

An automated metering and monitoring (protection) system is a distributed information system that 

monitors and controls operation and power consumption of devices involved in enterprise processes. An 

important function of such systems is possibility of using MP-based protections against probable emergency 

conditions.  
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Digital protection and diagnostic systems enable significant reduction of power equipment post-

emergency downtime, which is achieved through immediate notification of the chief power engineer and 

electrical repair services of the enterprise about the causes of the existing emergency situation. 

Most specialists point out that transition to digital methods of information processing in relay 

protection devices did not lead to development of any new electrical installation protection design principles, 

but significantly improved relay performance. The latter makes digital devices competitive on the relay 

protection market [4]-[6]. 

The main advantage of MP-based protection systems is the possibility of recording and then 

reproducing for analysis of emergency situations, conditions immediately preceding the emergency and 

during it. Digital relay protection devices enable transmitting all information about their state to remote 

dispatch operator stations over special communication channels as well as changing configuration of 

protection sets and operation settings using a connected computer. Modern MP-based protection devices are 

more sensitive that their electromechanical counterparts. Besides, one small-sized digital relay can replace a 

whole group of common electromechanical relays. This is especially true for complex protections, for 

example, remote ones. All this, together with high reliability, makes it possible to significantly reduce 

damage caused by power interruptions. 

 

 

2. SPECIAL FEATURES OF SIGNAL CONVERSION IN MP-BASED PROTECTIONS 

Most MP-based protections have only analog inputs of voltage and current circuits [7], [8]. Signal 

from the protected circuit is received from the symmetrical component filter or directly from primary current 

converters, which are mostly current transformers (CT) (owing to which MP-based systems have some 

drawbacks). Analog signals are converted to digital ones by means of an analog/digital converter (ADC), 

which is the most vulnerable point of the whole MP-based protection system as it can distort or block 

information transmitted by CT or other primary current converters.  

At present, there are hundreds of models of MP-based protection devices produced by dozens of 

different manufacturers on the power electronics market. Almost every type of MP-based protection units has 

its own enclosure that significantly differs from enclosures of another type. What remains the same is only 

the number and type of basic standard units enabling high-performance operation of MP-based protection and 

instrument systems.  

Based on the analog-to-digital signal conversion principle, one can distinguish three structural 

diagrams of MP-based relay protection IEDs for distribution networks of industrial enterprises (Figure 1)  

[3]-[5], [9]-[11].  

 

 

 
1 – analog/digital converter (ADC); 2 – central microprocessor; 3 – RAM-type memory unit; 4 – Hard Disk-

type ROM; 5 – flesh-memory-type programmable memory devices; 6 – Wi-fi and Ethernet technology-based 

signal transmission device; 7 – logical inputs/outputs; 8 – digital/analog converter (DAC) 

 

Figure 1. Structural diagrams of signal conversion in MP-based protections 
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Since MP-based protection units are multifunctional (act as several protection devices 

simultaneously), ADC can have several dozens of connected primary converters (from one to a high number 

of CTs) that take measurements for each protection kind with further analog signal sampling in ADC and its 

transmission for processing to the central MP-based device.   

The most widely spread design version of MP-based protection systems is the variant where ADC 

unit is an integral structural component of the relay protection IED and makes a single whole with it (having 

a single enclosure), Figure 1(a). With such a version, impact of external electromagnetic radiation on current 

circuits increases, which can lead to distortion of the signal received from instrument CT by ADC unit and, 

consequently, to protection system malfunction.  

Placing ADC in direct proximity to primary instrument converters (CT), Figure 1(b), makes it 

possible to prevent CT secondary side voltage increases in case of accidental disconnection of current circuits 

as a result of an emergency or improper actions of personnel. However, use of an extended digital channel 

(which is most often represented by a coaxial cable or shielded twisted pair) in conditions of distribution 

networks of large industrial enterprises does not seem possible as protection against mechanical damage of 

the digital communication channel cannot be enabled.  

Double-conversion circuitry (Figure 1(c)) uses ADC and further digital signal conversion back to 

analog one for electromechanical protection devices by means of digital/analog converters (DAC). Such 

circuitries became wide spread at enterprises with a large number of kinds of protection devices in use. The 

main aim of using double-conversion circuitry is to enable recording of pre-emergency and emergency power 

system conditions (for further analysis), even if the protection that operated is of electromechanical type. The 

main drawback of this system is its high cost caused by simultaneous use of DAC and ADC units.  

In design terms, MP-based relay protection units represent a set of planar printed circuit boards that 

are assembled like a PC. There is a motherboard, with connectors for the whole set of standard boards, on the 

enclosure bottom or sidewall. Such a circuit board also contains a system bus used as a interconnecting link 

for information transmission between MP-based unit components.  

An MP-based protection unit, by all means, contains the following units (Figure 1):  

a. A microprocessor-containing board;  

b. A board enabling recording of processes that take place in memory of volatile and non-volatile types;  

c. A system of transmitting signals using wireless communications; 

d. A system of logical inputs/outputs used for programming mp-based protection operation modes;  

e. Outputs of control signal for relays under control. 

According to many specialists [1], [11]-[22], increased requirements are imposed on quality of the 

signal received by MP-based protection relays. The signal should not contain noise, it should stay only within 

its certain frequency range. Digital protections that transmit information to ADC unit not directly from 

primary converters but from filters or digital filters have a great advantage. Use of the latter enables reducing 

negative impact of powerful electromagnetic fields and ensuring stable operation of protection systems. 

In some publications [1], [3]-[14] suggestion is made that for microprocessor relays it is desirable 

“to use more perfect current transducers than current transformers”. An example of such current transducer is 

the Rogowski coil [1]-[21]. In this case there is no need for an integrating filter. It can be realized in the 

microprocessor software as a dedicated program. 

 

 

3. DIGITAL FILTER BASICS 

The theory of digital filters was developed soon after appearance of the first computers [22] and was 

included into course books [23], [24]. Digital filters can be divided into recursive and non-recursive ones 

[25], [26]. A non-recursive filter sums up a certain number of input values. Therefore its transfer function 

will have a numerator only. In a real device the delay line has a finite number of elements, so the impulse 

response will also be finite. Therefore non-recursive filters also have another name – filters with finite 

impulse response (FIR filters). The number of input values used to obtain the output signal is called the order 

of a filter. 

A recursive filter sums up a certain number of input values and, in the general case, another number 

of output values. In this case the transfer function will have both numerator and denominator. Division of the 

numerator polynomial by denominator polynomial yields an infinite series of terms, so the pulse response of 

the filter is infinite. Therefore recursive filters also have another name – filters with infinite impulse response 

(IIR filters) [23]. In this article only IIR-filters will be considered and referred to as “digital filters”. For a 

given frequency response such filters are simpler than FIR-filters as the latter require a much larger number 

of delay and multiplication elements [27]. For example, in [28] is shown that to obtain the desirable 

frequency response sometimes one needs FIR-filters of a very high order (several hundred or thousand).  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Selection of Digital Filter for Microprocessor Protection Relays (Denis B. Solovev) 

1501 

Two groups of digital filter synthesis are known: direct methods and methods based on use of 

analog prototype. In [29] is shown that among analog integrating filters the best properties has the second 

order filter having two equal real poles. Also are given recommendations how to provide the required 

accuracy and sufficient decay rate for transients in the filter itself. Therefore in the case under consideration it 

is quite reasonable to choose the second group methods.  

Frequency response curves of digital filters are periodic (in contrast to those of analog filters). Their 

period is equal to the angular frequency of quantization, 2 T
д
  , where T is the period (interval) of 

quantization. Therefore it is impossible to create a digital filter that is absolute identical to the analog 

prototype. There are different methods of synthesizing a digital filter to some extent corresponding to its 

analog counterpart. 

 

 

4. ANALYSIS OF DIGITAL FILTERS FOR MICROPROCESSOR RELAYS 

4.1. Methods of synthesizing a digital filter 

During elaboration of material for this article 12 methods of synthesizing a digital filter basing on its 

analog prototype (second order integrating filter) were compared. The above methods include the following: 

a. Method with standard z-transform as described in [24], [30]; 

b. Method with matched z-transform as described in [30]; 

c. A group of methods with bilinear z-transform [31], [32]. 

It was found that at equal quantization period T the measurement errors of the filters synthesized 

using the first two methods are larger than those of filters synthesized using the last group of methods. This 

shortcoming is explained by overlapping of identical frequency responses shifted by 
д

 . The last group of 

methods does not have such a drawback.  

If a bilinear transform method is used each term of the numerator and the denominator of initial 

transfer function (corresponding to the analog prototype) is divided by n
s , where n is the filter order. In this 

case negative powers of s will occur both in the numerator and the denominator. Then the following 

substitution is made: 
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where s
-1

 is Laplace transform of integration, z
-1

 is Laplace transform of delay by quantization period T, and  

z – the variable of Laurent transform [30] (now this transform is called “z-transform”). It can be seen that 

equation (1) describes the operation of numerical integration by method of trapezoids. Substituting s j   

and s jz z  in (2) will yield: 
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where ω is the angular frequency of the analog prototype, and z  is the angular frequency of the digital 

filter. It can be seen that the frequency-response characteristic becomes more and more flattened with growth 

of angular frequency z . At Nyquist frequency [23], [30] that is equal to T  (two times smaller than the 

quantization angular frequency) this characteristic reaches the value of the analog prototype response at 

infinite frequency ω. There is no aliasing in this case; however another shortcoming arises due to nonlinear 

deformation of frequency scale.   

In the low frequency domain when ω is much smaller than Nyquist frequency the arctangent is 

approximately equal to its argument, so ωz ≈ ω. In this case the frequency responses of digital and analog 
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filters almost coincide. Then as the frequency rises the frequency response of the digital filter becomes more 

and more “compressed” as compared with its analog prototype.  

In early digital equipment the quantization frequency was low. As a result the accuracy of 

calculation of multiple integrals having Laplace transforms described as s
-n

 was also low. Therefore there 

appeared some methods in which terms s
-n

 were not calculated as n-fold multiplication of the right term of 

Equation (1). Instead, other (more complex) expressions employing numerical methods of multiple 

integration were used.  

 

4.2. Use of boxer-thaler method and z-transform 

Among such methods the most known one is Boxer-Thaler method [33]. In [28] is given a table of 

multiple integrator transfer functions according to this method for orders up to five inclusive. In [34],[35] are 

provided results of study of second-order digital integrators derived from transfer function   2
12W s sin 

using bilinear transform  2H zin
, Boxer-Thaler transform  2H zin BT

, and Ragazzini-Bergen transform 

[36]  2H zin RB
: 

 

 

     

2
12 2 1 2 2 1 21 1 10 1 4

( ) , ( ) , ( ) .2 2 22 2 2
4 12 61 1 1
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zT T z z T z z
H z H z H zin in BT in RB

z z z

        
  

  
  

 

(5) 

 

Judging by the frequency responses Ragazzini-Bergen transform is inferior to Boxer-Thaler 

transform in terms of the frequency range with acceptable accuracy. At an allowable error of 1% the upper 

boundary of this range for second-order integrator derived using Ragazzini-Bergen transform is only 2

times higher than for a similar integrator derived using the bilinear transform. For the second-order integrator 

derived from Boxer-Thaler transform this factor is equal to 5 i.e. it is 3.5 times higher than for Ragazzini-

Bergen transform. Therefore the latter transform is not considered below. 

To obtain the system function of the digital integrating filter let us use the second-order transfer 

function [22]. Selecting the plus sign before the right member of this formula we will obtain the transfer 

function of the filter in normalized form: 

 

 
2

.2 2
( )

s a
W s

s a


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

        (6) 

 

where 
1

aa 


 is relative value of  nW s  pole modulus [30]. The lower is a, the lower is the measuring 

error, but its minimum value-based constraint is imposed on selection of this pole. The matter is that the filter 

transfer function poles are inverse values with respect to its T  time constants. It means that 1 .a
T

 [30]. 

Unlike in case of Boxer-Thaler method if the bilinear z-transform is used the operation of reduction 

to expression with negative powers of s can be eliminated. Then basing on [24], [30], we obtain: 
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where T is the relative value of the quantization period 

 

,1T T 
         

(8) 

 

where 1 is the angular frequency of the first harmonic of measured current ( 1001   rad/s for the case 

considered). After substitution of (7) into (6) and further simplification the normalized system function of the 

second-order filter is obtained: 
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The factors of the nominator and denominator of the system function are determined by the 

following expressions: 

 

2 2 2
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If Boxer-Thaler method is used the nominator and the denominator are divided by 
2

s , that yields: 
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Substitution of 
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 in (9) yields the system 

function of the second-order digital filter,  2H zBT . After simplification this function will be of the form: 

 

 
1 2
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     (13) 

 

The factors of the nominator and denominator of function  2H zBT are determined by 

expressions: 

 

2 2 2
6 2 ; 20 ; 6 2 .0 1 2m T T a m T a m T T aBT BT BT         (14) 

 

2 2 2 2 2 2
12 12 ; 24 10 ; 12 12 .0 1 2n T a T a n T a n T a T aBT BT          (15) 

 

Basing on functions (9) and (13) can be found the difference equations determining conversion of 

the input signal into the output one. The frequency characteristics corresponding to transfer function (6) of 

the analog filter and system functions (9) and (13) of the digital filters have differences as well as the errors 

of measurements with these filters.  

 

4.3. Signal sampling and quantization in digital filters 

Digital filters have specific features related to sampling of the input signal and its amplitude 

quantization [22]-[28], [37]-[39]. The first one is illustrated by Figure 2. 

An analog-to-digital converter (ADC) contains a sample-and-hold circuit that operates as a switch 

driven by short pulses occurring with a period T. When the switch is closed a pulse with amplitude equal to 

the instantaneous voltage on the ADC input (thin line in Figure 2(a)) appears on the output of the sample-

and-hold circuit. The duration of such pulses is equal to the sampling period of the input analog signal. 

The ADC also contains a quantizer converting the sample into a number with finite resolution. Then 

the sequence of numbers comes to the microprocessor performing the function of digital filter [30]. This 

sequence of numbers is shown in Figure 2(b) as the thick line curve. By the instant the next pulse driving the 

sampling-and-hold circuit appears the analog signal changes. This change causes ADC error to appear. One 

can see that there is both absolute value error and phase error as the first harmonic of the ADC output signal 
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lags in phase behind the input signal. The graph of this error is shown in Figure 2(b). It constitutes a sequence 

of pulses limited by sine wave envelope. Since in Figure 1a the input signal has unity amplitude this graph 

represents the ADC relative error.  

 

 

  
 

(а) 

 

(b) 

 

(а) Thin line – initial signal, thick line – ADC output signal; error in ADC “output” signal; 

(b) n is the pulse number 

 

Figure 2. Sampling of sine wave signal with unity amplitude  

 

 

According to Figure 2 the more is the derivative of the input signal at the instant of the switch 

operation (in the sample-and-hold circuit) the more are the peak values of the error due to quantization of this 

signal. Consequently the peak of error corresponds to zero-crossing of the input signal. If period T is short 

the first remarkable limit is valid [40]-[43], so this maximum error is equal to normalized sampling period 

1T T  .  

The sampling period should be chosen so that the Nyquist frequency is at least three times higher 

than the angular frequency of the highest-order harmonic in the current to be measured. Hence the following 

calculation formula can be derived: 

 

1 1 1
    ,1

3 3 3max max max1

Т Т Т
n n n

    


    (16) 

 

where  maxn is the highest harmonic order. 

As indicated in [24], [30], [44], maxn = 40. Therefore the condition 0, 0083T  must be met. 

Selection of T can be made more precise by studying the influence of this parameter on the additional error 

relative to the analog prototype. 

 

4.4. Comparison of frequency responses of analog and digital filters 

Let us compare the frequency responses of the analog prototype and the second-order digital filter. 

To obtain the frequency characteristic of the analog filter we should make substitution s j  in (6). To 

obtain the frequency characteristic of the digital filter – substitute a and T  for their numerical values in (10) 

and (11) for the bilinear filter or in (14) and (15) for Boxer-Thaler filter. Then we make substitution 

 1
expz j T


    in (9) for the first filter type or in (13) for the second type. 

The calculations were made for two values of parameter a : 0,0055 – for the largest step-response 

error of 5% and 0,0027 – for the largest step-response error of 2,5%. In Figure 3(a) are shown the 

dependencies of bilinear filter frequency response relative error vs. the relative frequency at a = 0,0027. 
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(They almost coincide with the similar dependencies for a = 0,0055). The analog filter frequency response is 

used as reference.  

 

 

 
 

 

(а) 

 

(b) 

 

Figure 3. (a) Relative errors of bilinear filter frequency response for given T at a = 0,0027; (b) relative 

difference of frequency responses for bilinear filter and Boxer-Thaler filter for given  T at a = 0,0027  

 

 

This figure confirms the validity of condition 0, 026T  : at 40  the filter error at 0, 05T   is 

too large (36%,) at  0, 02T  it drops to 5,4%, and at 0, 01T   it is only 1,3%. This is due to the fact that 

the Nyquist frequency rises with reduction of T  farther and farther from 40 . 

As can be seen from Figure 3(b) the frequency responses of the bilinear filter and Boxer-Thaler 

filter almost coincide – the difference is negligibly small and is noticeable only at very low frequencies. At 

a = 0,0055 the ordinates of the graphs rise approximately five times but even in this case the difference is 

small. For correct calculation of the characteristics shown in Figure 3(b) we need at least 18 significant 

decimal places at 0, 02T  and at least 19 significant decimal places at 0, 01T  . 

In Figure 4(а) illustrates the fundamental difference between the frequency response of analog 

filters (thick line) and digital filters (thin line). The graph of frequency response of bilinear filter corresponds 

to T = 0,02 and a = 0,0027. It is very close to the graph corresponding to the different combination of 

parameters, T = 0,02 and a = 0,0055. 

The frequency response of analog filters similar to the filters considered goes to zero at infinite 

frequency. In this case the main branch of the frequency characteristic corresponds to values of   ranging 

from zero to the Nyquist frequency. This frequency range is called “Nyquist interval” [30]. The closer is the 

frequency to the Nyquist frequency the lower is the frequency response of the digital filter relative to the 

analog prototype. At Nyquist frequency is reaches zero as shown in Figure 4(b) (thick and thin lower lines). 

At further increase of frequency the frequency response of the digital filter rises. The frequency 

response curve in the range N д     where the angular sampling frequency 2 Nд   is a “mirror 

reflection” of the main branch corresponding to the interval 0 N    relative to line N  . As the 

frequency response at the Nyquist frequency is zero there is no aliasing between the main branch of the 

characteristics and its “mirror reflection”. The main interval of the frequency characteristic corresponding to 

the interval N д     has an infinite number of copies shifted (relative to this interval) by 

, 1n nд   . 
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(а) 

 

(b) 

 

Figure 4. (a) Frequency response of analog filter and digital bilinear filters at a = 0,0027 for given T ;  

(b) relative difference of frequency responses for bilinear filter and Boxer-Thaler filter at a = 0,0027  

for given T  

 

 

In Figure 5 are shown the initial part of the main branch of the filter frequency response curve and 

the graph of 1   representing the frequency response of ideal integrator (thick line). Comparison of  

Figure 5(а) and Figure 5(b) allows to conclude that the larger is the value of a  the earlier the difference of 

digital filter frequency response becomes noticeable. The derivative of the measured current is converted into 

the output signal of the digital bilinear integrating filter by software according to the following expression 

corresponding to formula (9):  

 

        

    

1
2 12 1 0

0

1
2 1 ,2 1

0

y k m y k m y k m y kout in in in
n

n y k n y kout out
n

     

   

    (17) 

 

where  y jin is the j-th sample of the analog input signal that is, in the case under consideration,  the 

normalized derivative of measured current di d , and  y jout  is j-th term of the filter output signal 

sequence. The factors in expression (17) are calculated using formulas (10) and (11). The first (corresponding 

to beginning of measurement) two members of the sequence are found using the following formulas: 

 

     
     0 1 00 1 0 1

0 0 , 1

0 0

m m y m y n youtin in
y y yout outin

n n

 
    (18) 
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(а) 

 

(b) 

 

Figure 5. (a) Frequency response of ideal analog integrator (thick line) and of bilinear digital filters (thin line) 

for T = 0,02: at a = 0,0055 and (b) at a = 0,0027  

 

 

As shown in [22], the largest error of the analog filter occurs during measurement of transient 

current at 25  and 
2

   . Therefore for determination of digital filter calculation error let us use the 

following formula for normalized reference current:    

 

 cos exp 25i     .        (19) 

 

Then the derivative of this current, i.e. the normalized input of the integrating filter, is described by 

the formula:  

 

 
1

sin exp 25
25

di
yin

d
     


.      (20) 

 

Making the substitution , 0j T j N  , where N is the quantity of input sequence members, 

we will obtain array  y jin  of input discrete values. Using this array and the two initial values calculated 

with (18) according to routine (17) the array of output discrete values,  y jout , is calculated.  

In the same way as with array  y jin , the array of measured current  i j  is created basing on 

expression (19). Differences    i j y jouti   form the array of errors of current measurement with the 

second-order bilinear filter. The curve of this error calculated for 0,0055a   at 0, 01T  is shown in 

Figure 6(a) while that at 0, 02T   in Figure 6(b). 

These curves are calculated using 11 significant decimal places. Dependencies of maximum full 

error and number of periods elapsed from the beginning of the transient vs. number of significant decimal 

places at 0, 02T   are shown in Table 1. Also are shown the corresponding values for the second-order 

analog filter. 
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(а) 

 

(b) 

 

Figure 6. (a) Errors of transient current measurement vs. sample number for second-order bilinear filters for  

a = 0.0055: at T = 0.01 and (b) at T  = 0,02  

 

 

Table 1. Parameters of Second-order Analog and Bilinear Digital Filters during Measurement of Current 

Corresponding to Equation (19) 

Parameters of maximum error 
Analog 
filter 

Digital filter,  

number of significant decimal places 

7 8 9 10 11 12 

Number of periods till maximum of full 

error, 
max

N  
33,7 83,0 30,1 31,2 33,5 33,5 33,5 

Maximum full error, % 5,0 11,7 8,54 5,79 5,06 5,03 5,03 

 

 

It can be seen that as the number of significant places grows the error steadily declines and reaches 

its final value at 11 significant places. According to the data in Table 1 it is enough to have 10 significant 

places. In this case the curve of measurement error is smooth and “quantization noise” [22]-[28], [45]-[48] in 

the signals does not appear. If the said condition is met both analog and digital filters have virtually the same 

maximum error and the same time it is reached.  

At 10 significant decimal places and 0, 01T   the maximum error has the same value as at 

0, 02T  . This assertion is confirmed by the curves shown in Figure 6. 

Dependencies of maximum full error and number of periods elapsed from the beginning of the 

transient vs. number of significant decimal places at 0, 02T   for second-order Boxer-Thaler filters are 

shown in Table 2. 

 

 

Table 2. Parameters of Second-order Analog and Boxer-Thaler Digital Filters during Measurement of 

Current Corresponding to Equation (19) 

Parameters of maximum error 
Analog 
filter 

Digital filter, 

number of significant decimal places 

7 8 9 10 11 12 

Number of periods till maximum 

of full error, 
max

N  
33,7 114,5 29,6 50,5 34,0 33,5 33,5 

Maximum full error, % 5,0 -14,8 7,95 1,92 4,71 5,03 5,03 

 

 

It can be seen that the data shown in Table 1 and Table 2 coincide if the number of significant places 

is 11 or 12. This means that in such cases the Boxer-Thaler filter has no advantage over the bilinear filter. At 
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10 significant places the maximum error of the Boxer-Thaler filter is 1,07 times smaller than with bilinear 

filter. However in this case there appears some subharmonic “quantization noise” with a swing of 0,001% 

and a period of approximately 0,8 of the period of the measured current periodic component. 

At 9 significant decimal places the maximum error with Boxer-Thaler filter is three times lower than 

with the bilinear filter. However the time of reaching the maximum in this case is 1,7 times longer. The 

swing of “quantization noise” is 5 times larger than with 10 significant places. At seven significant decimal 

places the maximum error of Boxer-Thaler filter changes its sign relative to the maximum errors at larger 

numbers of significant places. This error has a larger value (14,8%) and occurs 1,4 times later than with the 

bilinear filter.  

Reduction of measurement error for a current waveform given by (19) at low number of significant 

decimal places as compared with the analog filter is alarming. It is quite possible that in case of measurement 

of currents for other types of transients the measurement error will on the contrary become larger than with 

the analog filter. Therefore for the application considered the bilinear digital filter can be chosen as the 

optimal solution. 

Performance of any digital filter can be reliably evaluated only in case of input impacts 

approximating, by their kind, actual secondary current waveforms of primary instrument current converters 

(mostly represented by current transformers or other converters [3], [14]-[18]) the protection using the 

evaluated filter is connected to. For these purposes, a power system and MP-based (digital) protection current 

measuring element structural model was developed and reproduced in MicroCAP dynamic modeling 

environment. Calculations led to the conclusion that if the primary current signal contains exponentially 

damping aperiodic component the primary current converter magnetic core (Rogowski coil) gets saturated 

even with permissible primary current ratio and rated secondary load. This results in Rogowski coil 

secondary current distortion and appearance of higher harmonics therein, as well as multiple harmonics. 

Comparing filter responses [14], [21] to the above-mentioned impacts once again confirmed that selection of 

a digital bilinear filter, which enables determining input signal amplitude with smallest errors, is correct. 

 

 

5. RESULTS AND DISCUSSION 

In conditions of large industrial enterprises of Primorsky Kray (Russian Federation), MP-based 

protections are used only as standby ones. As an experiment, such a system was introduced at 

“Novoshakhtinskoye” mining enterprise in 2013. The structural diagram of this system is shown in Figure 7. 

 

 

 
 

Figure 7. Structural diagram of a metering and monitoring system with MP-based protection functions 

 

 

An automated monitoring and protection system has two levels. The first level includes MP-based 

controllers serving as standby protection. They are programmed for protection against emergency operation 

conditions and are installed at distribution stations (DS).  

Information from controllers is transmitted using wireless communications to the central station that 

belongs to the second level. The central station includes an operational server that stores information about 

power network parameters and operation modes of all process power equipment in use at the enterprise for 

the duration of one day. After that information from the operational server is transmitted over a wire 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 :  1498 – 1512 

1510 

communication channel to the long-term storage server, which also receives information about the state of 

the main step-down substation (MSDS). 

The second level also includes operator stations (displays) that display information for real-time 

monitoring of processes in the enterprise power network. Such stations are installed at the power engineering 

department operator room and at the chief power engineer of the enterprise. Based on the experience of using 

digital bilinear filters in MP-based IEDs (during four years), it can be pointed out that use of microprocessor 

protection as standby reduces the number of power equipment failures by average 50% per year. Table 3 

contains the data that indicate the number of power equipment failures at “Novoshakhtinskoye” enterprise in 

the period from 2014 to 2017.  

 

 

Table 3. Number of Power Equipment Failures at “Novoshakhtinskoye” Enterprise 

Protection kind 
Years 

2014 2015 2016 2017 

Distribution stations using electromechanical protection 

and MP-based protection as standby (47 electric loads) 
5 3 2 3 

Distribution stations only with electromechanical 

protection (48 electric loads) 
7 8 5 6 

Distribution stations without protection (39 electric loads) 17 25 20 18 

 

 

It should be pointed out that the new integrated systems are MP-based, which entails some 

complexities in coordination of operation of digital devices and conventional electromechanical ones. Failure 

of protection relays to operate, primarily, is caused by unwanted tripping of protection systems by personnel. 

As a rule, there arise difficulties connected with established practices and ideas about relay protection of the 

enterprise power engineering department personnel and the need in additional personnel training. However, 

the main reason that relay protection devices fail to operate is distortion of signals received from primary 

converters, which leads to malfunctions or even breakdowns of MP-based information processing units. 

According to the results of operation analysis of MP-based protection IEDs, there are situations 

when MP-based protection devices fail to operate or respond to the emergency conditions much slower than 

electromechanical ones. Such operation peculiarities of fast-acting MP-based protections are explained by a 

large number of signals MP-based relays operate with, as well as presence of electromagnetic disturbances 

that affect operation of digital systems.  

 

 

6. CONCLUSION  

In conditions of industrial enterprises, protection systems that simultaneously use electromechanical 

and standby MP-based relay protection devices have become widespread. Use of MP-based protection relays 

as standby protection enables reducing the number of failures of electrical machinery caused by emergency 

operation conditions.  

At present, MP-based protections have some drawbacks. Digital relay protection systems, especially 

complex ones, for example, remote systems, do not always behave adequately in case of complex 

emergencies. Quite often complex MP-based protections malfunction or fail in actual complicated operating 

conditions of distribution networks of large industrial enterprises. If the relay is preliminarily tested in 

laboratory conditions with standard signals at its inputs, it operates accurately and reliably. The problem is 

that it is impossible to simulate, on that test bench, all possible signal combinations and distortions that can 

take place in reality beforehand. It is impossible to foresee such cases in relay design in advance, either.  

Digital filters should be used to increase efficiency of MP-based protection IEDs. The conducted 

research showed that, among the examined digital filters, the digital bilinear filter demonstrates the best 

performance in close-to-real conditions. 
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