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Abstract—The overarching goal of this study was to establish
optimal hyperspectral vegetation indices (HVIs) and hyperspec-
tral narrowbands (HNBs) that best characterize, classify, model,
and map the world’s main agricultural crops. The primary objec-
tives were: (1) crop biophysical modeling through HNBs and HVIs,
(2) accuracy assessment of crop type discrimination using Wilks’
Lambda through a discriminant model, and (3) meta-analysis to
select optimal HNBs and HVIs for applications related to agricul-
ture. The study was conducted using two Earth Observing One
(EO-1) Hyperion scenes and other surface hyperspectral data for
the eight leading worldwide crops (wheat, corn, rice, barley, soy-
beans, pulses, cotton, and alfalfa) that occupy 70% of all crop-
land areas globally. This study integrated data collected from mul-
tiple study areas in various agroecosystems of Africa, the Middle
East, Central Asia, and India. Data were collected for the eight crop
types in six distinct growth stages. These included (a) field spec-
troradiometer measurements (350–2500 nm) sampled at 1-nm dis-
crete bandwidths, and (b) field biophysical variables (e.g., biomass,
leaf area index) acquired to correspond with spectroradiometer
measurements. The eight crops were described and classified using

20 HNBs. The accuracy of classifying these 8 crops using HNBs
was around 95%, which was 25% better than the multi-spectral
results possible from Landsat-7’s Enhanced Thematic Mapper+ or
EO-1’s Advanced Land Imager. Further, based on this research
and meta-analysis involving over 100 papers, the study established
33 optimal HNBs and an equal number of specific two-band nor-
malized difference HVIs to best model and study specific biophys-
ical and biochemical quantities of major agricultural crops of the
world. Redundant bands identified in this study will help overcome
the Hughes Phenomenon (or “the curse of high dimensionality”)
in hyperspectral data for a particular application (e.g., biophys-
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ical characterization of crops). The findings of this study will make
a significant contribution to future hyperspectral missions such as
NASA’s HyspIRI.

Index Terms—Hyperion, field reflectance, imaging spectroscopy,
HyspIRI, biophysical parameters, hyperspectral vegetation in-
dices, hyperspectral narrowbands, broadbands.

I. INTRODUCTION AND RATIONALE

N UMEROUS studies (e.g., [1], [2]) have shown that

the Hyperion imaging spectrometer onboard the Earth

Observing One (EO-1) satellite has provided significantly

enhanced data over conventional multi-spectral remote sensing

systems. Hyperspectral narrowbands (HNBs) and hyperspec-

tral vegetation indices (HVIs) derived from EO-1 and field

spectral measurements in the 400–2500 nm spectrum allow

us to study very specific characteristics of agricultural crops.

These include biomass, leaf area index (LAI), pigment content

(e.g., chlorophyll, carotenoid, anthocyanin), stress (e.g., due

to drought or disease), management properties (e.g., nitrogen

application, tillage), and other biochemical properties (e.g.,

lignin, cellulose, plant residue) [23], [24]. The ability of hy-

perspectral data to significantly improve the characterization,

discrimination, modeling, and mapping of crops and vegetation,

when compared with broadband multispectral remote sensing,

is well known [8]. This has led to improved and targeted

modeling and mapping of specific agricultural characteristics,

such as (a) biophysical and biochemical quantities [3]–[8],

[13], (b) crop type/species discrimination [9]–[12], [15], (c)

stress factors [14], [15], and (d) crop and water productivity,

and energy balance [16]–[22]. These benefits will help us better

understand a broad range of agricultural applications involving

droughts [2], [3], food security [8]–[12], biodiversity [9], [11],

and invasive species [9], [24]. Nevertheless, there are still

significant knowledge gaps that require further research.

Contiguous bands of spectrometer data allow for accurate

retrieval of plant biophysical and biochemical quantities using

methods like continuum removal, first discussed by Clark and

Roush in 1984 [25]–[28]. However, since information about

agriculture is time sensitive, approximate analyses, quickly

obtained using one or more HVIs may be more useful than

1939-1404/$31.00 © 2013 IEEE
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Fig. 1. Study areas from where hyperspectral data from spectroradiometer and Hyperion were gathered. The irrigated and rainfed cropland study areas of eight
major world crops (Table I) in distinct agroecosystems for which hyperspectral data from spectroradiometer and Hyperion were collected from four study areas
(see details in Table II).

slow detailed retrievals based on continuum removal or similar

approaches. Thus, there is an important need to develop hyper-

spectral narrowband indices. Recent research has demonstrated

that the optimal information required to quantify, discriminate,

and classify crop characteristics may be captured with a rel-

atively small number of specific narrowbands [8], [23], [29].

However, these studies were limited to small areas, lacking

regional or global perspective, and they contain significant

uncertainties.

Large data volumes can be reduced through several data

mining methods such as [8], [23], [30], [31], [34], [35]: (1)

feature selection (e.g., principal component analysis, deriva-

tive analysis); (2) versus R - plots between the different

wavelength bands; (3) partial least squares (PLS), (4) stepwise

linear regressions; and (5) hyperspectral vegetation indices

(HVIs). These data mining methods led to: (a) reduction in data

dimensionality, (b) reduction in data redundancy, and (c) extrac-

tion of unique information. There are several other methods of

analyzing hyperspectral data such as Hierarchical Multiple End-

member Spectral Mixture Analysis (MESMA) [7], continuum

removal [37], derivative vegetation indices [31], unmixing

approaches [10], neural networks [30], and others [8].

In this current research, we made use of hyperspectral data

from two Hyperion images and in-situ spectroradiometer data

(1153 samples) of eight major worldwide crops (wheat, corn,

TABLE I
AREA OF THE EIGHT LEADING WORLD CROPS

Derived from Monfreda et al. [41] who aggregated the major crops of the

world by combining national, state, and county level census statistics with

their global croplands database ( 10 km by 10 km) latitude-longitude grid.

These datasets depict circa the year 2000 the area (harvested) [41].

rice, barley, soybeans, pulses, cotton, alfalfa; Table I). These

crops occupy % of all cropland areas of the world (Table I).

These data were collected from distinct agroecosystems in

Africa, the Middle East, Central Asia, and India (Fig. 1) and
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represent eight distinct plant growth stages, each with suffi-

ciently large sample size. These data were then used in the

development of robust models of crop productivity (CP; kg/m )

using HNBs and HVIs.

As the number of bands in an image increases, the number

of observations required to train a classifier increases exponen-

tially to maintain classification accuracy [1], [2], [30]. When the

spectral dimensionality of the data increases, this causes a loss

of classifiability for an image with the same fixed number of

training samples [1], [2], [30]. This is called the Hughes Phe-

nomenon (or “the curse of high dimensionality”) [38]. We ex-

amined the high dimensionality problem for crop classification

issues for biophysical retrievals. We used unique data mining

techniques involving several thousand HVIs for each investi-

gated crop variable, with the goal of identifying and eliminating

redundant spectral bands.

Our main objectives were to: (1) select the best Hyperion

narrowbands to compose two-band HVIs (i.e., normalized

differences) for biophysical characterization of biomass, LAI,

plant height, plant density, and grain yield; (2) identify the best

HNBs and indices (HVIs) from field reflectance spectra for

discriminating crop types and for comparing their performance

with the corresponding broadband indices; and (3) perform

meta-analysis to select optimal HNBs and HVIs for agriculture

monitoring.

II. METHODOLOGY

A. Study Areas

Four distinct study areas (Fig. 1) were selected based on

the available hyperspectral and corresponding biological data

(Table II) for the eight major world crops in various agroe-

cological zones. These data were collected during different

years (2000 through 2010) [8], [23], [32]–[35]. The study areas

(Fig. 1) were: (A) Syria, semi-arid with supplemental irrigation

(barley, pulses, soybeans); (B) Uzbekistan, heavily irrigated

croplands (wheat, cotton, rice, alfalfa); (C) Africa, agricultural

crops from different agroecological and climate zones (e.g., sa-

vanna in Sudan, Northern Guinea, Southern Guinea, with crops

of corn, soybeans, and rice); and (D) India, rainfed croplands

in semi-arid environments (barley, pulses, soybeans). Detailed

characteristics of these data gathering efforts are described

in various places [8], [23], [32]–[35] and will not be restated

here. Data analysis of pooled, cross-site hyperspectral data for

leading global crops from distinct agroecosystems of the world

is quite rare, making this study unique.

B. Field Spectroradiometer Data

All field spectral measurements were made using Analytical

Spectral Devices Fieldspec instruments (ASD, Boulder, CO,

USA), which gather data between 350–2500 nm [8]. For the

eight crops (Figs. 1, 2), there were a total of 1553 data points

(Table II) for which hyperspectral data were available from

various ASD Fieldspec instruments. These data were available

for 6 distinct plant growth stages: early vegetative, mid veg-

etative, flowering, tillering, critical, and senescing. “Critical”

growth stages vary for each crop. For rice crops, “critical”

growth stages are tiller initiation, flowering, and milky stage.

For wheat crops, “critical” growth stages are crown initiation,

flowering, joining, milky, and tillering. Gathering these spectra

involved optimizing the integration time (typically set at 17

ms), providing fore-optic information, recording dark current,

and collecting white reference reflectance. At each site, 10

reflectance measurements were consistently taken along a

transect, using a ladder to obtain a 3 m high nadir view. Crop

variables collected during field visits included: (1) crop type

(Table I); (2) crop growth stages (Fig. 2); (3) biophysical

quantities such as wet and dry biomass (kg/m ), leaf area index

(m /m ), plant height (mm), and canopy cover (%); and (4)

biochemical variables such as leaf nitrogen and plant pigments.

Details of the methods and approaches of collecting data are

discussed elsewhere [31], [33]–[35].

C. EO-1 Hyperion Data

Two Hyperion images were available for the Uzbekistan

study area, taken within 2 days of the corresponding field

data (Fig. 3). Hyperion Level 1 products are radiance values

stored as 16-bit signed integers. These were converted from

radiances (W m sr m ) to at-sensor reflectance. Several

different atmospheric corrections were tried, but all had prob-

lems providing good correction values. Thus, using the original

at-sensor reflectance data was considered the best option.

The first atmospheric correction tried was the MOD-

TRAN-based FLAASH (Fast Line-of-sight Atmospheric

Analysis of Spectral Hypercubes) routine, which retrieves

aerosol and water vapor information from the image to provide

well-adjusted input for the atmospheric correction [28]. How-

ever, using FLAASH on the two Hyperion images resulted in

over-correction and/or uncertainties. These poor results may

have been obtained because of the linearity assumption, which

presumes uniform atmospheric transmission, scattering, and

adjacency effects throughout the scene [36]. Also, very accu-

rate water vapor and aerosol retrievals are only possible when

the image contains bands in exact wavelength positions. In

addition, FLAASH does not accept any kind of ancillary data,

such as ozone, surface pressure, or water vapor for cases when

this cannot be retrieved from the image data itself. In our study,

a few pixels in the Hyperion images with specular reflectance

seemed to influence the surface reflectance correction and there

was uncertainty in the aerosol and water vapor retrievals due

to the small area coverage of the Hyperion images. Essentially,

FLAASH was unable to adjust for variations in several atmo-

spheric parameters (e.g., ozone, surface pressure, and water

vapor) [28], limiting the usability of FLAASH-derived surface

reflectance for our study.

We also attempted to provide a simple alternative at-

mospheric correction [34] using the improved dark object

subtraction technique [39], [40] to derive surface reflectance

from apparent or at-sensor reflectance. This alternative correc-

tion appeared to retain features involving either oxygen, water

vapor, or carbon dioxide, and thus produced poor results as

well.

Original Hyperion images have 242 bands each of 10 nm

bandwidth between 400 and 2500 nm, but only 157 narrow-

bands were used. These useful bands were visible and near-

infrared (VNIR) bands 8–57 (427.55–925.85 nm), and SWIR



4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 2, APRIL 2013

TABLE II
STUDY AREAS, CROPS STUDIED, AND HYPERSPECTRAL DATA POINTS. A TOTAL OF 1553 HYPERSPECTRAL DATA POINTS WERE COLLECTED FOR EIGHT MAJOR

WORLD CROPS (FIGS. 1, 2; TABLE I) USING GROUND BASED SPECTRORADIOMETER

bands 79–224 (932.72–2395.53 nm). The uncalibrated bands

(357–417 nm, 936–1068 nm, and 852–923 nm) were dropped

as were wavebands in atmospheric windows (1306–1437 nm,

1790–1992 nm, and 2365–2396 nm) which had high noise. The
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Fig. 2. Cross-site hyperspectral spectroradiometer data. Cross-site mean (regardless of which study site (1–4, Table II)) spectral plots of eight leading world crops
in various growth stages. (A) Four crops at different growth stages; (B) same four crops as in A but in different growth stages; (C) four more crops at early growth
stages; and (D) same four crops as C, but at different growth stages. Note: numbers in bracket are sample sizes.

Fig. 3. Hyperion data of crops illustrated for typical growth stages in the Uzbekistan study area. The Hyperion data cube shown here is from a small portion of
one of the two Hyperion images. The Hyperion spectra of crops are gathered from different farm fields in the two images and their average spectra illustrated here
along with the sample sizes indicated within the bracket. The field data was collected within two days of the image acquisition.
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Fig. 4. Original narrowband versus simulated broadband reflectance field spectra of leading world crops. The hyperspectral reflectance field spectra of eight
leading crops, each at two distinct growth stages, are shown for narrowbands (left) and simulated for Landsat broadbands (right). Note: sample size within
brackets.

at-sensor reflectances were then obtained for the wheat (56 sam-

ples), corn (64), rice (38), cotton (52), and alfalfa (32) crops

from the two Uzbekistan images. These images were acquired

during the crop stages shown in Fig. 3. The study addressed

the early growth stage for wheat, and late growth stages for

the other four crops (corn, rice, cotton, and alfalfa). The crops

in other growth stages within these images were ignored since

the sample sizes were inadequate ( pixels). The average

at-sensor reflectance spectra of the 5 crops at either early or late

growth stages are shown in Fig. 3.

D. Methods for Objective 1: Selection of Hyperion

Narrowbands to Compose Two-Band Indices for Biophysical

Characterization

Contour plots of R-square values for wavelength bands and

HVIs with rigorous search criterion are considered the best

choice for the comprehensive assessment of hundreds of wave-

bands and thousands of indices [31], [34], [35], [42]. Two-band

normalized difference Hyperion indices (HVIs) were examined

for biophysical characterization. These indices were computed

from every possible 2-band combination of Hyperion bands

from the two images of Uzbekistan. The HVIs were computed

using the standard equation [31]:

(1)

where, i,j are the two waveband centers for reflectance (R, %)

for 157 narrow-wavebands. For each variable (e.g., biomass)

per crop, there are 12 246 unique indices possible. These were

calculated as ; divided by 2 because the

values above and below the diagonal are the transpose of one

another, and minus 157 because these are diagonal values. Each

of these HVIs were then correlated with crop variables, such as

wet and dry biomass (kg/m ), leaf area index (m /m ), and plant

height (mm).

E. Methods for Objective 2: Selection of FieldSpec and

Two-Band Narrowband Indices for Discriminating Crop Types

We adopted a discriminant model [35], [43] to determine how

well the eight crops were distinguished based on hyperspectral

narrowband data (Fig. 4(a)) and simulated corresponding broad-

band data (e.g., for Landsat , Fig. 4(b)). Crop discrimi-

nation was performed using Wilks’ Lambda, a stepwise discrim-

inant analysis (SDA) [43], because it provided the most lucid,

rapid, and straightforward results to determine the seperability

among multiple classes [35]. In addition to the Wilks’ Lambda,

there are a number of other SDA methods for crop class separa-

bility, such as [31], [34], [35]: (a) Jefferies-Matusita (JM) index;

(b) Pillai trace; and (c) canonical correlation. Wilks’ Lambda is

the most commonly used and reported, however Pillai’s crite-

rion is useful for small or unequal sample sizes.

The Wilks’ Lambda SDA (PROC STEPDISC [43]) begins

with no waveband information in the model. At each step, the

variable (e.g., specific narrowband) that contributes most to

the discriminatory power of the model is entered. The stepwise

process continues, with the inclusion of variables that meet

the criterion to stay, and stops when no additional variables

add to model success [43]. The class separability of the 1553

hyperspectral measurements representing various growth stages

of the eight leading world crops was determined using Wilks’
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Lambda [34]. The discriminant model is akin to an error matrix

[444], providing overall accuracies and errors of omissions and

commissions. The original high-resolution field spectra were

aggregated to 10 nm bandwidths (akin to Hyperion and HyspIRI

bands) in the ranges of 390–1350 nm, 1440–1790 nm, and

1990–2360 nm. This resulted in 160 aggregated HNBs, which

were then aggregated again to simulate the Landsat six

non-thermal bands and EO-1 ALI’s nine bands (e.g., Fig. 4).

F. Methods for Objective 3: Meta-Analysis to Select Optimal

HNBs and HVIs

To overcome the parochial results from small local studies,

this research adopted a regional perspective by integrating

data from numerous agricultural crops grown in distinct agroe-

cosystems with robust models developed using numerous

biophysical characteristics. Meta-analysis used data gleaned

from over 100 research papers [8] to derive optimal HNBs

and HVIs based on spectroradiometers with a consistent set

of measurements. These HNBs and HVIs help explain more

of the variability of vegetation biophysical and biochemical

characteristics [7], [8] and they are targeted indices to study

specific biophysical and biochemical quantities [10]. These

include chlorophyll indices based on correlation success, such

as leaf chlorophyll index (LCI), red-edge vegetation stress

index (RVSI), and derivative chlorophyll index (DCI) (see

Table IV for description of indices). In addition, several HVI

formulations are based on physiological criteria, such as photo-

chemical reflectance index (PRI), normalized difference water

index (NDWI), and anthocyanin reflectance index (ARI) (see

Table IV for description of indices).

III. RESULTS AND DISCUSSION

A. Selection of Hyperion Narrowbands to Compose Two-Band

Indices for Biophysical Characterization

We used the Uzbekistan Hyperion images (Section II.C,

Fig. 3) to examine the HVI relationships to crop biomass for

wheat and corn crops. These two crops were chosen because

they had the largest sample sizes and are the two leading crops

of the world (Table I). Fig. 5 shows contour plots of coeffi-

cients of determination (R-square) for all pairs of wavelength

bands in two band normalized difference HVI with: (a) wheat

wet biomass (Fig. 5, above the diagonal), and (b) corn crop

wet biomass (Fig. 5, below the diagonal). The “bull’s eye”

regions (Fig. 5, colored areas) are areas of highest - values

and are used to determine the most important HNBs. The

large number of wavebands in the gray areas have the lowest

-values and hence are considered to be redundant.

These wavelength plots are a powerful means of determining

the most useful Hyperion narrowbands. Based on these plots

and meta-analysis (Section III.C), we selected those HNBs

having high -values (Table IV), in agreement with several

studies (e.g., [8], [23], [31], [34], [35]).

The waveband combinations that provide the best -values

between HVIs and biophysical quantities are different for wheat

and corn crops (Fig. 5). This is due to different growing condi-

tions (e.g., soils, climate, management practices) and different

Fig. 5. Contour plot of versus - values for wavelength bands between
two-band hyperspectral vegetation indices (HVIs) and wet biomass of wheat
crop (above diagonal) and corn crop (below diagonal). The 242 Hyperion bands
were reduced to 157 bands after eliminating uncalibrated bands and the bands
in atmospheric window. HVIs were then computed using the 157 bands leading
to 12 246 unique two-band normalized difference HVIs each of which were
then related to biomass to obtain R-square values. These -values were then
plotted in a versus -contour plot as shown above.

agroecosystems. This is why major crops from distinct agroe-

cosystems have been pooled and studied together.

B. Selection of FieldSpec Narrowbands for Crop

Discrimination

The Wilks’ Lambda [34], [35] was used to see how well the

eight crops were separated using various number of HNBs vs.

Landsat bands and EO-1 ALI bands (Fig. 6). It was

found that the smaller the value of the Wilks’ Lambda statistic,

the greater the separability. So, for perfect separation of the

eight crops, we would need a Wilks’ Lambda of zero. Since

hyperspectral sensors have hundreds of wavebands, the likeli-

hood of finding ones that can separate vegetation/crop types or

biochemical quantities increases drastically. At about 20 bands,

Wilks’ Lambda becomes near zero (Fig. 6) indicating near per-

fect separability of the eight crops. In comparison, the Wilks’

Lambda of the eight crops simulated for the Landsat and

the ALI bands were only about 0.49 and 0.32 respectively, indi-

cating poor differentiation of crop types using these broadbands.

The discriminant model (Section II.E, 1) was used to deter-

mine overall accuracies in classifying the eight crops using the

HNBs and BBs (Fig. 7). About 20 HNBs provided a classifica-

tion accuracy of 95% (Fig. 7). Additional bands increased that

by an insignificant amount, leading to near asymptotic accu-

racy beyond 20 bands. In comparison the maximum accuracies

attained were 67% for the six non-thermal simulated Landsat

bands, and 71% for the nine simulated ALI bands. The

best band combinations of HNBs for separating or discrimi-

nating crop types or classifying them are shown in Table III.

If the number of bands remains high, the number of obser-

vations required to train a classifier increases exponentially to

maintain classification accuracies [30], due to the Hughes Phe-

nomenon. For example, three narrowbands centered at 540 nm,



8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 2, APRIL 2013

Fig. 6. Separating eight major crops of the world based on Wilks’ Lambda step-
wise discriminant analysis (SDA) method using: (a) broadband data of Landsat

and EO-1 ALI, and (b) hyperspectral narrowband (HNB) data of EO-1
Hyperion using some of the data of three study areas. Note: the smaller the
Wilks’ Lambda the greater the separability. A Wilks’ Lambda of 1 means per-
fect separability. It took about 25 HNBs to achieve near perfect separability
between eight crops.

Fig. 7. Crop classification performance of hyperspectral narrowbands (HNBs)
versus multispectral broadbands (MBBs). Overall accuracies in classifying five
agricultural crops using simulated reflectance field spectra of Landsat
and EO-1 ALI broadband Landsat broadbands vs. Hyperion hyperspectral nar-
rowbands. Overall accuracies attained using six non-thermal Landsat bands was
about 60% whereas about 20 hyperspectral narrow bands provided about 90%
overall accuracy. Beyond 20 bands, any increase in accuracy with increase in
additional bands is very minor.

550 nm, and 560 nm are almost perfectly correlated to one an-

other when studying agricultural crop biophysical characteris-

tics. Therefore, wavebands that provide the best information

should be selected and the others dropped when studying crops.

Nevertheless, the bands deemed redundant for one application

may be valuable in other applications, such as in the study of

geology, water/ice, and marine resources.

TABLE III
THE BEST 4, 6, 10, 15, AND 20 BAND COMBINATIONS OF HYPERSPECTRAL

NARROWBANDS (HNBS) FOR SEPARATING OR DISCRIMINATING CROP TYPES

OR CLASSIFYING THEM

C. Selection of Optimal HNBs and HVIs for Crop Biochemical

Characteristics

Selection of HNBs and HVIs (Table IV) for crop biochemical

characteristics required rigorous meta-analysis (Section II.F).

The relevance of these HNBs and their use in calculating HVIs

has been established by numerous researchers (Table IV) and is

discussed in various chapters of Thenkabail et al. [8]. For ex-

ample, Thenkabail et al. [8] shows that a waveband centered at

550 nm provides excellent sensitivity to plant nitrogen, one cen-

tered at 515 nm is best for pigments (carotenoids, anthocyanins),

and one at 970 or 1245 nm is preferred to study plant moisture

fluctuations. Lignin, cellulose, protein, and nitrogen have rel-

atively low reflectance and strong absorption in SWIR bands

due to water absorption that masks other absorption features

[4], [5]. Thus, there is sufficient scope to expand this research

further to find additional hyperspectral two-band vegetation in-

dices (HTBVIs) (Table IV) and hyperspectral multiband vegeta-

tion indices (HMBVIs) [31], [33]–[35]. This could lead to iden-

tifying specific biophysical indices such as biomass, LAI, plant

height, canopy cover, fraction of absorbed photosynthetically

active radiation (fAPAR), net primary productivity (NPP), and

grain yield. Discrimination of subtle biochemical constituents

such as the starches, proteins, lignin, and cellulose requires fine

(3 to 5 nm) spectral bandwidths (Fig. 8) [8]. Biochemical fac-

tors such as chlorophylls a and b, total chlorophyll, carotenoids,

anthocyanins, nitrogen, water, and those involved in plant struc-

ture (e.g., lignin, cellulose) (Fig. 8) require similar bandwidths.

NASA’s planned hyperspectral satellite, HyspIRI (Hyper-

spectral Infrared Imager), is expected to cover the entire globe

once every 19 days. This new source of HNB data will provide

continuous spectra leading to spectral signatures of every

target (Fig. 8). However, for any given application (such as

agricultural cropland studies), this HNB data will also yield a

significant number of redundant bands, which once identified

can be ignored.

D. Optimal HNBs and HVIs versus Whole Spectral Analysis:

A Discussion

As shown in this research, the entire spectrum is not required

for many applications, due to redundant HNBs. This study

achieved three key goals in characterizing eight major world

agricultural crop biophysical and biochemical characteristics

by:

A. Overcoming the Hughes Phenomenon (or the curse of

high dimensionality of hyperspectral data) by utilizing
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Fig. 8. Optimal hyperspectral narrowbands (HNBs). Current state of knowledge on hyperspectral narrowbands (HNBs) for agricultural and vegetation studies
(inferred from [8]). The whole spectral analysis (WSA) using contiguous bands allow for accurate retrieval of plant biophysical and biochemical quantities using
methods like continuum removal. In contrast, studies on wide array of biophysical and biochemical variables, species types, crop types have established: (a) optimal
HNBs band centers and band widths for vegetation/crop characterization, (b) targeted HVIs for specific modeling, mapping, and classifying vegetation/crop types
or species and parameters such as biomass, LAI, plant water, plant stress, nitrogen, lignin, and pigments, and (c) redundant bands, leading to overcoming the
Hughes Phenomenon. These studies support hyperspectral data characterization and applications from missions such as Hyperspectral Infrared Imager (HyspIRI)
and Advanced Responsive Tactically Effective Military Imaging Spectrometer (ARTEMIS). Note: sample sizes shown within brackets of the figure legend refer
to data used in this study.

optimal HNBs and ignoring redundant HNBs (e.g.,

Fig. 5);

B. Targeting specific vegetation biophysical and biochemical

variables (e.g., plant moisture, cellulose, lignin, biomass,

yield) using the most sensitive HVIs. Each of these

HVIs are targeted towards a specific study (e.g., plant

moisture) as shown in Table IV and Fig. 8; and

C. Improving accuracies in vegetation type or species clas-

sification through optimal HNBs as illustrated in

Figs. 6 and 7.

Nevertheless, the HNBs deemed optimal for biophysical and

biochemical characterization of agricultural crops may not be

optimal for the study of other applications such as minerals,

water, and forests. Therefore, there will always be the need for

full spectrum data. Having continuous spectra will be invalu-

able for: (a) establishing derivative greenness vegetation indices

through continual removal that integrates spectra over a range of

electromagnetic spectrum, (b) building spectral libraries of ideal

or target spectra for spectral matching techniques, and (c) ap-

plying spectra for multitude of applications where certain wave-

bands that are redundant for one application (e.g., biophysical

quantification) but invaluable for some other applications (e.g.,

minerals, water).

E. Relevance of HNBs and HVIs in Crop Classification,

Discrimination, and Modeling

Overall, this research established that 33 HNBs and an equal

number of HVIs are the most valuable for studying major world

crops (Table IV). Eight of these HNBs are in the far short wave

infrared (1945–2230 nm), six in the near short-wave infrared

(1440–1770 nm), three in the near-infrared (1095–1250 nm),

four in the near-infrared (750–1050 nm), three in the red-edge

(700–745 nm), two in the red (645–700 nm), four in the green

(510–575 nm), and three in the blue (400–495 nm).
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TABLE IV
OPTIMAL HYPERSPECTRAL NARROWBANDS (HNBS) AND VEGETATION INDICES (HVIS) TO STUDY MAJOR WORLD CROPS BASED ON THE VERSUS -PLOTS

INVOLVING HNBS OR HVIS WITH BIOPHYSICAL PARAMETER BASED ON THIS STUDY AND META-ANALYSIS. (ADOPTED FROM [8])

We also found that HNBs used to classify or discriminate

agricultural crops (Figs. 6 and 7) became asymptotic between

to 25 HNBs. Beyond this point, adding additional bands in

classification or discrimination of crop types did not statistically

provide improvements. The physically meaningful HVIs, com-

puted using the HNBs, are classified into 6 distinct types: (1)

biophysical HVIs; (2) biochemical HVIs; (3) plant stress HVIs;

(4) plant water and moisture HVIs; (5) light use efficiency HVIs;

and (6) lignin, cellulose, and residue HVIs. The physical rele-

vance of these HVIs has also been found by other researchers,

as summarized in Table IV.

IV. CONCLUSION

Several key advances were discussed in this paper. First,

optimal hyperspectral narrowbands (HNBs) and hyperspectral

vegetation indices (HVIs) were identified for the study of eight

major agricultural worldwide crops (wheat, corn, rice, barley,

soybeans, pulses, cotton, and alfalfa) that occupy % of the

global cropland areas. There were 33 HNBs (Table IV, Fig. 8)

found to be optimal for characterizing, classifying, monitoring,

modeling, and mapping these crops.

Second, 33 HVIs were constituted to address six specific crop

and vegetation characteristics (Table IV, Fig. 8) based on

versus - plots. Physiological indices such as PRI, NDWI,

and ARI established in other studies have their formulations

based on criteria other than versus - plots. The closest

physical/biological rationale for each of the 33 HVIs can be un-

derstood from the references provided in Table IV.

Third, approximately 20 HNBs were best able to classify

and separate the eight leading world crops. These crops were

classified with an overall accuracy of 95% using HNBs,

whereas the six non-thermal Landsat broadbands

provided overall accuracy of 67%, and the nine EO-1 ALI

broadbands provided an overall accuracy of 71%. Therefore,
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the HNBs provide about 25% greater accuracies when com-

pared with broadbands such as Landsat and EO-1 ALI,

which should be similar to results forthcoming from Landsat-8.

Fourth, this research further solidified earlier findings [8],

[23], [30], [31] that about 90% of the HNBs are redundant in

characterizing, classifying, modeling, and mapping agricultural

crops. Identification of these redundant bands will help in over-

coming the Hughes Phenomenon. The (350–2500 nm) versus

(350–2500 nm) contour plots of -values were used to

model crop biophysical and biochemical characteristics and de-

termine optimal versus redundant bands. This process, along

with the meta-analysis, also helped identify waveband centers

and waveband widths that provide the best relation-

ships, the highest -values (Table IV).

Furthermore, the question of whether to use contiguous

bands or optimal bands needs careful evaluation. Continuous

spectra will be invaluable for: (a) establishing derivative

greenness vegetation indices through continual removal that

integrates spectra over a range of electromagnetic spectrum, (b)

building spectral libraries of ideal or target spectra for spectral

matching techniques, and (c) applying spectra for multitude of

applications where certain wavebands that are redundant for

one application (e.g., biophysical quantification) but invaluable

for some other applications (e.g., minerals, water). However,

a large number of HNBs will be redundant in characterizing

major agricultural crops. Thereby, use of optimal bands will

suffice for many purposes.

The results of this study will aid in better understanding of

hyperspectral data in agricultural crop characterization, classi-

fication, monitoring, modeling, and mapping. This research will

also make significant contribution to future hyperspectral mis-

sions such as NASA’s HyspIRI.
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