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a b s t r a c t

Selection of a robot for a specific industrial application is one of the most challenging problems in real

time manufacturing environment. It has become more and more complicated due to increase in

complexity, advanced features and facilities that are continuously being incorporated into the robots by

different manufacturers. At present, different types of industrial robots with diverse capabilities,

features, facilities and specifications are available in the market. Manufacturing environment, product

design, production system and cost involved are some of the most influencing factors that directly affect

the robot selection decision. The decision maker needs to identify and select the best suited robot in

order to achieve the desired output with minimum cost and specific application ability. This paper

attempts to solve the robot selection problem using two most appropriate multi-criteria decision-

making (MCDM) methods and compares their relative performance for a given industrial application.

The first MCDM approach is ‘VIsekriterijumsko KOmpromisno Rangiranje’ (VIKOR), a compromise

ranking method and the other one is ‘ELimination and Et Choice Translating REality’ (ELECTRE), an

outranking method. Two real time examples are cited in order to demonstrate and validate the

applicability and potentiality of both these MCDM methods. It is observed that the relative rankings of

the alternative robots as obtained using these two MCDM methods match quite well with those as

derived by the past researchers.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

An industrial robot is a general purpose, reprogrammable
machine with certain anthropometrical features. Its mechanical
arm is the most important and vital anthropometrical component.
Other less but still important features, like its decision-making
capability, capacity of responding to various sensory inputs and
communicating with other machines make it an important tool
for diverse industrial applications, including material handling,
assembly, finishing, machine loading, spray painting and welding.
Control resolution, accuracy, repeatability, load carrying capacity,
degrees of freedom, man–machine interfacing ability, program-
ming flexibility, maximum tip speed, memory capacity and
supplier’s service quality are the most important attributes to
be taken into consideration while selecting an industrial robot for
a particular application. These attributes affecting the robot
selection decision can be classified as objective and subjective
attributes or beneficial and non-beneficial attributes. Objective
attributes can be numerically defined, such as the cost and load

carrying capacity of a robot, etc. On the other hand, subjective
attributes are qualitative in nature, e.g. vendor’s service quality,
programming flexibility of a robot, etc. The beneficial attributes
are those whose higher values are always desirable, e.g. load
carrying capacity, programming flexibility and non-beneficial
attributes are those whose lower values are preferable, e.g. cost,
repeatability. While selecting an industrial robot for a given
application, the decision maker needs to consider all these
attributes, where a tradeoff between them and the robot
performance measures is necessary. Several approaches for robot
selection have already been proposed by the past researchers,
which include the applications of multi-criteria decision-making
(MCDM) methods, production system performance optimization
models, computer-assisted models and statistical models.

Bhangale et al. [1] presented a robot selection methodology
using the technique for order performance by similarity to ideal
solution (TOPSIS) and graphical methods, and compared the
relative rankings of the alternative robots as obtained using these
two methods. A coding system is also employed for expressing
various robot selection attributes and a merit value is used to rank
the robots in the order of their suitability for a given industrial
application. Goh et al. [2] proposed a revised weighted sum
decision model that can take into account both the objective and
subjective attributes while selecting an industrial robot. Khouja

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rcim

Robotics and Computer-Integrated Manufacturing

0736-5845/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.rcim.2010.03.007

n Corresponding author. Tel.: +91 033 2414 6153 (O),

+91 033 2548 2655 (R); fax: +91 033 2414 6153.

E-mail address: s_chakraborty00@yahoo.co.in (S. Chakraborty).

Robotics and Computer-Integrated Manufacturing 26 (2010) 483–489

www.elsevier.com/locate/rcim
dx.doi.org/10.1016/j.rcim.2010.03.007
mailto:s_chakraborty00@yahoo.co.in


ARTICLE IN PRESS

and Booth [3] applied a statistical procedure, known as robust
fuzzy cluster analysis that can identify the robots with the best
combination of specifications based on various performance
parameters. Khouja [4] developed a two-phase decision model
for solving the industrial robot selection problems. In the first
phase, data envelopment analysis (DEA) is employed for identifying
the robots with the best combination of vendor specifications
based on the robot performance parameters. In second phase, a
multi-attribute decision-making (MADM) method is applied to
select the best robot from those as identified in the previous phase.
Zhao et al. [5] combined a multi-chromosome genetic algorithm
with first-fit bin packing algorithm for the optimal robot selection
and workstation assignment problem for a computer integrated
manufacturing system. Baker and Talluri [6] proposed an industrial
robot selection methodology based on cross efficiencies in DEA
without considering the criteria weights or the decision maker’s
preferences. Goh [7] applied the analytic hierarchy process (AHP)
for robot selection that can simultaneously consider both the
objective and subjective attributes. Parkan and Wu [8] presented
the applications and interrelationship of the operational competi-
tiveness rating (OCRA) and TOPSIS methods in a robot selection
problem and compared their performance with other approaches.
It is observed that both these methods are strongly interrelated,
and their performance measurements and decision-making pro-
cesses involve the same mathematical treatment though they have
their apparent structural differences. Rao and Padmanabhan [9]
employed the diagraph and matrix methods for evaluating and
ranking of the alternative robots for a given industrial application,
using the similarity and dissimilarity coefficient values. Kahraman
et al. [10] developed a hierarchical fuzzy TOPSIS method to solve
the multi-attribute robot selection problems. Karsak [11] proposed
a decision model for robot selection based on quality function
deployment (QFD) and fuzzy linear regression methods while
integrating the user demands with the technical characteristics of
the robots.

Although a number of mathematical approaches have already
been proposed by the past researchers on solving the robot selection
problems, still there is a need for a simple as well as systematic tool to
guide the decision maker to identify and select the most suitable
industrial robot from a given set of alternatives, because a wrong
selection may often negatively contribute to the productivity and
flexibility of the entire manufacturing process. Taking decision in the
presence of multiple conflicting attributes is known as the multi-
criteria decision-making (MCDM) problem. A typical MCDM problem
usually consists of three main components, i.e. (a) alternatives,
(b) criteria/attributes and (c) relative importance (weight) for each
criterion. All the elements of a MCDM problem are to be normalized
to the same units so that all the possible criteria can be considered in
the decision-making process. Various mathematical models, like
simple additive weighting (SAW), weighted product method (WPM),
AHP, TOPSIS, DEA, etc. are now available to tackle and solve these
MCDM problems. The main advantage of any MCDM method lies in
its consideration of a large number of attributes and alternatives. In
this paper, an attempt is made to discover the applicability and
potentiality of another two yet to be popular MCDM methods while
selecting the most suitable industrial robot for a given application.
The first MCDM method is VIKOR (a compromise ranking method)
and the other one is ELECTRE (an outranking method). Two real time
examples are cited to demonstrate and compare the performance of
both these MCDM methods.

2. Compromise ranking method

The VIKOR (the Serbian name is ‘VIsekriterijumsko KOmpro-
misno Rangiranje’, which means multi-criteria optimization

(MCO) and compromise solution) method was first established
by Zeleny [12] and later promoted by Opricovic and Tzeng [13,14].
This method is developed to solve the MCDM problems with
conflicting and non-commensurable (criteria with different units)
attributes, assuming that compromise can be acceptable for
conflict resolution, when the decision maker wants a solution
that is the closest to the ideal solution and the alternatives can be
evaluated with respect to all the established attributes. It focuses
on ranking and selecting the best alternative from a finite set of
alternatives with conflicting criteria, and on proposing the
compromise solution (one or more). The compromise solution is
a feasible solution, which is the closest to the ideal solution, and a
compromise means an agreement established by mutual conces-
sions made between the alternatives. The following multiple
attribute merit for compromise ranking is developed from the
Lp-metric used in the compromise programming method [15]
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where M is the number of criteria and N is the number of
alternatives. The mij values (for i¼1,2,y,N; j¼1,2,y,M) denote
the values of criteria for different alternatives. In the VIKOR
method, L1,i and LN,i are used to formulate the ranking measures.

The procedural steps for the VIKOR method are highlighted as
below:

Step 1: Identify the major robot selection criteria for a given
industrial application and short-list the robots on the basis of the
identified criteria satisfying the requirements. A quantitative or
qualitative value is assigned to each criterion to develop the
related decision matrix.

Step 2: (a) After short-listing the robots and development of
the decision matrix, determine the best, (mij)max and the worst,
(mij)min values for all the criteria.

(b) The weights or relative importance of the considered
criteria are estimated using analytic hierarchy process (AHP) or
any other method (entropy method).

(c) Calculate Ei and Fi values

Ei ¼ L1,i ¼
XM
j ¼ 1

wj ðmijÞmax�mij
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Fi ¼ L1,i ¼Maxmof wj ðmijÞmax�mij

� �
= ðmijÞmax�ðmijÞmin

� �� �
j¼ 1,2,:::,M ð3Þ

Eq. (2) is only applicable to beneficial attributes (whose higher
values are desirable). For non-beneficial attributes (whose lower
values are preferable), the term [(mij)max�mij] in Eq. (2), is to be
replaced by [mij�(mij)min]. Hence, for non-beneficial attributes,
Eq. (2) can be rewritten as

Ei ¼ L1,i ¼
XM
j ¼ 1

wj mij�ðmijÞmin

� �
= ðmijÞmax�ðmijÞmin

� �
ð4Þ

(d) Calculate Pi values as follows:

Pi ¼ vððEi�Ei�minÞ=ðEi�max�Ei�minÞÞþð1�vÞððFi�Fi�minÞ=ðFi�max�Fi�minÞÞ

ð5Þ

where Ei�max and Ei�min are the maximum and minimum values
of Ei, respectively, and Fi�max and Fi�min are the maximum and
minimum values of Fi, respectively. v is introduced as weight of
the strategy of ‘the majority of attributes’ (or ‘the maximum
group utility’). The value of v lies between 0 and 1. Normally, the
value of v is taken as 0.5. The compromise can be selected with
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