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ABSTRACT

Bootstrap methods are a natural adjunct of com­

puter simulation experiments; both use resampling

techniques to construct the statistical distributions of

quantities of interest. In this paper we consider how

bootstrap methods can be used in selecting appro­

priate input models for use in a computer simulation

experiment. The proposed method uses a goodness­

of-fit statistic to decide on which of several competing

input models should be used. We use bootstrapping

to find the distribution of the test statistic under dif­

ferent assumptions as to which model is the correct

fit. This allows the quality of fit of the different mod­

els to be compared.

The bootstrapping process can be extended to the

simulation experiment itself, allowing the effect of

variability of estimated parameters on the simulation

output to be assessed.

The methodology is described and illustrated by

application to a queueing example investigating the

delays experienced by motorists caused by toll booths

at a bridge river crossing.

1 INTRODUCTION

We consider the selection of input models in com­

puter simulation experiments. It is supposed that

samples of real data sets exist drawn from input dis­

tributions needed in the simulation, but that there is

uncertainty concerning the underlying form of these

distributions. We suppose however that we are able

to draw up a list, for each data set, of candidate dis­

tributions that they are likely to have been obtained

from. The main task is therefore to fit these possible

distributions to the data, and based on the quality of

fit, to decide on which distribution is the best fit. In

addition to selecting input models, an assessment has

to be made concerning the adequacy of the selected

models.

Goodness-of-fit procedures are well-known in the
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statistical literature. A good review of their use in

input model selection is discussed by Law and Kel­

ton (1991). See also Banks et al. (1984). A difficulty

that arises is that many of the most sensitive tests of

fit are based on statistics whose distribution is depen­

dent on both the model being considered and also on

whether parameters are estimated or not. These dis­

tributions are usually hard to obtain in general. Thus

a goodness-of-fit test is limited to only those models

for which its own distribution is actually known. In

this paper we show that the parametric bootstrap

provides a convenient way of applying goodness-of-fit

for selecting input models that overcomes this diffi­

culty. We give a method of doing this and illustrate

it with an example involving a queueing system.

An important aspect is that the variability of the

final simulation output will be influenced by uncer­

tainty in the input model fitting process as well as

by uncertainty arising from the (pseudo) random na­

ture of the simulation itself. Both these source of

variation need to be taken into account in assess­

ing the overall variability of the simulation output.

For a good review of sensitivity analysis see Kleijnen

(1995). Cheng and Holland (1995, 1996) have con­

sidered this problem using bootstrap techniques to

measure the variability of the simulation output aris­

ing from estimating unknown parameters when input

models are being fitted. The present paper is thus

an extension of their technique to include selection as

well as fitting of appropriate input models.

For related work see Swain et al. (1988), Barton

and Schruben (1993), and Shanker and Kelton (1994).

2 INPUT MODEL SELECTION

We use a framework which highlights the input mod­

els used in the simulation. We assume that the simu­

lation uses k univariate input distributions (or mod­

els), with distribution functions

(1)
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where

is the vector of Pi unknown parameters on which the

ith distribution depends. We assume that each model

is selected separately from the others, with the same

method of selection used for each model. vVe can

therefore, for simplicity, drop the subscript and de­

note the typical model being considered by F(x,O).

We suppose that F(x, B) is the unknown true distri­

bution, and that we have narrowed down F to one of

m possibilities:

G j (x, Bj ) j == 1,2, ... , m

In addition we assume that there is available a sample

of empirical data for each model:

Xi == (Xi!, Xi2, ... , Xini) i == 1,2, ... , k.

The combined samples will be denoted by

Again for simplicity we suppress the subscript and

write

for a sample drawn from a typical F(x, B). The ini­

tial problem is therefore to use X to to assess the

goodness-of-fit of the Gjs and to select one of the G j

to represent F.

Our proposed method is to fit each G j to the sam­

ple x, then assess the goodness-of-fit by calculating

the value, T j , of a goodness-of-fit test statistic, T,

under the assumption that G j is the correct model.

In general the distribution of T will depend on the

model being fitted and also on \ \ J ~ h e t h e r the parame­

ters have been estimated or not. There is therefore

no guarantee that goodness-of-fit of the models will

follow the ranked order of the T j values. \"Ve do not

therefore compare the Tj values directly. Instead we

calculate the probability value of each T j ; i.e.

where A j is the assumption that G j is the correct

model, that it has been used to estimate OJ and that

Gj(.,Oj) has been used to compute T j . The model

deemed to be the best fit corresponds to that with

the smallest pj-value.

The fact that the distribution of T is altered if

parameters are fitted is a difficulty of some awkward­

ness, as different significance levels are needed for dif­

ferent distributions (See D'Agostino and Stephens,

1986). However the difficulty is overcome by use

of the bootstrap to construct an approximation of

the required distribution for each Tj . Basically the

method is to draw a number of so-called bootstrap

sampIes from Gj (., Bj ). An estimate of Bj and a corre­

sponding T j is calculated for each such sample. Then

the empirical distribution function (EDF) of these

Tj's estimates the true distribution of Tj . For a dis­

cussion of bootstrap sampling methods, see Efron

(1979, 1987) and Efron and Tibshirani (1994). We

use the follo\ving result.

Theorem 1. Suppose that X is a random sam­

ple of size n drawn from the distribution with CDF

G(x, B) and that

T == T(x, G(.,B))

is a goodness-of-fit statistic dependent on x and on

G(.,B). Suppose that (i) the CDF, FT(t,B), of T is

a continuous function of B for each t, (ii) eis a con­

sistent estimator of B, calculated from x. Then the

distribution of T* == T(x*, G(.,O)), where x* is a

random sample of size n drawn from G(., 0), tends to

that of T, in probability, as n ~ 00.

Proof. The distribution of T* is simply that of T

when calculated at e. By assumption (ii) 0is a consis­

tent estimator, that is 0 ~ B in probability. Hence,

by (i), FT.(t,B) ~ FT(t,B) for each t in probabil­

ity, i.e. the distribution of T* tends to that of T in

probability. 0

Theorem 1 shows that, providing n is sufficiently

large, we can approximate the distribution of T by

bootstrap sampling of T* from the fitted distribution

G (., Bj ). Our model selection method is thus as fol­

lows.

For each of the possible models, j == 1,2, ... , m :

1. Fit the model G j by estimating Bj from the

sample x. Let the estimator be ej.

2. Calculate an appropriate goodness-of-fit statis­

tic T j for the fitted model, G j (., ej).

3. Use bootstrap sampling to estimate the distri­

bution of T j :

(a) Generate B bootstrap samples x(i), i == 1,

2, ... , B from the fitted model Gj(.,Bj ).

(b) For each sample, x(i), fit Gj(x,Bj ) byes­

timating f)j, giving estimates eji) i == 1, 2,

... ,B.

(c) Calculate the goodness-of-fit statistic T ~ i )
)

for the fitted model G j (., Oji)) for i == 1,2,

... ,B.
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(d) Form the EDF of the T ~ i ) and hence find
J

the p-value of T j :
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# of T ~ i ) < T·
P

. _ J - J
J - B .

The model G j with the smallest Pj value is selected

as being the best fit.

3 GOODNESS-OF-FIT STATISTICS

We consider examples of the method of model selec­

tion proposed in the previous section. Table 1 gives

data of the times in seconds to serve three classes

of vehicle: Private Cars (PC), Light Vans (LV) and

Heavy Goods Vehicles (HG) at the toll booths of the

Severn Bridge River crossing in Britain. This exam­

ple will be used later to illustrate the complete pro­

cedure suggested for carrying out a simulation exper­

iment. Here we consider simply the model selection

procedure. There is some evidence that an appropri­

ate distribution should allow for a minimum process­

ing time to handle a vehicle. We thus consider a three

parameter versions of the Weibull, gamma and log­

normal distributions as possible candidates. An inter­

esting aspect of fitting these models is that they all

possess embedded two-parameter special cases, and

this possibility must be allowed for; see Cheng and

lIes (1990) for a discussion of how this should be

done. In the HG data set there is evidence that

the service times are a mixture of distributions. We

therefore consider, in addition, a five parameter mix­

ture model of two normal models with different means

and variances, with an unknown mixing proportion.

We use maximum likelihood estimation for the pa­

rameters. There are many possible goodness-of-fit

test statistics available. For illustration we use the

Anderson-Darling test statistic which is known to be

particularly sensitive and powerful for detecting dif­

ferences in tail behaviour. If the ordered sample is

Xl < X2 < ... < X n , and the model under consider­

ation is G(.,O) then, writing Zi = G(xi,8), the test

statistic is

n

A 2 == -n - n-
l L(2i - l){ln(Zi) + In(l - Zn-i+l)}

i=l

(2)

Table 2 gives the values of A2 and their associated

p - values for each of the data sets and each model.

It will be seen that the best fit is the mixture

model for the PC and HG data sets, and the lognor­

mal model for the LV data set.

It is of interest to see how sensitive the test is

in distinguishing between models. To illustrate this

we consider the lognormal model and mixture models

Table 1: Service Times (sees) for PCs, LVs and HGs

PC LV HG

5.7 10.9 4.9 4.3 10.9 8.6 7.2
5.4 5.7 4.3 4.7 3.1 32.0 7.7
5.7 6.3 6.9 6.7 4.5 8.7 6.9
3.8 4.9 8.5 7.2 6.6 12.1 8.7
5.3 7.8 5.2 6.3 4.7 25.5 5.1
5.1 7.1 4.4 6.2 4.2 16.7 7.1
7.0 4.9 7.6 4.8 3.3 7.1 9.3

10.5 5.5 7.6 6.3 4.0 37.1 6.4
7.6 5.1 3.5 3.5 7.8 4.6 8.1
4.3 10.1 12.0 5.7 5.8 8.8 11.8
3.2 6.5 3.0 5.2 8.0 22.9 30.4

15.1 3.2 5.9 4.9 6.1 11.0 8.3
7.4 4.4 3.8 7.7 4.3 8.9 6.9
5.6 6.2 5.7 7.9 3.9 8.1 8.3
4.1 6.9 7.2 4.4 6.7 8.7 4.1
5.1 5.1 5.9 6.4 7.2 7.7 12.5
2.7 4.9 6.1 4.7 5.0 8.2 10.6
4.2 4.4 5.6 5.2 6.4 8.8 5.9
2.9 13.1 4.9 3.6 10.5 11.0 6.1
5.7 2.7 6.8 5.8 8.0 11.3 8.1
6.1 3.0 3.2 8.2 12.5 7.4 10.5
5.0 3.8 4.8 4.1 4.0 8.1 14.3
4.2 5.9 7.1 4.6 3.8 7.2 9.7
3.2 5.9 4.5 3.1 7.1 5.0

5.2 3.4 5.9 6.8 12.5

9.2 3.7 3.4 7.7 11.5
4.9 4.6 3.6 7.4 13.4

5.1 3.3 4.9 12.9 9.7

3.9 5.2 5.9 13.4 10.1

4.1 4.6 6.7 9.4 10.3

5.2 6.5 6.1 7.6 18.0

15.6 5.7 5.7 11.8 21.6

5.7 4.2 3.7 9.4 4.5

8.2 9.0 4.7 12.5 6.8

5.3 8.2 6.9 12.2 11.2

6.6 4.6 5.8 8.2 13.0

3.9 3.6 6.4 6.7 25.8

4.7 4.4 7.4 9.4 5.2

12.6
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Table 2: Anderson-Darling Statistic and p- \/~alues

Model PC LV HG
Data Data Data

Weibull A ~ 1.269 0.277 2.282

P(A2
) 0.999 0.385 > 0.999

Lognormal A ~ 0.544 0.227 1.041

P(A2
) 0.902 0.229 0.998

Gamma A 2 0.798 0.238 1.833

P(A2
) 0.968 0.237 > 0.999

Mixture A2 0.256 0.541 0.423

P(A2
) 0.544 0.897 0.870

fitted to the HG data. Figure 1 shows ten separate

EDF's of A2
, where each EDF is constructed as fol­

lows. The fitted lognormal model is treated as the

stage-1 model and a bootstrap sample of the same

size as the original sample, is obtained from it. The

lognormal model (stage-2) is fitted to this bootstrap

sample. 1000 secondary bootstrap samples, each of

size 20, are then drawn from this stage-2 model, and

the lognormal model (stage-3) is then fitted to each

sample. The corresponding A 2 is calculated as in (2)

for this stage-3 fit. The variability between EDF's is

due to the bootstrap sampling of the stage-1 model,

and gives an indication of the variabiity due to using

fitted parameters instead of the unknown "true" pa­

rameter values. For comparison Figure 1 also shows

ten EDF's each formed from 1000 ..4.2 values calcu­

lated in exactly the same way except that the lognor-

Ui == (Uil, Ui2, ... , uimi) i == 1, 2, ... , k

4 SENSITIVITY ANALYSIS

mal model of stages 1 and 2 is replaced by the normal

mixture model; however the lognormal is still the fit­

ted model at stage 3, and each A 2 is calculated for this

fitted lognormal model. These latter EDF's therefore

indicate ho\v the distribution of A 2 when the incor­

rect (lognormal) model is fitted to data drawn from

the mixture model. There is significantly more vari­

ability in the EDF when the incorrect model is fitted.

This is due to the nature of the mixture distribution

with its far greater inherent variability. With data

generated from simpler alternative distributions like

the gamma, there should be considerably less varia­

tion, though this has yet to be investigated. Figure

1 does however give an indication of the reasonable

power of the test in rejecting the lognormal model

when the alternative mixture model is actually the

correct one.

Cheng and Holland (1995, 1996) show how bootstrap

sampling can be applied to the simulation experiment

itself. We follow their terminology. The simulation

study is assumed to consist of making a number of

runs of a computer simulation model and observing

the output of interest, y, from each run. Let the

length of each run be 1 ( measured in simulation time,

say). In each run, the input models (1) are used to

generate k streams of random variate. The variates

used in one simulation run will be denoted by

~ i == (~il, ~i2, ... , ~imi) i == 1,2, ... , k.

Each ~ i is assumed to be a random sample with the

individual observations, ~ i j . The number of variates,

mi, used is different in each stream. In what follows

the mi can be variable, but to simplify the discus­

sion the run length, l, can be regarded as fixed, with

the mi also fixed. The Fi are assumed to have been

selected using the method of the previous section.

Though they may be generated in various ways,

it will be convenient to regard the input variates as

generated by the inverse transform method (see Law

and Kelton, 1991, for example):

~ i j == Fi-I(Uij,()), j == 1,2, ... ,mi

where F- 1 is the inverse of F, and the Uij are inde­

pendent uniform U(O, 1) variates. We write

LogNormal Sample

Mixture Samples
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Figure 1: Comparison of ..4.2 EDFs for Lognormal

Model Fitted to Lognormal and Mixture Samples

and

U == (UI, U2, ... , Uk).

Helton (1993, 1994) distinguishes two types of uncer­

tainty: parameter uncertainty and simulation uncer­

tainty. The parameter uncertainty is due to the OJ
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being unknown and having to be estimated, whilst

the simulation uncertainty occurs because of the ran­

domness of U. Thus the output of interest from the

simulation run, y, has random variability because it

depends on U, and 0: This means that we can use

y==y(U,O).

Let

r

t6 = L(Yj - y)2/(r - 1),
j=l

(6)

T/(O) =E(y,O) =Jy(U,O)dU

be the expected value of y, and let 0° denote the true

parameter value. We assume that the objective is to

estimate 1](0°) in the case where 0° is not known.

We consider the overall simulation experiment as

being made up of r runs. Assuming, for the moment,

that the runs are made at some given 0, the responses

or outputs from these runs can be written as:

The 'error' variable ej is the random difference be­

tween the jth simulation run output and 1](0). We

shall assume E(e j 10) == 0 and V ar(ej 10) == 7
2 (0) Ii

for j == 1,2, ... , r. Thus

and the mean of the outputs

to estimate the stochastic uncertainty, 7
2

(0°)1[.
Assessing the parameter uncertainty is more diffi­

cult. Cheng and Holland give two methods for doing

this. We consider here the bootstrap method that

they propose.

A sample Xl == (xt,x~, ... ,xk) is obtained with

the x; drawn from the selected distributions G j (x, B)
(j == 1, ... , k). This sample, Xl, can be used to pro­

duce an estimate 01 ,in exactly the same way that 0
was obtained from X. Repeating this B times yields

. "'1 ) "'B
B such estImates: () , () , ... , 0 . We can then carry

out B bootstrap simulation experiments, one for each

&i, with all runs of length [ as in the original experi­

ment, but with the bootstrap experiment containing

r' runs, where r' may be different from r. (The run

lengths can be different from I but there is actually no

loss of generality in assuming them to be the same.)

This yields B sets of responses, with r' responses in

each set:

r

y == LYj(Uj ,O)lr,
j=1

is an unbiased estimator of 1](0) with

yf, y~, ... , Y~' , i == 1,2, ... , B.

Let the means of each set be

yi, i = 1,2, ... ,B.

(7)

(8)

This variance measures the simulation uncertainty

within the model. It is the total variance of the re­

sponse only when 0 is fixed and known.

When 0 is unknown, it has to be estimated. If we

have estimates Bj that are yin-consistent (where n is

the typical size of real data samples), as would be the

case if we use maximum likelihood estimation, then

the total variation of y is given by

Var(y)

Var(yIO) == 7
2 (O)lrl.

==Var (E (yIB))+ E (Var (yIB))
{j y {} y

== a 2 (()O)ln + 7
2 (()O)lrl + R

(4)

(5)

Cheng and Holland (1996) show how the variability

of these y' 8 depends on both the simulation variance

7
2 and on the parameter variance a 2

.

Theorem 2.

where the remainder, R, is of order

Proof: See Cheng and Holland (1996). 0

where ()o is the unknown true parameter value, a2 (()O) In
is the parameter uncertainty, 7

2
(()O) Irl is the simula­

tion certainty, and the remainder term, R, involves

only terms of order O(n- 3
/

2
) and O[(nrl)-1].

Cheng and Holland (1996) show that the variance

for y given Bis:

An estimate of this variance, (9), is the sample

variance of the {yi} (8):

B

81 = L{yi - y)2/(B - 1). (10)

i=I
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As i6 (6) estimates T2(eO) / l, this can then used to

adjust s1 to give the following estimate of the total

variance of y (5):
Table 3: Distribution of Driver Choice of Toll Booth

5 APPLICATION TO A QUEUEING SyS­

TEM

When r' == r, i.e. when each bootstrap is an exact

replica of the original experiment, then r == r' 1 and

the total variance is estimated by s~ on its own.

1--;--(-) 'J (1 l'J

v ar y == sB + - - - )io'
r r'

(11 )

Lane 1 2 3

Booth

1 0.20 0.05 0.01

2 0.25 0.25 0.09

3 0.25 0.25 0.10

4 0.10 0.15 0.15

5 0.09 0.12 0.15

6 0.07 0.08 0.15

7 0.03 0.06 0.15

8 0.01 0.04 0.20

To illustrate the applicability of the above, we con­

sider the simulation of a queueing situation, investi­

gating the delays experienced by motorists caused by

toll booths at a bridge river crossing. The bridge con­

sidered crosses the River Severn in the United King­

dom. The bridge is approached by the j\l14 motor­

way, consisting of three carriageways. The approach

widens to accommodate eight toll booths.

Data for service times at toll booths for three

types of vehicles - private cars (PC), light vans (LV)

and heavy goods vehicles (HG) have already been

given in Table 1. Preliminary investigation of the

three data sets indicated that the service time dis­

tribution was different for each type of vehicle. The

mean and standard deviation of service time (in sec­

onds) was 5.73 and 2.2 for PCs, 5.80 and 2.03 for

LVs and 10.88 and 6.20 for HGs. These \vere based

on 114,47 and 77 observations respectively. No data

was available for inter-arrival times. H o w ~ e v e r , Grif­

fiths and Williams (1984), in their study of the Severn

Bridge, conclude that it may be reasonably assumed

that inter-arrival times follow a negative e ~ p o n e n t i a l
distribution for each type of vehicle. Further, they

state that past records indicate that the composition

of traffic types is 75.4% PCs, 19.4% HGs and 5.4%

LVs. It was further predicted that traffic flow by 1995

would reach 51,051 vehicles per day. This leads to es­

timates for mean arrival rates per hour of 1604 for

PCs, 413 for HGs and 111 for LVs.

Within the simulation 1 vehicles are assumed to

choose an approach lane at random, unless there are

queues in which case the carriageway with the short­

est queue is selected. Driver choice of toll booth is

selected by conditional probability distribution (con­

ditional upon the lane of approach). The actual prob­

abilities used are given in Table 3. Thus three prob­

ability distributions are constructed for choice of toll

booth (out of eight) dependent upon lane of approach

(choice of three). These distributions are then mod­

ified by dividing by the queue length at each booth

and then normalised so that the probabilities summed

to unity. This means that each driver has an individ­

ual probability distribution for choice of booth depen­

dent on lane of approach and queue length at each

toll booth at the moment of selection. The maxi­

mum queue that can develop at a toll booth is ten

at which point the traffic commences queueing on th~
approach road. Once vehicles are queueing it is as­

sumed that PCs and LVs will take two seconds to

move up one place in the queue; HGs are assumed to

take four seconds.

The simulation procedure may be outlined in the

following manner. The best distributions are fitted

to the service time data sets and a simulation run

of length l == 36, 000 simulation seconds is repeated

r == 250 times. The output from the simulation ex­

periment consists of the mean delay for pes LVs

HGs and a combined overall mean for each s i m ~ l a t i o ~
run. Considering just the overall mean for a moment

these may be thought of as (Yl' Y2, ... , Y250) from (3):
These may be used to obtain an estimate of the simu­

lation variance (4). Following this, bootstrap samples

are generated from each of the three specified service

time distributions. Bootstrapping is not performed

on the inter-arrival time distributions because we are

assuming that they are known to be negative expo­

nential. As discussed in the previous section, the pur­

pose of bootstrapping here is to obtain estimates of

variability caused by fitting distributions where there

is uncertainty. Each of the bootstrap samples is used

to fit parameter estimates for the appropriate distri­

bution and the simulation then proceeds with these

estimates., This time, a single simulation run is per­

formed (r == 1). This is of length 36,000 simulation

seconds, as before. The reason for this is that we

have our estimate of simulation variability from the

first experiment. We are now interested in variability

between bootstrap experiments to give us the vari­

ability caused by unknown input parameters. Thus

this bootstrapping procedure is repeated B == 250



Selection of Input Models Using Bootstrap Goodness-aI-fit 205

Table 4: Results for Toll Booth Experiment

Mean Para Sim Total

Delay Var Var Var

Best Fit 15.66 1.0400 2.5 x 10 4 1.0402

Worst Fit 15.70 1.0532 2.1 x 10-4 1.0532

Results for PCs

Mean Para Sim Total

Delay Var Var Var

Best Fit 15.78 0.9428 3.2 x 10 4 0.9460

Worst Fit 15.78 0.9581 3.2 x 10-4 0.9584

Results for LVs

Mean Para Sim Total

Delay Var Var Var

Best Fit 24.56 2.2739 1.1 x 10 j
2.2751

Worst Fit 24.74 1.8377 9.2 x 10- 4 1.8386

Results for HGs

Mean Para Sim Total

Delay Var Var Var

Best Fit 16.14 1.0284 2.6 x 10 ·4 1.0287

Worst Fit 16.18 1.0258 2.3 x 10-4 1.0260

Results for All Vehicles Combined

times. The output provided by each bootstrap simu­

lation is the mean delay for PCs, LVs, HGs and the

overall mean delay. For mean overall delay, say, we

may regard the output as that described in (7). The

overall variance (5) may be calculated using (10) and

(11). Table 4 summarises the results for delays to

PCs, LVs, HGs and overall delay respectively, when

the best distributions have been used, and for com­

parison when the worst distributions have been used.

It can be seen that the choice of distribution has lit­

tle effect on the results, except for the the parameter

variance for the HGs. This data was unusual and was

not particularly well fitted by any of the distributions

considered. However, there is clearly some sensitiv­

ity to the choice of input distribution. In all other

cases, the observed data could be reasonably fitted

by a number of the distributions. Therefore, less sen­

sitivity would be expected in such cases. The lack of

sensitivity to choice of input model is heightened by

two further points. Firstly, we were only able to con­

duct the exercise for service time distributions. The

inter-arrival time distributions were taken as fixed,

yet optimal selection of these distributions could con­

tribute considerably to the variability in the context

of a queueing analysis. Secondly, we have chosen here

to calculate only mean measures. It would be sensible

to consider the calculation of some probability mea-

sures, for instance the probability of queueing occur­

ring on the approach road to the toll booths or the

probability of a toll booth being idle. Once \vould

expect such measures to be much more sensitive to

input distribution and this will be the subject of fur­

ther investigation.

The mean delay, Y, has been calculated here from

the simulation runs at the fitted parameters only. The

bootstrap results have been used only in the variance

estimation. It is possible to incorporate the results for

the mean from the bootstrap simulation runs with the

main simulation result to produce an estimator \vith

lowest overall variance. Details of the procedure may

be found in Cheng and Holland (1995).
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