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In order to build a tilt sensor having a desired sensitivity and measuring range, one should select an appropriate type, orientation,
and initial position of an accelerometer. Various cases of tilt measurements are considered: determining exclusively pitch, axial
tilt, or both pitch and roll, where Cartesian components of the gravity acceleration are measured by means of low-g uni-, bi-, tri-,
or multiaxial micromachined accelerometers. 15 di
erent orientations of such accelerometers are distinguished (each illustrated
with respective graphics) and related to the relevant mathematical formulas. Results of the performed experimental study revealed
inherent misalignments of the sensitive axes of micromachined accelerometers as large as 1∘. Some of the proposed orientations
make it possible to avoid a necessity of using the most misaligned pairs of the sensitive axes; some increase the accuracy of
tilt measurements by activating all the sensitive axes or reducing the e
ects of anisotropic properties of micromachined triaxial
accelerometers; other orientationsmake it possible to reduce a necessary number of the sensitive axes at full measurement range. An
increase of accuracy while using multiaxial accelerometers is discussed. Practical guidelines for an optimal selection of a particular
micromachined accelerometer for a speci�c case of tilt measurement are provided.

1. Introduction

Micromachined accelerometers belonging to Microelec-
tromechanical Systems (MEMS) are employed inmany kinds
of various devices [1], owing to their small dimensions (cur-
rently even less than 2mm), easy integration with electronics,
high shock-resistance, high reliability, satisfactory accuracy,
low power consumption, and low cost.	ey realize measure-
ments of various types of acceleration (whether constant or
variable), its derivatives (jerk, jounce) and integrals (velocity,
position). New unexpected applications emerge constantly
in, for example, smartwatches, underwater equipment like
scuba diving computers (e.g., Vyper Air and Novo, Cobra
3, DX, D6i Novo by Suunto Company), new generation of
safe motorcycle ABS [2] or traction control systems (e.g.,
Motorcycle Stability Control by Bosch Corp. [3]), or novel
designs of commonly known objects, like the electronic
gaming die presented in [4]. One of themost strategic �elds of
application is various types of navigation systems, proposed,
for example, in [5, 6].

Besides typical measurements of acceleration related to
vibration or motion, another basic application of accelerom-
eters is tilt measurements [7]. Such measurements are
employed in many devices, usually for the purposes of
positioning, aligning, leveling, or navigating. However, these
measurements are correct only under static or quasi-static
conditions. Moreover, in the case of quasi-static conditions,
especially at considerable frequencies, additional errors due
to amplitude attenuation [8] must be taken into account.

As far as speci�c applications of tilt measurement are
concerned, accelerometers are embedded in such equipment
as various portable digital devices (e.g., cellular phones,
photo cameras, computer projectors, GPS receivers, and
game consoles). 	ey can be applied directly in small devices
like mobile microrobots [9] (especially when they are a part
of the only navigation system available, like in the case of
some in-pipe or biomimetic robots, proposed, e.g., in [10, 11]),
or indirectly, as embedded in smartphones, as reported, e.g.,
in [12]. One can also �nd a lot of untypical applications
of MEMS accelerometers used for tilt measurements related
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to life sciences, for example, investigation of movements of
animals [13] or humans [14–16] and rehabilitation equipment,
for example, exoskeletons presented in [17–19], to name only
a few.

Due to the fact that di
erent mathematical formulas can
be employed and di
erent types of MEMS accelerometers
are available, tilt measurements can be realized in various
ways. Besides, orientation of the accelerometer is yet another
important issue comprehensively addressed in the paper.

In order to perform a tiltmeasurement, themost advanta-
geous solution is usually to apply a triaxialMEMS accelerom-
eter and use arc tangent function [20]. Nevertheless, there
are cases, speci�ed in the paper, when other types of MEMS
accelerometers are more preferable than triaxial sensors, for
example, due to their inherent imperfections. Reasons for
employing mathematical formulas other than arc tangent
function are minutely discussed in [20]. For instance, if the
accuracy of simple tilt measurements is not satisfactory, usu-
ally complex solutions are searched for, based, for example, on
data fusion. Yet, sometimes a satisfactory increase of accuracy
can be obtained by arranging an appropriate orientation of
the MEMS accelerometer.

Despite common application of MEMS accelerometers,
it is hard to �nd any satisfactory information on the afore-
mentioned problems in the related publications. 	erefore,
we decided to address the issue of what type of MEMS
accelerometer (uni-, bi-,tri-, or multiaxial) should be used
in order to meet requirements related to certain case of tilt
measurement, de�ning also its orientation and initial posi-
tion as well as analyzing the respective sensitivity resulting
from application of a given mathematical formula.

Owing to the guidelines presented in the paper, on the one
hand, it is possible to build the simplest tilt measurement unit
based on MEMS accelerometers, being at the same time the
most cost-e
ective yet ensuring a satisfactory accuracy, and,
on the other hand, to obtain possibly high accuracy at the cost
of complicating the measurement.

2. Component Angles of Tilt

	e most common way of expressing tilt is to determine
its two component angles pitch � and roll � (de�ned with
accordance to aeronautical nomenclature, as, for example, in
[21]) illustrated in Figure 1 against the components of the
gravitational acceleration �. O�en, it is the auxiliary angle �
that is de�ned as the roll, for example, in [22–28], as in some
cases such approach ismore convenient, since accelerometers
respond directly to this angle and not to angle �.

Arbitrary tilt angle � (axial tilt) included between accel-
eration � and axis � has been resolved into two component
angles � (pitch) and � (roll) or alternatively auxiliary angle �.
Angles� and� are containedwithin vertical planes�0��0 and	
�0, (the planes are generally not orthogonal with respect to
one another), that is, angles between horizontal plane �0
0
and axis � or 
, respectively. 	e coordinate system �0
0�0
is immobile (its axis �0 is vertical), whereas the coordinate
system xyz is �xed to the mobile tilt sensor located at its
origin. Angles � and � are interdependent and their values
result from the value of angle �. In order to illustrate � angle,

Figure 1: Components of the tilt and the gravitational acceleration.

line k has been created as a result of the intersection of vertical
plane 
�0 and horizontal plane �0
0.

Angle � between axis 
 and 
0 is contained within a tilted
plane 
0
�; it is the angle by which the tilt sensor rotates
around axis x, while tilted in two phases (the �rst phase is
rotation by pitch� around axis ywhile it still overlaps axis
0).
It should be noted thatmost of the related formulas presented
later in the text are analogous for angle � and �. Relation
between the considered angles is as follows [21, 29]:

�21 = arcsin( sin�
cos�) , (1)

� = 0 ⇒ �1� = �1�. (2)

However, determining roll � on the basis of (1) usually
results in a decrease of the related accuracy [29] (see (21)).

From this point on, angles�,�, �, and�will be designated
with additional subscripts, depending on the type of the con-
sidered tilt measurement (single- or dual-axis, as illustrated
in Figure 2, or any of these two) and the formula employed
for their determination, as speci�ed in Nomenclature. 	e
subscripts have been introduced in order to allow us to
unequivocally distinguish between various cases introduced
later in the text.

It was accepted that, in case of single-axis tilt measure-
ments, the only component tilt angle that appears is pitch �.
3. Mathematical Formulas

	e formulas presented in this section can be found in
numerous related publications, for example, [20, 22–35]. As
it results from Figure 1, the component tilt angles can be
calculated basically as follows:

�01 = arcsin
��� , (3)

�01 = arcsin
��� . (4)
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Figure 2: (a) Single-axis tilt sensor; (b) dual-axis tilt sensor.

However, the vertical component acceleration �� allows
us to use the following formulas:

�22 = arccos
√�2� + �2�� , (5)

�22 = arccos
√�2� + �2�� , (6)

�23 = arctan
��√�2� + �2� , (7)

�23 = arctan
��√�2� + �2� (8)

and additionally,

�03 = arctan
���� . (9)

If tilt is to be measured over one axis only, (5)–(8) get
simpli�ed, as one of the components of acceleration (�� or��) will be then of zero value (e.g., (8) becomes identical to
(9)). So, the equations will get transformed as follows:

�12 = arccos
��� , (10)

�12 = arccos
��� , (11)

�13 = arctan
���� , (12)

�13 = arctan
���� . (13)

While determining the arbitrary tilt angle �, which in fact
is an axial tilt de�ned in [33] andmay be regarded as a pseudo
dual-axis tilt measurement, the following relations are valid:

�02 = arccos
��� , (14)

�21 = arcsin
√�2� + �2�� , (15)

�23 = arctan
√�2� + �2��� . (16)

If �� = 0 or �� = 0, then the measurement is actually a
single-axis tilt measurement, where � is determined instead
of �.

Application of (14)–(16) may be interesting in such
measurements of axial tilt as, for example, directional drilling
[36] or while monitoring an object against losing its balance,
since pitch and roll are inconvenient to be used in such cases.

Additionally, as discussed in Section 8, under certain
conditions, measurement of axial tilt may be more advanta-
geous than measurement of pure pitch, as far as the resultant
accuracy is concerned.

Besides the presented formulas, there are still other ways
of determining the tilt angles. As suggested in [24], it is
advantageous in some cases to combine an arc sine formula
((3) or (4), (15)) with an arc cosine formula ((5) or (6) and (10)
or (11), (14)) in a simple way or as a weighted average [30, 37].

4. Orientations of the Accelerometer

Possibilities of applying certain accelerometer in particular
tilt measurement are illustrated in Table 1.

Formulas for determining pitch and roll given in Table 1
are listed for each case in the order of the highest measure-
ment sensitivity (see Section 5); colors of the sensitive axes
of the accelerometers, as they appear in the presented �gures,
agree with the accepted convention (see Nomenclature).

It should be added that obtaining a full measurement
range of the component tilt angles is possible by observing
the sign of the vertical component acceleration ��, which is
positive over the domain of ⟨−90∘; 90∘⟩, while negative over
the remaining angular range (thus, at least two sensitive axes
of the accelerometer are required) [31].

Additional comments to the cases speci�ed in Table 1:

(i) Cases 1-A, 2-A, 2-B, 5-A, and 5-B are commonly
applied and are well known.

(ii) Case 1-B represents a pseudo dual-axis tilt (axial tilt)
referred to in [33].
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Table 2: Initial positions of the accelerometers.

Number # Case (Table 1) Initial position of the accelerometer

1 1-A �1 ‖ �0
2 1-A �1 ‖ �0
3 1-B �1 ‖ �0
4 1-B �1 ⊥ �0
5 2-A �1 ‖ �0 �2 ‖ �0
6 2-B �1 ‖ �0 �2 ‖ 
0
7 3-B �1 ‖ �0 �2 ‖ �0
8 4-B �1 ‖ 
0 �2 ‖ �0
9 5-A �1 ‖ �0 �2 ‖ 
0 �3 ‖ �0
10 5-B �1 ‖ �0 �2 ‖ 
0 �3 ‖ �0
11 6-A �1 ‖ �0 �2 ‖ �0 �3 ‖ 
0
12 6-B �1 ‖ �0 �2 ‖ �0 �3 ‖ 
0
13 7-A �1 ∦ �0 �2 ∦ 
0 �3 ‖ �0
14 7-B �1 ‖ �0 �2 ‖ 
0 �3 ‖ �0
15 8-A ∡�1�0 = 35.3∘ ∡�2
0 = 35.3∘
16 8-B ∡�1�0 = 35.3∘ ∡�2
0 = 35.3∘
17 9-A ∡�1�0 = 54.7∘ ∡�2�0 = 54.7∘ �1 ∉ �0�0 �2 ∉ 
0�0
	1, 	2, 	3, and 	4: sensitive axes of the accelerometer.
#1–#4: arbitrary position of the accelerometer chip, typically like in 1-A, or 5-A.
#1, #3: when tilt angles < 45∘ are to be detected with higher sensitivity.
#2, #4: when tilt angles > 45∘ are to be detected with higher sensitivity.
#3-#4: additionally, expressions 	1 ∉ �0�0, 	1 ∉ �0�0 are true while tilted.
#10, #16: if � = 0, then (9) and (13) are the same.
#15, #16: at the same time: ∡	3�0 = 144.7∘, ∡	4�0 = 144.7∘.
#17: at the same time: ∡	3�0 = 54.7∘, ∡	4�0 = 54.7∘, 	3 ∉ �0�0, and 	4 ∉ �0�0.

(iii) Case 2-A, typically used for single-axis tilt measure-
ment, can be accepted for dual-axis tilt measurement
using an untypical orientation illustrated in cases 3-
B and 4-B, which are an alternative to case 2-B; the
resulting advantage is obtaining the full measurement
range for both pitch and roll, using only 2 sensitive
axes. Choice between 3-B and 4-B is related to the
sensitivity of the measurements: at 3-B the highest
sensitivity is obtained for � = 0∘ and � = 90∘, whereas
at 4-B for � = 90∘ and � = 0∘; the sensitivity itself is
variable, just as in case 2-B.

(iv) Cases 5-A and 6-A are not recommended if it is
striven for obtaining a higher sensitivity of the mea-
surement, since none of the accelerometer sensitive
axes should overlap axis 
0 while tilted, just as in case
7-A. However, additional calculations may be then
necessary to convert angle � into �. Analogously, the
same applies accordingly to cases 8-A and 9-A.

(v) For cases 6-A, 6-B, and 7-B, see Section 7 for explana-
tion.

(vi) Cases 8-A, 8-B, and 9-A refer to a sensor presented
in [38], which has been used as an example of a
multiaxial accelerometer. Application of such sensor
makes it possible to increase the sensitivity of tilt
measurements even by 13% [30].

While using a multiaxial accelerometer, before calculat-
ing tilt angles, Cartesian components of the gravitational

acceleration must be determined �rst. With regard to the
accelerometer presented in cases 8-A, 8-B, and 9-A, the
following formulas are true [38]:

�� = 12 ⋅ sin 54.7∘ (�1 + �4) ,
�� = 12 ⋅ sin 54.7∘ (�2 + �3) ,
�� = 14 ⋅ cos 54.7∘ (�1 + �2 + �3 + �4) ,

(17)

where �1, �2, �3, and �4 are projections of the vector of
the gravitational acceleration onto the sensitive axes of the
accelerometer, which are inclined by 54.7∘ (colors of the
sensitive axes, represented by the bold arrows, denote their
numbers with accordance to the accepted nomenclature).

Except for selecting an appropriate case of tilt measure-
ment (as speci�ed in Table 1), it is also important to set the
initial position of the accelerometer in an advantageous way.
	e relevant data related to the cases illustrated in Table 1 are
included in Table 2.

5. Sensitivity of Tilt Measurements

Even though the nominal values of the tilt angles calculated
according to the presented equations are the same, yet
they are determined with di
erent sensitivity, thus di
erent
accuracy. So, application of particular formula signi�cantly
a
ects the accuracy of the measurement.
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5.1. Sensitivity Related to Angles �, �, and �. 	e appropriate
formulas can be derived from (3)–(8), as demonstrated in
[20].	ey refer to pitch� in the samemeasure as to roll (while
expressed by the auxiliary angle �), so a tilt angle � has been
introduced. A relation between the sensitivity 	01 (expressed
in rad−1) and the tilt angle �01 can be de�ned as [24]

	01 = � cos�01. (18)

Likewise, for tilt angles �02 and �03 we can obtain [20]

	02 = � sin�02,	03 = � = const. (19)

Sensitivities 	01 and 	02, related to the arc sine and the arc
cosine formulas, decrease down to zero at a tilt angle of 90∘

or 0∘, respectively, what is very disadvantageous. However,
application of the arc tangent formulas ((7)-(8), (12)-(13), and
(16)) ensures a constant and at the same time the highest value
of the sensitivity.

As far as the axial tilt � is concerned, sensitivity 	01 refers
to �02, 	02 refers to �01, and 	03 refers to �03.
5.2. Sensitivity Related to Angle �. On the basis of (1), the
related sensitivity can be determined as

	21 = � cos�√ (cos2� − sin2�)
sin2� ⋅ sin2� + cos2� ⋅ cos2�. (20)

	e sensitivity 	21 is expressed on the plot in g/rad; thus,

it is variable over the range of ca. ⟨0; 10⟩ m/s2rad. It should
be noted that not every combination of angles � and � is
possible, since the angles are interdependent.

In the case of (9), the related sensitivity can be expressed
by the following formula:

	23 = � cos� (21)

which is also variable over the range of ⟨0; 10⟩ m/s2rad, this
time exactly as 	01. Both formulas are strongly nonlinear.
However, sensitivity 	23 is at least equal to 	21 (o�en higher).
Plot of (20) is illustrated in Figure 3.

In numerous applications, accuracy of tilt measurements
(here represented by the sensitivity) is an important issue
(even though there are some trivial cases when this problem
is of no concern). 	en, the most convenient mathematical
relationship should be used, taking into account, �rst of
all, the required accuracy and then simplicity of the related
computations (thus, the resultant speed and cost of the
measurement unit). Moreover, it must not be overlooked that
the higher the accuracy of the measurements the higher the
number of the sensitive axes of the accelerometer.

To conclude, it can be stated that in most of the cases the
best solution is to use arc tangent formulas, that is, (7)–(9),
(12)-(13), and (16), since they feature the highest sensitivity,
provided that the number of the available sensitive axes
is su�cient. However, there are also cases when the other
formulas are preferred, as minutely discussed in [20].
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Figure 3: Variability of the sensitivity 	21 expressed by (20).

It is worth mentioning that the sensitive axes need not
to be orthogonal. Other spatial con�gurations are accept-
able, and sometimes even more advantageous. 	en, higher
sensitivity can be obtained over some angular regions at
the cost of its lower value over the other regions. Another
disadvantage is the fact that the related computations are then
more complicated, as brie�y discussed in [30].

6. Accelerometer Selection

	e required number of the sensitive axes results from type of
tilt measurement, the measurement range, and the employed
mathematical formula. Type of the selected accelerometer
must comply with this number (the number of its sensitive
axes may be alternatively higher).

While 3 sensitive axes are required, instead of employing
1 triaxial or 1 multiaxial accelerometer, it may be considered
to apply 3 uniaxial or 2 biaxial accelerometers, or 1 uniaxial
and 1 biaxial accelerometer. Such approach is more laborious
and expensive; however it provides an opportunity to build
a more accurate tilt sensor. 	is concept is accepted by
such companies as MicroStrain Inc. or Sentera Technol-
ogy Corp., whose sensors have the sensitive axes of the
constituent accelerometers precisely calibrated and aligned
(or have the relevant misalignments compensated for)
[39].

However, even though some time ago triaxial MEMS
accelerometers were not commercially available, nowadays
it is quite the opposite: some manufacturers o
er only
triaxial devices, having abandoned production of biaxial or
uniaxial versions. Yet, sometimes it is worthwhile to apply
uniaxial or biaxial MEMS accelerometers. For instance, the
alignment error of the sensitive axes of biaxial accelerometers
is sometimes very small, that is, of 0.01∘ [28], unlike in the case
of triaxial accelerometers, whose z-axismay be poorly aligned
and additionally feature worse accuracy due to higher noise,
what results from their mechanical structure determined by
the fabrication process (this shortcoming is evident especially
in the case of surface micromachining), which in fact is semi-
three-dimensional [40].
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Table 3: Characteristics of the considered mathematical formulas.

Equation
Sensitivity
ms−2rad−1

Required number
of sensitive axes

(3), (4) 10–0 1

(10), (11), (14) 0–10 1

(5), (6), 0–10 2

(1), (9), (15) 10–0 2

(12), (13) 10 2

(7), (8), (16) 10 3

Characteristics of particular mathematical formulas with
respect to the sensitivity, the number of the required sensitive
axes, and the measuring range of the applied accelerometers
as well as complication of the related computation algorithm
(proposed, e.g., in [31]) areminutely discussed in [20]. A brief
summary is presented in Table 3.

One more problem to be considered is the operational
parameters of the accelerometers. Two basic issues are the
bandwidth and the supply voltage. If a possibly high accuracy
is pursued, the supply voltage should be stabilized and of
the highest value, whereas the bandwidth should be as small
as possible, for example, 0-1Hz. 	en, the noise of the
accelerometer is the lowest [28].

7. Imperfections of MEMS Accelerometers

Despite many aforementioned advantages of MEMS acceler-
ometers, they feature some imperfections, of which the most
signi�cant, as far as tilt measurements are concerned, are
thermal and long-termdri�s of the output signals (both of the
o
set and the scale factor), misalignments (connected also
with a lack of a physical datum surface and nonorthogonality
of the sensitive axes), and cross-axis sensitivities. As far as
thermal dri�s are concerned, even some commercial sensors
have this problem solved; for example, 16201 [41] of the ADIS
series by Analog Devices Inc. Misalignments are dealt with
rather seldom, for example, in the accelerometer described in
[39]. However, referring to the cross-axis sensitivities, many
models compensating for this errors have been proposed so
far, for example, in [32, 36]. Less signi�cant shortcomings are
necessity of calibrating the accelerometer by the user (in the
case of some accelerometers, custom equipment, like the one
presented in [42], may be then required), anisotropy of the
mechanical structure, sensitivity to electrostatic discharges,
and thermal, mechanical, and electrical hysteresis.

However, if a basic type of accelerometer is used (with
no compensation for the aforementioned shortcomings, yet
much cheaper), and at the same time a relatively high
accuracy of tilt measurements must be obtained, especially
the thermal errors should be dealt with, as proposed, for
example, in [22].

With regard to anisotropy, in some cases this imper-
fection can be eliminated. For instance, if a single triaxial
accelerometer is used in a tilt measurement that does not
require using all its output signals, the sensitive axis with
the worst performance should be inactive. As a result from

the relevant catalog data, the signal related to vertical axis� of MEMS accelerometers (with respect to their packaging
surface) is usually more noisy, compared to the horizontal
axes � and 
. So, it is more advantageous in single-axis tilt
measurements to use the orientation of the accelerometer like
in case 6-A (Table 1) instead of case 5-A.

As far as dual-axis measurements are concerned, two
options are reasonable. If pitch � is to be determined with a
higher sensitivity, orientation illustrated in case 6-B should be
used. On the other hand, if it is roll � that is more signi�cant,
the accelerometer should be oriented as in case 7-B.

With regard to the mechanical and electrical hysteresis
it should be mentioned that its in�uence can be essentially
reduced by subjecting the accelerometer to excited vibration
(quasi-static conditions of operation). Moreover, as it results
from our own experimental studies, this phenomenon is of
minor signi�cance in the case of MEMS accelerometers [43].

It must not be forgotten that each measurement case
requires a precise alignment of the appliedMEMS accelerom-
eter, or appropriate compensation for the alignment errors, as
addressed in [44]; otherwise a considerable loss of accuracy
of determining the tilt must be taken into account.

As already mentioned, some of the listed imperfections
are dealt with bymanufacturers, who o
ermore sophisticated
versions of the accelerometers, some even adjusted for tilt
measurements, like ADIS 16201 by Analog Devices Inc.
[41] or SCA100T by Murata Electronics Oy, called even an
inclinometer [45].

8. Experimental Studies

In order to determine the expected increase of accuracy
related to untypical orientations presented in Table 1, appro-
priate experimental studies were performed, in which we
used the test rigs described in [42, 43] and two types of triaxial
MEMS accelerometers ADXL 330 and 327 (two pieces of each
type) by Analog Devices Inc.

First, the experiments revealed that the sensitive axes
of the tested accelerometers were not perpendicular, with
inherent mutual misalignments in the range of 0.05∘–1∘

(much higher than speci�ed in the relevant datasheets).
Moreover, values of themisalignments were di
erent for each
pair of axes and for each of the tested accelerometers. Such
large value of the inherent misalignments of the sensitive
axes of MEMS accelerometers is a very important issue in
the case, when the misalignments are not compensated for
in a numerical way (it is not possible to physically align the
sensitive axes with respect to one another). As proven in [44],
this kind of misalignment may directly increase the error of
tilt measurement.

However, taking into account values of the inherent
misalignments, it is possible to choose a more convenient
orientation of the accelerometer, for example, case 6-A
instead of 5-A, case 6-B or 7-B instead of 5-A. 	e result may
be a decrease of the measurement error even as large as 1∘, as
our experiments proved.

By the way, it is not necessary to know values of the inher-
ent misalignments. In order to choose a better orientation, a
simple calibration should be performed for each orientation,
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and on the basis of the obtained results, the more accurate
orientation should be accepted.

Due to the aforementioned considerable inherent mis-
alignments of the sensitive axes of the tested accelerometers
it was not possible to evaluate accuracy increase related to
single-axis measurements while accepting orientation spec-
i�ed in case 7-A as a better alternative to cases 5-A and 6-A
(see Table 1). For the same reason, at this stage of experiments,
it was not possible to verify how signi�cant is the anisotropy
of the tested triaxial MEMS accelerometers, and whether the
related e
ects could be slightly reduced (applying case 6-A
instead of 5-A; see Table 1).

Finally, in order to verify if it is more advantageous to
use simpli�ed formulas (10)–(13) instead of (5)–(8) in cases
5-A and 6-A, respectively, other series of experiments were
performed. However, no signi�cant di
erence was observed
(relative changes of respective maximum errors as well as
sums of errors were found to be no bigger than 0.4%).
Nevertheless, in case of a bigger misalignment of the inactive
sensitive axis (e.g., of ca. 1∘), increase of accuracy may be
considerable, as proved in [44].

Further experimental study will be performed in order to
evaluate increase of accuracy of tilt measurement obtained
owing to employing orientations speci�ed in cases 6-A, 7-
A, 6-B, and 7-B (see Table 1). Nevertheless, at this stage
of experimental works (where the inherent misalignments
have not been compensated for), it can be stated that the
experimental results proved that it is worthwhile to reduce the
inherent misalignments by choosing appropriate orientation
of the accelerometer.

9. Conclusions

A practical approach to determining tilt with various types
of MEMS accelerometers has been presented. 	e accepted
idea of using components of the gravity acceleration for this
purpose allows us to build a tilt sensor with miniature overall
dimensions while employing MEMS accelerometers.

Results of our own experimental studies, reported, for
example, in [24, 31], prove that using such accelerometers it is
possible to detect tilt angles with accuracy of ca. few tenths
of degree arc. However, our further experimental works
reported in [42–44] revealed considerable imperfections of
such accelerometers: the inherent misalignments between
the sensitive axes (reaching up to 1∘) as well as anisotropic
metrological properties of the sensitive axes. 	erefore, we
proposed few original con�gurations of the applied MEMS
accelerometer as one of the ways of reducing e
ects of the
observed imperfections.

While arranging the discussed tilt sensor, the following
issues must be considered (in the respective order):

(i) Type of tilt measurement (single/dual-axis)

(ii) Type of the applied accelerometers (uni-, bi-, tri-, or
multiaxial; measurement range of the accelerometer
should be ≥1 g, yet possibly small at the same time)

(iii) Sensitivity of tiltmeasurement (determinedmostly by
the employed mathematical formula and noise of the
accelerometer)

(iv) Simplicity of mathematical processing of the output
signals

	en, appropriate measurement case presented in Table 1
can be selected along with a corresponding initial position of
the applied accelerometer, as speci�ed in Table 2.

It must be realized that the best solution o�en does not
exist. Usually, a trade-o
 must be sought for. Nevertheless,
the paper shows how to build an optimal tilt sensing device.
If typical arrangements, represented by cases 1-A, 2-A, 2-B, 5-
A, and 5-B (see Table 1), do not satisfy certain requirements,
other alternatives are proposed.

When a higher accuracy must be obtained, the following
original orientations can be employed:

(i) Cases 6-A, 6-B, and 7-B (see Table 1) make it possible
to reduce the e
ects of anisotropicmetrological prop-
erties of triaxial MEMS accelerometers; the accuracy
can be increased even by 1∘.

(ii) cases 7-A and 9-A (see Table 1) make it possible to
employ all the sensitive axes while realizing single-
axis tilt measurements; the accuracy can be slightly
increased; however, misalignments of the sensitive
axes must be reduced to at least ca. 0.05∘ (whether
physically or by compensation); otherwise, the accu-
racy may be even lower (as experimentally con-
�rmed).

(iii) A multiaxial accelerometer may be applied, as illus-
trated in cases 8-A, 8-B, and 9-A (see Table 1), to
increase the accuracy (e.g., by 13%).

On the contrary, if for some reason (e.g., simplicity or
speed of computations) the number of the sensitive axes
should be reduced in a dual-axis tilt measurement over the
full measurement range, cases 3-B and 4-B (see Table 1) may
be accepted.

Still another issue is tilt measurement over a small range.
At present, it is rather a di�cult task usingMEMS accelerom-
eters, since only few models feature a small measuring range.
Moreover, the range is relatively large anyway (e.g., 0.5 g in the
case of SCA100T by Murata Electronics Oy, MXA6500EP or
MXR2999EL byMEMSIC Inc.). However, it may be expected
that smaller measuring ranges will be available soon, since
some laboratory works in this �eld have already been started,
as reported, for example, in [46].

It should be also mentioned that, in order to improve the
accuracy, the output signals generated by MEMS accelerom-
eters can be processed in a more sophisticated way, as
proposed, for example, in [47]. Another way of achieving
this goal is a sophisticated procedure of calibration of the
accelerometers, as reported, for example, in [48, 49].

Nomenclature

�: Gravitational acceleration��, ��, ��: Cartesian components of acceleration ���: Projection of acceleration �measured in"th sensitive axis of a multiaxial
accelerometer
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��: "th sensitive axis of multiaxial accelerometer
(1st, dark blue; 2nd, green; 3rd, yellow; 4th,
red; observed in all the �gures)�: Pitch�: Auxiliary tilt angle�: Roll�: Axial tilt (arbitrarily oriented tilt angle)�: Either pitch � or angle �	: Sensitivity#: Either �, �, �, �, � or 	#�1: Quantity “#” related to arc sine function#�2: Quantity “#” related to arc cosine function#�3: Quantity “#” related to arc tangent function#0: Quantity “#” related to either single- or
dual-axis tilt measurement#1: Quantity “#” related to single-axis tilt
measurement#2: Quantity “#” related to dual-axis tilt
measurement

case$-%: Orientation de�ned in Table 1, Row$,
Column %.
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Jabłoński, M. Turkowski, and R. Szewczyk, Eds., pp. 511–515,
Springer, Heidelberg, Germany, 2007.
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Advances, R. Jabloński and T. Brezina, Eds., pp. 705–711,
Springer, Berlin, Germany, 2011.

[34] D. Jurman,M. Jankovec, R. Kamnik, andM. Topič, “Calibration
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