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We present a simple numerical algorithm to select the minimal subset of SNPs required to 
capture the diversity of haplotype blocks or other genetic loci. This algorithm can be used to 
quickly select the minimum SNP subset with no loss of haplotype information. In addition, 
the method can be used in a more aggressive mode to further reduce the original SNP set, 
with minimal loss of information. We demonstrate the algorithm performance with data from 
over 11,000 SNPs with average spacing of 6 to 11 Kb, across all the genes of chromosomes 6, 
21, and 22, genotyped on DNA samples of 45 unrelated African-Americans and 45 
Caucasians from the Coriell Human Diversity Collection. With no loss of information, we 
reduced the number of SNPs required to capture the haplotype block diversity by 25% for the 
African-American and 36% for the Caucasian populations. With a maximum loss of 10% of 
haplotype distribution information, the SNP reduction was 38% and 49% respectively for the 
two populations. All computations were performed in less than 1 minute for the entire dataset 
used. 

1 Introduction 

Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic 
variation. These single nucleotide changes are found approximately every 500 base 
pairs (bp) in the human genome. Almost all SNPs are bi-allelic (i.e., only two 
different alleles exist), and typically one allele is present in the majority of the 
chromosomes of a population, and the alternative variant (i.e., the minor allele) is 
present with less frequency.  

SNPs are promising tools for mapping susceptibility mutations that contribute 
to complex diseases. Although most SNPs are neutral (i.e., do not affect phenotype), 
they can be used as surrogate markers for positional cloning of genetic loci, because 
of the allelic association, known as linkage disequilibrium (LD), that can be shared 
by groups of adjacent SNPs. LD is eroded by gene conversion [3] and 
recombination [12], and the amount of LD depends on the age of the mutations and 
on the demographic history of the population. The extent of LD across a genomic 
region dictates the density of SNP markers necessary to ensure association between 
a marker and the causative allele sought.  

Early attempts to model the extent of LD on theoretical grounds predicted very 
short regions of LD, extending only a few kilobases (Kb) [13]. However, empirical 
surveys reported average LD distances between 5 Kb and 60 Kb, with the upper 
range extending up to hundreds of Kb [2,4,14]. More recently, studies have reported 
a discontinuous structure in the patterns of LD across specific genomic regions, 



where long stretches of strong LD are punctuated by recombination hot-spots 
[4,8,9]. These LD “blocks” show little evidence of historical recombination. These 
results suggest that a reduced set of contiguous chromosomal segments, or 
haplotypes, exist in specific populations.  For example, for a block spanning tens of 
Kbs for which 10 SNPs exist, instead of the 210 theoretically possible haplotypes, it 
has been found that 95% of the haplotype diversity is made up of only 4 to 6  so-
called common haplotypes [8]. 

It is noteworthy that these LD block patterns change depending on the 
population sampled because of historical differences; for example, populations that 
have experienced bottlenecks (e.g., Caucasians) show longer LD blocks and less 
evidence of historical recombination events than other populations [8]. The 
haplotype diversity in a given population is typically constant in a given block 
irrespective of the number of SNPs sampled [8]; therefore typing an arbitrarily large 
number of SNPs within a LD block is unnecessary. Selecting the minimum subset 
of SNPs within LD blocks, or any other discrete genetic loci, that enable 
discrimination of the common haplotypes present in a block without loss of 
information is the optimum approach. 

Most experimental methods for typing the specific SNP alleles present in a 
DNA sample produce unphased genotypes (i.e., the alleles detected cannot be 
assigned to either the maternal or the paternal chromosome). Although cumbersome 
methods exist to directly determine haplotypes, algorithms are widely used to infer 
the haplotypes from genotypes using maximum-likelihood or Bayesian principles. 
Family relationships of the DNA donors, if available, can be used to increase 
haplotype inference accuracy. Even in absence of family information, the 
Expectation-Maximization (EM) algorithm introduced by Excoffier and Slatkin [7] 
is quite accurate in most realistic situations, especially in regions of low diversity 
[16]. The analysis of haplotype distributions has been reported to provide more 
power for finding associations in genetic studies undertaken to find susceptibility 
mutations in case-control populations [6].  

2 The Algorithm for Determining the Minimum Set 

Given a block containing N SNPs and M haplotypes, define P, a probability vector 
of length M, where Pi is the relative frequency of the ith haplotype. Also define A, a 
haplotype/SNP allele state matrix of N columns and M rows, where Aij, (the ith row 
of the jth column of this matrix) indicates the allele state (‘1’ or ‘2’) of the jth SNP 
for the ith haplotype. The algorithm will eliminate as many columns of A, while 
preserving as much of the information in P as possible. For the purpose of 
quantifying the information in P, we used the information-theoretic quantity known 
as Shannon Entropy [15] as the measure of haplotype diversity information within 
each LD block [11]: 
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However, it is quite useful in many cases to use the algorithm in lossless mode, 
in which case it is irrelevant which information measure is used for the haplotype 
distribution. In addition, the algorithm can use any other measure of information 
preferred by the user. 

2.1 Lossless Mode 

The algorithm consists of two sequentially performed phases. Phase I is elimination 
by columns. Phase II is elimination by rows. Initially, we will define these 
operations in lossless mode only: 
 

Phase I: Any column that is identical to another column, or is the exact 
opposite of another column, can be eliminated. 

 

A column that is identical to another column represents a SNP that behaves 
identically to another SNP for all tested samples. Thus, under the assumption that 
we have enough DNA samples to infer the major haplotypes, this redundant SNP 
will not provide any useful information. Similarly, a column that is the exact 
opposite of another column is a SNP whose behavior can always be predicted from 
the behavior of another SNP simply by inverting it; therefore this SNP will not 
provide new information. Note that merely selecting a set of basis vectors from the 
matrix A would often miss elimination of columns that are an exact opposite of 
other columns. The 2x2 identity matrix illustrates this. 

Assume that after phase I, the N columns of matrix A have been reduced to N’ 
unique columns where N’ ≤  N. 
 

Phase II: Any column whose elimination does not reduce the number of 
unique rows should be eliminated. 

 

Each row represents the allelic states of the SNPs for a specific haplotype. 
Removing a “useful” SNP would eliminate the ability to detect at least one 
haplotype. In such a case, two or more haplotypes would register the same allelic 
states at the remaining SNPs, thereby reducing the number of unique rows. 
Therefore, if the elimination of a column does not reduce the number of unique 
rows, it can be omitted. 

Note that phase II actually subsumes phase I, in the sense that if phase I were 
skipped, phase II would eliminate the SNPs that phase I would have eliminated. 
However, without the "pruning" that takes place in phase I, phase II can quickly 
become computationally unmanageable, especially in lossy mode.  

The following example illustrates the method. Table 1 shows four SNPs and the 
four haplotypes they participate on a hypothetical LD block. 



Table 1. Haplotype/SNP Allele State Matrix 

 SNP1 SNP2 SNP3 SNP4 
Haplotype 1 1 1 1 2 
Haplotype 2 2 2 1 1 
Haplotype 3 2 2 2 1 
Haplotype 4 1 2 2 2 

 

The fourth column is the exact opposite of the first column. This implies that 
either SNP4 or SNP1 is redundant. If SNP4 is removed from the SNP set, no 
information is lost. When SNP1 registers allele “1”, the state of SNP4 is known as 
allele “2”, and conversely, when SNP1 registers allele “2”, the state of SNP4 is 
known as allele “1”. Removing SNP4 leaves the matrix in Table 2. 

Table 2. Haplotype/SNP Allele State Matrix after Phase I 

 SNP1 SNP2 SNP3 
Haplotype 1 1 1 1 
Haplotype 2 2 2 1 
Haplotype 3 2 2 2 
Haplotype 4 1 2 2 

 

The three columns are unique (including accounting for opposites), thus phase I 
is complete. N = 4 has been reduced to N’ = 3, as phase II is entered. 

Table 3 depicts the three remaining matrices, following the removal of SNP1, 
SNP2, or SNP3, respectively. The first and the third matrices only have three unique 
rows, whereas the second matrix has four unique rows. Thus, if the haplotype list is 
exhaustive, we can eliminate SNP2 with no loss of haplotype detection.  

Table 3. Three Possible Haplotype/SNP Allele State Matrices 

 SNP2 SNP3  SNP1 SNP3  SNP1 SNP2 
Haplotype 1 1 1  1 1  1 1 
Haplotype 2 2 1  2 1  2 2 
Haplotype 3 2 2  2 2  2 2 
Haplotype 4 2 2  1 2  1 2 

 

We have shown that the set {SNP1, SNP3} provides the same haplotype 
detection ability as the full set {SNP1, SNP2, SNP3, SNP4}. In the above example, 
each phase caused the elimination of exactly one SNP. However, in general, each 
phase could result in the elimination of multiple SNPs, or possibly none. 

2.2 Lossy Mode 

 An alternative version of the algorithm can be used to further reduce the 
retained SNP set while minimizing the loss of haplotype detection. Phase I will 



remain unchanged, however phase II will now select the optimal SNPs to eliminate 
by performing an exhaustive search. 

Phase II: For the  possible selections of k SNPs, compute the 

entropy H for the resulting P. Choose the selection with the 
highest H as the best selection. 









k
N '

 

When only k out of N’ SNPs are selected, N’ - k columns are eliminated. The 
resulting matrix (with k columns) could have fewer unique rows than the full matrix 
(with N’ columns). When a row is repeated more than once, it implies that several 
“minor” haplotypes will now be measured as a single “major” haplotype. This is 
because with fewer SNPs, we have lost the ability to make the finer distinction 
between them. The relative frequency (probability) of this “major” haplotype is 
equal to the sum of the frequencies of the “minor” haplotypes. Thus, when 
elimination of columns results in repeating rows, the repeating rows can be 
combined into a single row, and their respective probabilities summed to form a 
new probability. The vector P will be shorter and have larger numbers. This will 
always reduce the value of the entropy, H. The combination with the smallest 
reduction of entropy is deemed the optimal selection. Obviously, if all the rows are 
unique after elimination of N’ – k columns, the entropy is not reduced, and k SNPs 
can be used with no loss of information, as in the lossless case. 

3 Implementation and Test Data 

The algorithm was implemented in MATLAB v6.1 (The MathWorks Inc., Natick, 
MA, USA) without further optimization. The computations were completed on a 
700MHz PC for all the 2,874 blocks in our test dataset in less than 1 minute. To 
validate and assess the utility of the algorithm on a realistic dataset, we used 
genotyping data from 11,160 SNPs distributed in a gene-centric fashion across 
chromosomes 6, 21, and 22 (see Table 7 below). The SNPs were scored with 
5’nuclease assays with TaqMan®-MGB probes from Applied Biosystems’ Assays-
on-Demand™ SNP Genotyping Products (Foster City, CA, USA)[5]. The samples 
typed included 45 African-American and 45 Caucasian DNAs from the Coriell 
Human Diversity Collection (Coriell Institute for Medical Research, Camden, NJ, 
USA). LD blocks and haplotypes were computed independently for each population 
using methods described elsewhere [1,8]. Only blocks of 3 or more SNPs were 
considered in this study. Therefore, 4,864 SNPs were used for the African-
American population and 7,347 SNPs were used for the Caucasian population, 
which is known, in general, to have more and longer LD blocks.  



4 Experimental Results 

To exemplify the usefulness of the algorithm, we applied it in lossy mode to an LD 
block that we discovered using the Caucasian population panel, in chromosome 6, 
overlapping the human gene TTK (RefSeq ID NM_003318, Celera ID hCG401205). 
The block consists of 17 SNPs, and the EM algorithm inferred 8 haplotypes, 
including two major haplotypes: haplotype 2 and haplotype 7 with frequencies of 
approximately 43% and 33% respectively. The remaining 24% of the diversity is 
spread among the remaining 6 haplotypes. Table 4 below summarizes the allelic 
states of the 17 SNPs, as well as the respective probability, for each of the 8 
haplotypes.  

Table 4. Original Haplotype/SNP Allele State Matrix 

 

Haplotype
Number 

 
P 1 2 3 4 5 6 7 

SNP No.
8 9 10 11 12 13 14 15 16 17 

1 0.1136 1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 1 2 
2 0.4318 1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 
3 0.0114 1 1 1 2 2 1 2 1 2 1 2 2 1 1 1 1 1 
4 0.0454 1 2 2 1 1 2 1 2 1 2 1 1 2 2 2 1 1 
5 0.0454 2 1 1 1 1 2 1 2 1 2 1 1 2 2 2 1 2 
6 0.0118 2 2 2 2 2 1 2 1 2 1 2 1 1 1 1 1 1 
7 0.3292 2 2 2 2 2 1 2 1 2 1 2 2 1 1 1 1 1 
8 0.0114 2 2 2 2 2 1 2 1 2 2 1 2 1 1 1 1 1 

 
 After running phase I of the algorithm, the number of SNPs is reduced to 7, 

with the remaining SNP set {SNP1, SNP2, SNP4, SNP10, SNP12, SNP16, SNP17}. All 
the haplotype information is preserved, including their distribution, as shown in 
Table 5 below. The entropy of the original distribution of haplotypes is H(P) =  
2.0351 bits.  
 

Table 5. Haplotype/SNP Allele State Matrix After Phase I 

Haplotype
Number 

 
P SNP1 SNP2 SNP4 SNP10 SNP12 SNP16 SNP17

1 0.1136 1 1 1 2 1 1 2 
2 0.4318 1 1 1 2 1 2 2 
3 0.0114 1 1 2 1 2 1 1 
4 0.0454 1 2 1 2 1 1 1 
5 0.0454 2 1 1 2 1 1 2 
6 0.0118 2 2 2 1 1 1 1 

http://neuromancer/mercury/Chr6/Chromosome6-463.html


Table 5. Haplotype/SNP Allele State Matrix After Phase I (continued) 

7 0.3292 2 2 2 1 2 1 1 
8 0.0114 2 2 2 2 2 1 1 

  
After running phase II of the algorithm in lossless mode, it is apparent that the 

number of SNPs in the set can be reduced to 5 without any loss of information 
(Table 6). Reducing the set to 4 SNPs causes haplotype 8, the rarest haplotype, to 
merge into haplotype 7 because we have lost the ability of distinguish between the 
two. As a result 3.5% of the entropy is lost in the resultant haplotype distribution. 
The least amount of entropy that can be lost by reducing the SNP set to 3 is 9.2% 
when haplotypes 3 and 4 are merged, and haplotypes 6, 7, and 8 are merged.. 
Interestingly, the optimal single SNP is SNP16. With SNP16 , we can detect only 
“haplotype 2” or “other”. Haplotype 2 is the most common haplotype, with 43.2% 
of the frequency. Therefore it seems intuitively obvious that if we were only 
allowed to choose a single SNP, SNP16 would be our most useful choice.  

Table 6. Lossy Min. SNP Set Example 

No. of 
SNPs (k)

No. of 
Combinations 









k
7  

Optimal Set of k 
SNPs 

Haplotype 
Distribution 

Resulting from the 
Optimal SNP Set 

Resulting 
Entropy (H)

(bits) 

7 1 { SNP1, SNP2, 
SNP4, SNP10, 
SNP12, SNP16, 

SNP17} 

( 0.114,  0.432,  
0.011, 0.045, 0.045, 
0.012, 0.329, 0.011 ) 

2.0351 

6 7 { SNP1, SNP4, 
SNP10, SNP12, 
SNP16, SNP17} 

( 0.114,  0.432,  
0.011, 0.045, 0.045, 
0.012, 0.329, 0.011 ) 

2.0351 

5 21 { SNP1, SNP10, 
SNP12, SNP16, 

SNP17} 

( 0.114,  0.432,  
0.011, 0.045, 0.045, 
0.012, 0.329, 0.011 ) 

2.0351 

4 35 { SNP1, SNP12, 
SNP16, SNP17} 

( 0.114,  0.432,  
0.011, 0.045, 0.045, 

0.012, 0.341 ) 

1.9631 

3 35 { SNP1, SNP16, 
SNP17} 

( 0.114,  0.432,  
0.057, 0.045, 0.352 ) 

1.8475 

2 21 { SNP12, SNP16} (0.216, 0.432,  0.352) 1.5311 
1 7 {SNP16 } (0.5682 ,  0.4318) 0.9865 

 
Table 7 below summarizes the results after applying the algorithm to the full 

dataset of haplotype blocks detected for chromosomes 6, 21, and 22. The African-
American population panel is denoted by ‘A’ and the Caucasian population panel is 



denoted by ‘C’. The results show that the mean number of SNPs per block is 
reduced by on average 36% for the Caucasian population, whereas the reduction for 
the African-American panel is 25%, using the lossless mode of the algorithm. Using 
the lossy mode and accepting <10% information loss, the algorithm accomplishes an 
additional 17% reduction in the average number of SNPs per block for the African-
American panel, versus 19% for the Caucasian samples. 

Table 7. Experimental Results Summary 

Mean No. of Min. 
SNP per block 

Chr. Pop. Total 
No. of 
SNPs 

Mean Intragenic 
Spacing Between 

SNPs (bp) 

No. of 
Haplotype 

Blocks 

Mean 
Block 

Size (bp)

Mean 
No. of 
SNPs 
per 

Block 

 
Lossless 

<10% 
Loss 

6 A 
C 

2,504 
4,009 

10,840 
10,630 

646 
883 

23,000 
34,000 

3.88 
4.54 

2.94 
2.86 

2.44 
2.33 

21 A 
C 

955 
1,555 

7,382 
7,031 

242 
336 

14,933 
21,032 

3.95 
4.63 

2.92 
2.88 

2.39 
2.32 

22 A 
C 

1,405 
1,783 

6,035 
7,760 

350 
417 

13,714 
17,505 

4.01 
4.28 

2.99 
2.81 

2.47 
2.27 

 

Figure 1 graphically illustrates the relationship between the original number of 
SNPs in an LD block (horizontal axis) and the minimum number of SNPs required 
to genotype the LD block with no loss of information (vertical axis). The thickness 
of the ‘x’ corresponds to the number of different blocks found in chromosome 6 
with the same properties. This figure shows that irrespective of the original number 
of SNPs per LD block (up to 18), the maximum number of minimum SNPs levels 
off at about 6 for the Caucasian population, and is not too different for the African-
American panel which has a few outlier blocks with 7 and 9 minimum SNPs. 



Figure 1. SNP per block vs. minimum informative SNP subset 
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5 Discussion 

Frequently, when SNPs are initially selected for typing, not much is known about 
the existence or location of LD blocks, nor about the number and relative 
frequencies of haplotypes within the blocks. It is therefore typical to “over-sample” 
the chromosomal region, (i.e., select SNPs as densely as one’s budget permits). 
However, using large numbers of SNPs on a study adds significant cost; therefore 
the algorithm introduced in this paper can be useful for reducing the set of SNPs to 
the minimum number required for adequate coverage with no loss of haplotype 
information. Furthermore, the method can be used to eliminate additional SNPs 
while minimizing loss of haplotype information.  

Previous work attempting to find the minimum SNP sub-set [10,11] have 
generally focused on complete genes or randomly selected loci, as opposed to LD 
blocks. In such cases, the number of haplotypes was expected to be higher, and 
more importantly, the amount of information in the haplotype distribution was 
expected to be much greater. As a result, these studies were challenged by 
numerical complexity, and solutions were optimized for relatively small regions and 



specific local conditions. Our method computes the global optimum, whether in 
lossless or lossy mode, making it more broadly applicable to a variety of purposes. 

The method described by Judson et al [11] is essentially equivalent to phase II 
of the lossy version of our method. However, it is limited to k≤11. This is expected, 
because without the efficient pruning of SNPs performed by phase I of our method, 
the exponential nature of phase II can require practically infinite execution time. For 
example, the largest block we encountered consisted of 22 SNPs. With Judson's 
method, comparing sub-sets of 22 SNPs requires examining over almost 4.2 million 
combinations. Even using only half of the SNPs, sub-sets 1 to 11, would require 
examining over 2.4 million combinations, after which it would not be clear whether 
the solution is optimal, since it could represent a local optimum.  Our method uses 
phase I to quickly reduce the 22 SNPs to a subset of 4 SNPs. As a result, phase II 
can find the global optimum (3 SNPs in lossless mode or 2 SNPs with less than 10% 
loss) by examining only 15. 

The method described in the on-line supplement to the paper by Johnson et al. 
[10] appears to strive to compromise the maximization of the information detected 
by the SNP set with other considerations (e.g., maximization of the individual 
SNPs’ properties). However, there is little explanation of the method details. One 
example asserts that any haplotype matrix with full rank cannot be pruned. 
However, we show in Table 1 a haplotype matrix of full rank can be pruned with no 
loss of information. The on-line supplement also provides executable programs, but 
the maximum subset size is limited to k≤5, which would lead to suboptimal results, 
because we have found the global optimum to be greater than 5 in some blocks. 

Previous reports have suggested that the Caucasian population has longer LD 
blocks than the African-American population [8]. As Table 7 shows, the Caucasian 
population initially yielded more blocks, and more SNPs per block. However, after 
“compression” of the SNP sets of each block by our algorithm into the minimum 
required to represent the information (with no loss), the  set size is almost the same 
for the two populations. Further compression with our lossy method, produced a 
very similar reduction for both populations. We believe that this reflects the 
arbitrary nature of the criteria to define LD blocks, which was applied uniformly to 
both populations. 

It is important to note that the premise of the algorithm, as well as any other 
that attempts to reduce the size of the SNP set, is that the DNA sample size for each 
population is large enough so that the inferred haplotypes adequately represent 
reality. The accuracy of the computational haplotype inference is dependent on 
sample size, among other factors. There is always a risk that a SNP whose behavior 
is identical to another SNP (and thus deemed worthless in terms of new 
information) for the sample size used, could differentiate an additional haplotype 
inferred in a larger sample size. Although this risk is low for common haplotypes, it 
is possible that a rare haplotype can harbor the causative mutation sought and be 
present in higher frequency in affected individuals. Another factor that must be 
considered is the possibility of experimental errors that can eliminate data points 



and thus render suboptimal the minimum SNP subset. Therefore, it will always be 
necessary to supplement the minimum SNP subset with additional SNPs to enhance 
robustness. An optimal procedure for choosing additional SNPs that increase 
robustness, as well as the ability to bias the selection of the minimum SNP subset as 
a function of cost or availability of specific SNP assays, is currently under 
investigation. 

6 Conclusions 

We have described a simple algorithm that can select a minimum subset of SNPs 
without loss of haplotype information, or an even smaller subset with some 
acceptable loss of information.  In a practical example encompassing 3 human 
chromosomes, we were able to reduce the SNP set by 25% for the African 
American population and by 36% for the Caucasian population with no loss of 
haplotype distribution information. It is clear that for an arbitrarily large genomic 
segment with numerous SNPs and haplotypes, the number of computations required 
by our algorithm would grow exponentially even after our phase I heuristic, and 
become unpractical. This situation would require different approaches to reduce the 
combinatorial complexity of the problem. However, for most practical situations our 
algorithm shall suffice and produce optimal results in a reasonable time, even 
allowing for the real-time calculation of minimum SNP subsets for haplotype 
blocks. 
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