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A systematic survey of centrality measures
for protein-protein interaction networks
Minoo Ashtiani1†, Ali Salehzadeh-Yazdi2†, Zahra Razaghi-Moghadam3,4, Holger Hennig2, Olaf Wolkenhauer2,

Mehdi Mirzaie5* and Mohieddin Jafari1*

Abstract

Background: Numerous centrality measures have been introduced to identify “central” nodes in large networks.

The availability of a wide range of measures for ranking influential nodes leaves the user to decide which measure

may best suit the analysis of a given network. The choice of a suitable measure is furthermore complicated by the

impact of the network topology on ranking influential nodes by centrality measures. To approach this problem

systematically, we examined the centrality profile of nodes of yeast protein-protein interaction networks (PPINs) in

order to detect which centrality measure is succeeding in predicting influential proteins. We studied how different

topological network features are reflected in a large set of commonly used centrality measures.

Results: We used yeast PPINs to compare 27 common of centrality measures. The measures characterize and assort

influential nodes of the networks. We applied principal component analysis (PCA) and hierarchical clustering and

found that the most informative measures depend on the network’s topology. Interestingly, some measures had a

high level of contribution in comparison to others in all PPINs, namely Latora closeness, Decay, Lin, Freeman closeness,

Diffusion, Residual closeness and Average distance centralities.

Conclusions: The choice of a suitable set of centrality measures is crucial for inferring important functional properties

of a network. We concluded that undertaking data reduction using unsupervised machine learning methods helps to

choose appropriate variables (centrality measures). Hence, we proposed identifying the contribution proportions of the

centrality measures with PCA as a prerequisite step of network analysis before inferring functional consequences, e.g.,

essentiality of a node.

Keywords: Network science, Centrality analysis, Protein-protein interaction network (PPIN), Clustering, Principal

components analysis (PCA)

Background
Essential proteins play critical roles in cell processes

such as development and survival. Deletion of essential

proteins is more likely to be lethal than deletion of

non-essential proteins [1]. Identifying essential proteins

conventionally had been carried out with experimental

methods which are time-consuming and expensive, and

such experimental approaches are not always feasible.

Analyzing high-throughput data with computational

methods promises to overcome these limitations. Various

computational methods have been proposed to predict

and prioritize influential nodes (e.g. proteins) among bio-

logical networks. Network-based ranking (i.e. centrality

analysis) of biological components has been widely used

to find influential nodes in large networks, with applica-

tions in biomarker discovery, drug design and drug repur-

posing [2–6]. Not only in molecular biology networks but

also in all types of networks, finding the influential nodes

is the chief question of centrality analysis [7]. Examples

include predicting the details of information controlling

or disease spreading within a specific network in order to

delineate how to effectively implement target marketing

or preventive healthcare [8–10]. Several centralities mea-

sures (mostly in the context of social network analyses)
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have been described [7] in the last decades. A comprehen-

sive list of centrality measures and software resources can

be found on the CentiServer [11].

The correlation of lethality and essentiality with differ-

ent centrality measures has been subject of active research

in biological areas, which has led to the centrality-lethality

rule [1]. Typically, some classic centrality measures such

as Degree, Closeness, and Betweenness centralities have

been utilized to identify influential nodes in biological

networks [9]. For example, in a pioneering work, the au-

thors found that proteins with the high Degree centrality

(hubs) among a yeast PPIN is likely to be associated with

essential proteins [1]. In another study, this rule was

re-examined in three distinct PPINs of three species which

confirmed the essentiality of highly connected proteins for

survival [12]. Similar results were reported for gene

co-expression networks of three different species [13] and

for metabolic network of Escherichia coli [14, 15]. Ernesto

Estrada generalized this rule to six other centrality mea-

sures. He showed that the Subgraph centrality measure

scored best compared to classic measures to find influen-

tial proteins, and generally using these measures per-

formed significantly better than a random selection [16].

However, He and Zhang showed that the relationship be-

tween hub nodes and essentiality is not related to the net-

work architecture [17]. Furthermore, regarding the

modular structure of PPINs, Joy et al. concluded that the

Betweenness centrality is more likely to be essential than

the Degree centrality [18]. The predictive power of Be-

tweenness as a topological characteristic was also men-

tioned in mammalian transcriptional regulatory networks

which was clearly correlated to Degree [19]. Recently, it

has been shown that presence of hubs, i.e. high Degree

centralities, do not have a direct relationship with prog-

nostic genes across cancer types [20].

On the other hand, Tew and Li demonstrated func-

tional centrality and showed that it correlates more

strongly than pure topological centrality [21]. More re-

cently, localization-specific centrality measures had been

introduced and claimed that their results is more likely

essential in different species [22–25]. In the same way,

some studies emphasized on the protein complex and

topological structure of a sub-network to refine PPIN

and identify central nodes [26–28]. Tang et al. integrated

the gene co-expression data on PPIN as edge weights to

realize the reliable prediction of essential proteins [24].

Khuri and Wuchty introduced minimum dominating

sets of PPIN which are enriched by essential proteins.

They described that there is a positive correlation be-

tween Degree of proteins in these sets and lethality [29].

In these studies, the solution of the controversy is as-

cribed to utilizing biological information.

Similar in methodology but different in the underlying

physical system that the network represents, some other

studies attempted to quantify correlations between several

classic centrality measures. In 2004, Koschützki and

Schreiber compared five centrality measures in two bio-

logical networks and showed different patterns of correla-

tions between centralities. They generally concluded that

all Degree, Eccentrecity, Closeness, random walk Be-

tweenness and Bonacich’s Eigenvector centralities should

be considered to find central nodes and could be useful in

various applications without explaining any preference

among them [30]. Two years later, they re-expressed

pervious outcomes by explaining the independence behav-

ior of centrality measures in a PPIN using 3D parallel

coordinates, orbit-based and hierarchy-based comparison

[31]. Valente et al. examined the correlation between the

symmetric and directed versions of four measures which

are commonly used by the network analysts. By compar-

ing 58 different social networks, they concluded that

network data collection methods change the correlation

between the measures and these measures show distinct

trends [32]. Batool and Niazi also studied three social,

ecological and biological neural networks and they con-

cluded the correlation between Closeness-Eccentricity and

Degree-Eigenvector and insignificant pattern of Between-

ness. They also demonstrated that Eccentricity and Eigen-

vector measures are better to identify influential nodes

[33]. In 2015, Cong Li et al. further investigated the ques-

tion of correlation between centrality measures and intro-

duced a modified centrality measure called mth-order

degree mass. They observed a strong linear correlation

between the Degree, Betweenness and Leverage centrality

measures within both real and random networks [34].

However, there is no benchmark for network biologists

that provides insight, which of the centrality measures is

suited best for the analysis of the given network. The

result of the centrality analysis of a network may depend

on the used centrality measure which can lead to incon-

sistent outcomes. Previously, a detailed study showed

that the predictive power and shortcomings of centrality

measures are not satisfactory in various studies [35].

While these centrality measures have proven to be

essential in understanding of the roles of nodes which

led to outstanding contributions to the analysis of bio-

logical networks, choosing the appropriate measure for

given networks is still an open question. Which measure

identifies best the centers of real networks? Do all

measures independently highlight the central network

elements and encompass independent information or

are the measures correlated? Is the computation of all

these measures meaningful in all different networks or

does the best measure depend on the network topology

and the logic of the network reconstruction? In this

study, we used unsupervised machine learning to com-

pare how well the most common centrality measures

characterize nodes in networks. We comprehensively

Ashtiani et al. BMC Systems Biology  (2018) 12:80 Page 2 of 17



compared 27 distinct centrality measures applied to 14

small to large biological and random networks. All bio-

logical networks were PPINs of the same set of proteins

which are reconstructed using a variety of computational

and experimental methods. We demonstrated how the

ranking of nodes depends on the network structure (top-

ology) and why this network concept i.e. centrality

deserves renewed attention.

Methods
The workflow of this study was schematically presented

in Fig. 1. Our workflow started by constructing and

retrieving networks, followed by global network analysis.

The centrality analysis and comparing them using ma-

chine learning methods were the next main steps. See

basic definitions for more details.

Reconstruction of the networks

In this study, a UniProtKB reviewed dataset [36] was used

to retrieve proteins in Saccharomyces cerevisiae (6721 pro-

teins). UniProtKB accessions were converted to STRING

using the STRINGdb R package, which resulted in 6603

protein identifiers (3rd Sep 2016). Interactions among

proteins were extracted based on the STRING IDs. In the

2017 edition of the STRING database the results of these

interactions are structured in a way to provide maximum

coverage; this is achieved by including indirect and

predicted interactions on the top of the set. [37]. In this

study, 13 evidence channels (related to the origin and type

of evidence) indicating PPIN of yeast were presented:

co-expression, co-expression-transferred, co-occurrence,

database, database-transferred, experiments, experiments-

transferred, fusion, homology, neighborhood-transferred,

textmining, textmining-transferred and combined-score

(See Additional file 1). In the following, the name of the re-

constructed network is basis of the corresponding channel

name which made of. For the purpose of comparison with

real network behavior, a null model network was generated.

The null network is the Erdős–Rényi model [38] and was

generated using the igraph R package [39]. The generated

null network was created with a size similar to the yeast re-

constructed PPIN in order to have a more fair comparison.

Fundamental network concepts analysis

To understand the network structure, we reviewed various

network features using several R packages [40–42]. The

network density, clustering coefficient, network hetero-

geneity, and network centralization properties of the

network were calculated. The number of connected com-

ponents and graph diameter for each network were also

computed. Then, the power-law distribution was assessed

by computing α values and r correlation coefficients. As

most of centrality measures require a strongly connected

component graph, the giant component of each PPINs

and the null network were extracted. Moreover, for a gen-

eral overview of the structure of the extracted giant com-

ponents, some network features such as network density,

Fig. 1 Our workflow for studying the centrality measures. This was followed the reconstruction of the yeast PPIN relying on different kinds of evidence

channels as well as the generation of a null network. The workflow contained a comparison of several centrality measures using machine learning

methods such as principal components analysis and clustering procedures

Ashtiani et al. BMC Systems Biology  (2018) 12:80 Page 3 of 17



clustering coefficient, network heterogeneity, and network

centralization were calculated.

Centrality analysis

For this research study, we were only considered undir-

ected, loop-free connected graphs according to the PPIN

topology. For centrality analysis, the following 27 cen-

trality measures were selected: Average Distance [43],

Barycenter [44], Closeness (Freeman) [9], Closeness

(Latora) [45], Residual closeness [46], ClusterRank [47],

Decay [48], Diffusion degree [49], Density of Maximum

Neighborhood Component (DMNC) [50], Geodesic

K-Path [51, 52], Katz [53, 54], Laplacian [55], Leverage

[56], Lin [57], Lobby [58], Markov [59], Maximum

Neighborhood Component (MNC) [50], Radiality [60],

Eigenvector [61], Subgraph scores [62], Shortest-Paths

betweenness [9], Eccentricity [63], Degree, Kleinberg’s

authority scores [64], Kleinberg’s hub scores [64], Harary

graph [63] and Information [65]. All these measures are

calculated for undirected networks in a reasonable time.

These measures were calculated using the centiserve

[11], igraph [39] and sna [66] R packages. Some of the

centrality measures had a measurable factor to be speci-

fied which we used the default values. For a better

visualization, We assorted the centrality measures into

five distinct classes including Distance-, Degree-, Eigen-,

Neighborhood-based and miscellaneous groups depend

on their logic and formulas (Table 1).

Unsupervised machine learning analysis

Standard normalization (scaling and centering of matrix-

like objects) has been undertaken on computed centrality

values according to methodology explained in [67]. We

used PCA, a linear dimensionality reduction algorithm,

[68] as a key step to understand which centrality measures

better determine central nodes within a network. PCA

was done on normalized computed centrality measures.

To validate the PCA results in PPINs, we also examined

whether the centrality measures in all networks can be

clustered according to clustering tendency procedure. To

do this, the Hopkins’ statistic values and visualizing VAT

(Visual Assessment of cluster Tendency) plots was calcu-

lated by factoextra R package [69]. We applied the cluster-

ing validation measures to access the most appropriate

clustering method among hierarchical, k-means, and PAM

(Partitioning Around Medoids) methods using clValid

package [70]. This provides silhouette scores according to

clustering measures which would be helpful for choosing

the suitable method. After selection of the clustering tech-

nique, factoextra package was used to attain optimal num-

ber of clusters [69]. In order to measure the dissimilarity

among clusters, we used Ward’s minimum variance

method. To compare the clustering results in aforemen-

tioned PPINs, the Jaccard similarity index was used relying

on the similarity metrics of the clustering results within

BiRewire package [71].

Results
Evaluation of network properties

By importing the same set of protein names, the 13

PPINs were extracted from the STRING database using

different evidence channels. (Note: the PPI scores

derived from the neighborhood channel of yeast were all

zero). All these channels distinctly identify an interaction

for each protein pair quantitatively. The dependency

between evidence channels was also shown in Fig. 2 by a

Table 1 Centrality measures. The centrality measures were represented in five groups depending on their logic and formulae

Distance_based Degree-based Eigen-based Neighborhood-based Miscellanous

Average Distance Authority_score Eigenvector centralities ClusterRank Geodesic K-Path Centrality

Barycenter Degree Centrality Katz Centrality
(Katz Status Index)

Density of Maximum
Neighborhood Component
(DMNC)

Harary Graph Centrality

Closeness Centrality
(Freeman)

Diffusion Degree Laplacian Centrality Maximum Neighborhood
Component (MNC)

Information Centrality

Closeness centrality
(Latora)

Kleinberg’s hub
centrality scores

Subgraph centrality scores Markov Centrality

Decay Centrality Leverage Centrality Shortest-Paths
Betweenness Centrality

Eccentricity of the
vertices

Lobby Index (Centrality)

Lin Centrality

Radiality Centrality

Residual Closeness Centrality

Note that the first column (i.e. distance-based centralities) was specified according to the definition of distance between vertices in graph theory. The second one

(i.e. degree-based centralities) was defined based on the number of immediate neighbors of each node within a given network. Eigen-values of adjacency matrix was

the main idea to classify the Eigen-based centralities. Furthermore, the concept of subgraph or community structure was proposed in the neighborhood-based

centralities. Others were collected in the miscellaneous group. Remind that this grouping was just applied to have better visualizations.

Ashtiani et al. BMC Systems Biology  (2018) 12:80 Page 4 of 17



pairwise scatterplot and Pearson’s r correlation coeffi-

cient. Most of the networks were not significantly corre-

lated and correlation coefficients were around zero for

all networks.

In the following, the 14 networks were utilized to under-

take an examination of centrality measures. Note that the

giant component of each network was accounted for

computing several network properties (Table 2). The

homology, fusion, co-occurrence and database networks

contained high numbers of unconnected components. Ex-

cept the homology network which had the smallest giant

component, the densities of all networks were between

0.01–0.05, as was expected real network are typically

sparse. The network diameter of the fusion, co-occur-

rence, database and co-expression were one order of mag-

nitude greater than others. All of the PPINs except

homology network were correlated to power-law distribu-

tion with high r correlation coefficients and diverse alpha

power (see Additional file 2). The high value of the aver-

age clustering coefficients of the database and homology

indicated the modular structure of these networks.

Compared with the null network, most of the PPINs had

a high value of heterogeneity and network centralization.

The Degree distribution and clustering coefficients for the

networks were also plotted in Figs. 3 and 4 respectively.

Except the homology network, all the Degree distributions

were left-skewed similar to scale-free networks. The de-

pendency of PPINs was further assessed and confirmed

statistically by Wilcoxon rank sum test (Table 3).

Centrality analysis

In the next step, the 27 centrality measures of nodes were

computed in all 14 networks. The distribution and pair-

wise scatter plots of the computed measures were repre-

sented in Fig. 5 to point out pairwise relationship between

them. (For the other PPINs see Additional file 3). The r

correlation coefficients were also shown in this figure in

which some of the centrality measures displayed a clear

correlation and the others revealed a vast diversity among

all five centrality classes. This diversity especially enriched

in Distance-, Neighborhood-based and miscellaneous clas-

ses for combined-score PPIN compared with Erdos-Renyi

Fig. 2 Pairwise scatterplot between the evidence channel scores. The Pearson’s r correlation coefficients between the evidence channels were

shown in the upper triangle of the plot. The distributions of scores in each evidence were presented at the diameters of the figure
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network. Analogously, this special profile of centrality

measures was repeated in all PPINs to some extent. An-

other remarkable distinction was the multimodality of dis-

tributions in the random network but not in real networks

which was repeated for most of the Distance-based cen-

trality measures. Furthermore, according to r correlation

coefficients, the pairwise association of centrality mea-

sures were roughly higher in the null network than PPINs.

Dimensionality reduction and clustering analysis

In the next step, PCA-based dimensionality reduction

was used to reveal which centrality measures contain the

most relevant information in order to effectively identify

important or influential nodes in networks. As illus-

trated in Fig. 6, the profile of the distance to the center

of the plot and their directions were mostly consonant

except for the homology which was similar to the

random network. The rank of contribution values of each

centrality measure were shown in Table 4, depend on their

corresponding principal components. The percentage of

contribution of variables (i.e. centrality measures) in a given

PC were computed as (variable.Cos2*100)/(total Cos2 of

the component)). A similar profile of the contribution of

centrality measures was observed among all biological net-

works even in homology network opposed to the random

null network (See Additional file 4). On average, Latora

closeness centrality was the major contributor of the princi-

pal components in PPINs. In contrast, other well-known

centralities i.e. Betweenness and Eccentricity revealed a low

contribution value in all PPINs. Analogous to the null net-

work, their values were lower than random threshold

depicted in Fig. 8 and Additional file 4. On the contrary,

the Degree displayed moderate levels of contribution in all

real networks whilst it was the fourth rank of random

network contributors. Although the profile of contributions

were similar, each PPIN exhibited a special fingerprint of

the centrality ranking. Finally, by performing unsupervised

categorization, we aimed to cluster centrality values com-

puted in the networks. First, we performed a clustering ten-

dency procedure. We found that the centrality values are

clusterable in each network as all values in the Hopkins sta-

tistics were more than the cutoff (0.05). The results are

shown in the first column of Table 5 and Additional file 5.

Then, by calculating silhouette scores, three methods (i.e.

hierarchical, k-means, and PAM) were evaluated in clus-

tering the data sets (Additional files 6 and 7). The output

Fig. 3 Graphical representation of the Degree distributions in each reconstructed PPIN and the generated null network
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of applying these algorithms and the corresponding num-

ber of clusters were also shown in Table 5 and Additional

file 8. Using the hierarchical algorithm based on Ward’s

method [72], the centrality measures were clustered in each

PPINs (Fig. 7). Number of clusters, distance between cen-

trality measures and centrality composition in all 13 PPINs

indicated that each centrality ranks nodes within a given

network distinctly. For a better comparison, we provided

Table 6 containing pairwise Jaccard similarity indices for

each network pair. The lowest values were related to the

homology, neighborhood-transferred and co-occurrence

PPINs while among these genome context prediction

methods, fusion PPIN was more associated to the other

networks. The high similarity between co-expression and

co-expression-transferred was expected however the similar

clusters of the database derived PPIN with both aforemen-

tioned PPINs and also combined-score with

textmining-transferred are noteworthy.

Discussion

Interestingly, silhouette scores of centrality measures

were closely related to corresponding contribution value

of the measures (Fig. 8). Where there was a high

silhouette value, a high contribution value was observed,

however, a high contribution value did not always mean

a high silhouette value. The relationship between the

silhouette scores and contribution values of each

centrality measure was also examined by regression

analysis. Latora closeness, Radiality, Residual, Decay, Lin,

Leverage, Freeman closeness and Barycenter centrality

measures were present together in the same cluster where

the corresponding silhouette scores were all at a high level

except the Leverage’s score (Fig. 8a). The average silhou-

ette score was around 0.66 in this cluster. On the other

hand, the Leverage’s contribution value was below the

threshold line and placed in the group with the least

amount of contribution (Fig. 8b). The centrality measures

namely Lobby index, ClusterRank, Laplacian, MNC, De-

gree, Markov, Diffusion degree, Kleinberg’s hub, Eigen

vector, Authority score, Katz group together where the

mean of their silhouette scores (i.e. 0.61) was higher than

the overall average and in the same way, their correspond-

ing contribution values were high, too. On the other hand,

we observed that Shortest path Betweenness (which was

in a separated cluster) and Geodesic k path, Subgraph and

DMNC (which are all in one cluster) showed the low

Fig. 4 Graphical representation of the clustering coefficient distributions in each reconstructed PPIN and the generated null network
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silhouette value mean (i.e. 0.03) much lower than the

average. In all other PPINs, the same relationship between

silhouette scores and contribution values was observed as

shown in Additional files 4 and 7.

Our results demonstrated that a unique profile of cen-

trality measures including Latora closeness, Barycenter,

Diffusion degree, Freeman closeness, Residual, Average

distance, Radiality centralities, was the most significant in-

dicator in ranking PPIN nodes. We inferred that the

rationale and logic of network reconstruction dictates

which centrality measures should be chosen. Also, we

demonstrated the relationship between contribution value

derived from PCA and silhouette width as a cluster valid-

ity index. Regarding to the robustness issue, we first reas-

serted that the architecture and global properties of a

network impact on the centrality analysis results [73–75].

Therefore, the center of a network would be different, de-

pending on the network’s inherent topology. In other

words, we addressed this issue whether a given centrality

measure has enough information via-a-vis and it demon-

strates a same behavior in some other networks.

Conclusion

Network-based methods have been introduced as an

emergent approach for simplification, reconstruction,

analysis, and comprehension of complex behavior in

biological systems. Network-based ranking methods (i.e.

centrality analysis) have been found widespread use for

predicting essential proteins, proposing drug targets

candidates in treatment of cancer, biomarker discovery,

human disease genes identification and creation a cell

with the minimal genome [76]. However, there is no

consensus pipeline for centrality analysis regarding

aforementioned applications among network analysts.

In this study, we worked on yeast PPINs which were

built using 13 evidence channels in the STRING

database. Subsequently, 27 centrality measures were

used for the prioritization of the nodes in all PPINs. We

illustrated that data reduction and low-dimensional

projection help to extract relevant features (i.e. centrality

measures) and corresponding relationships. Thus, to

quantify connectivity in biological networks, we recom-

mend that before arbitrary picking centrality measures

to pinpoint important nodes, PCA (as an example of

data projection methods) conduce how to use these

measures. In the other word, the analysis of principal

components clarifies which measures have the highest

contribution values, i.e., which measures comprise much

more information about centrality. Freshly, the applica-

tion of these approach for discovering essential proteins

was assayed in a polypharmacology study to prevent

epithelial-mesenchymal transition in cancer [77].

Basic definitions

� Giant component of a graph defines the largest

connected component of a graph in which there is a

path between each pair of nodes [78].

Fig. 6 Biplot representation of the centrality measures in each network. The PCA plots were a projections of the multivariate data into the 2D

space spanned by the first two principal components. In each plot, nodes were shown as points and centrality measures as vectors
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� Network density is a representation of the number

of interactions to the number of possible

interactions among a given network [79].

� Network centralization refers to a topological

spectrum from star to grid topologies (where each

node has a same number of links) of a graph varies

from 1 to 0 [79].

� The network heterogeneity measure describes as

the coefficient of variation of connectivity

distribution. A high heterogeneous network implies

that the network is exhibited approximate scale-free

topology [79, 80].

� The clustering coefficient of a node is the number

of triangles (3-loops) that pass through it, relative to

the maximum number of 3-loops that could pass

through the node. The network clustering coefficient

Table 5 Clustering information values for PPINs. The Hopkin’s

statistics threshold for clusterability was 0.05

Network Hopkins
Statistic

Number of
Clusters

Silhouette
Average Value

Coexpression 0.25 6 0.36

Coexpression_transferred 0.21 7 0.33

Cooccurence 0.18 6 0.55

Database 0.24 6 0.33

Database_transferred 0.20 9 0.32

Experiments 0.21 9 0.31

Experiments_transferred 0.16 6 0.43

Textmining 0.24 8 0.28

Textmining_transferred 0.20 6 0.35

Neighborhood_transferred 0.26 2 0.39

Fussion 0.16 5 0.48

Combined_score 0.30 7 0.27

Homology 0.23 2 0.46

Fig. 7 Clustering dendrograms. In each dendrogram, the colored boxes show ensued clusters of centrality measures in each PPIN based on a

predefined distance threshold
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Table 6 Jaccard index coefficient values for PPINs. The values represent how similar the networks are, in terms of their clustering

results. A value of 1 indicates an exact match while values equal to 0 show dissimilarity

coexp. coexp._tr coocc. comb. dat._tr dat. exp. exp._tr fus. hom. nei._tr tex. tex._tr

coexpression 0.99 0.58 0.77 0.62 1.00 0.58 0.80 0.83 0.41 0.43 0.62 0.76

coexpression_transferred 0.57 0.78 0.63 0.99 0.58 0.81 0.82 0.40 0.43 0.62 0.77

cooccurence 0.47 0.75 0.58 0.44 0.50 0.73 0.29 0.30 0.43 0.48

combined_score 0.52 0.77 0.62 0.63 0.64 0.37 0.39 0.78 0.96

database_transferred 0.62 0.55 0.55 0.55 0.25 0.27 0.47 0.51

database 0.58 0.80 0.83 0.41 0.43 0.62 0.76

experiments 0.59 0.49 0.25 0.27 0.67 0.63

experiments_transferred 0.67 0.41 0.43 0.62 0.62

fussion 0.40 0.42 0.52 0.64

homology 0.91 0.30 0.37

neighborhood_transferred 0.32 0.39

textmining 0.78

textmining_transferred

Fig. 8 (a) Clustering silhouette plot of the combined-score PPIN. The colors represented the six clusters of the centrality measures in this PPIN.

The average silhouette width was 0.49. (b) Contribution values of centrality measures according to their corresponding principal components in

this PPIN. The number of principal components stand on the network architecture was equal to 3. The dashed line indicates the random

threshold of contribution. (c) Line plot between silhouette and contribution values. The R value shown is the result of a regression coefficient

analysis and the p value has been computed from Pearson’s correlation test
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defines as the mean of the clustering coefficients for

all nodes in the network [81, 82].

� Influential nodes which is generally used in social

networks analysis point as nodes with good spreading

properties in networks [83]. Different centrality

measures are used to find influential nodes.

� Centrality-lethality rule explains nodes with high

centrality values in which maintain the integrity of

the network structure, are more related to the

survival of the biological system [84].

� The silhouette criterion defines how similar a

centrality is to its own cluster compared to other

clusters. It ranges from − 1 to 1, where a high value

infers that the centrality is well matched to its own

cluster and poorly matched to neighboring clusters.

If most centralities have a high value, then the

clustering configuration is proper. If they have low

or negative values, then the clustering configuration

may have too many or too few clusters [5, 85].

In order to see definitions of all used centrality mea-

sures, see http://www.centiserver.org.

Additional files

Additional file 1: Evidence channel dataset. The contents of 13 evidence

channels illustrating the yeast PPIN from STRING database. (downloaded in

3rd Sep 2016) are provided. (TXT 28629 kb)

Additional file 2: Fitted power law distribution. The Degree distribution

of each network has been compared to the power law distribution in

order to visualize the scale free property in the structure of each network.

(PDF 203 kb)

Additional file 3: Scatterplots between groups of centralities. Each

panel indicates scatterplots between centralities groups of two networks.

(PPTX 1963 kb)

Additional file 4: Contribution values of centralities in each network. These

values were computed based on the principal components. The red line

shows the threshold used for identifying effective centralities. (PDF 441 kb)

Additional file 5: Visual assessment of cluster tendency plots. Each

rectangular represents the clusters of the calculated results of the

centrality measures. (PDF 313 kb)

Additional file 6: Clustering properties results. These properties include

connectivity, Dunn and Silhouette scores. These scores suggest the

sufficient clustering method by a specific number of clusters. (DOCX 16 kb)

Additional file 7: Clusters silhouette plots. Each color represents a cluster

and each bar with specific color indicates a centrality. (PDF 417 kb)

Additional file 8: Optimal number of clusters. The suitable number of

clusters for hierarchical clustering method was computed using the

average silhouette values. (PDF 321 kb)
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