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Abstract: We performed a comparative study to select the efficient mother wavelet 

(MWT) basis functions that optimally represent the signal characteristics of the electrical 

activity of the human brain during a working memory (WM) task recorded through 

electroencephalography (EEG). Nineteen EEG electrodes were placed on the scalp following 

the 10-20 system. These electrodes were then grouped into five recording regions 

corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were 

recorded from ten control subjects. Forty-five MWT basis functions from orthogonal 

families were investigated. These functions included Daubechies (db1–db20), Symlets 

(sym1–sym20), and Coiflets (coif1–coif5). Conducting ANOVA, we determined the MWT 

basis functions with most significant differences in the ability of the five scalp regions to 

maximize their cross-correlation with the EEG signals. The best results were obtained using 
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‘sym9’ across the five scalp regions. Therefore, the most compatible MWT with the EEG 
signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and 

sub-band feature extraction. This study provides a reference of the selection of efficient 

MWT basis functions. 

Keywords: electroencephalography; memory; wavelet; multi-resolution analysis; cross-

correlation 

 

1. Introduction 

Electroencephalogram (EEG) is a neurophysiological tool used to monitor and identify the changes 

in the brain signals associated with seizure disorder, traumatic brain injury, and other physiological 

problems [1]. EEG is also a widely available, cost-effective, and non-invasive tool. This tool can track 

in vivo brain functions in milliseconds with high temporal resolution by reflecting the inner mental tasks 

and pathological changes in the brain of a large population. EEG has also been utilized in cognitive 

science, neuropsychological research, clinical assessments, and consciousness research [2-4]. A typical 

clinical EEG frequency ranges from 0.01 Hz to approximately 100 Hz; the corresponding waveforms 

have an amplitude of a few µVolt to approximately 100 µVolt [5]. EEG background waveforms also 

convey valuable information; thus, these waveforms can be classified into five specific frequency power 

bands: delta band (δ), theta band (θ), alpha band (α), beta band (β), and gamma band (γ) [6,7]. In 

physiology, the extracted features from EEG signals provide a concise representation that shows the 

power distribution of an EEG signal in different frequency bands. Therefore, EEG power is the key to 

detecting interesting information related to cognitive and memory performance. Moreover, EEG power 

corresponds to the capacity of cortical information processing [8]. In this regard, two types of memory 

processes, namely, working memory (WM) and long-term memory, can be distinguished. 

In our study, WM was considered. Based on an individual’s memory capacity, WM is the ability to 
maintain and manipulate information for brief periods. WM is considered as a temporary memory that 

can store approximately 7 ± 2 items for a short period (10–15 seconds up to 60 seconds) [9,10].  

Several studies on EEG signal processing have been conducted to identify the brain activity patterns 

involved in cognitive process and memory [11-14]. For instance, Klimesch and other researchers [8,15-

17] suggested that the changes in the cortical activity during WM tasks are related to the increase in δ, θ 
and γ magnitudes during memory load, whereas the α magnitude and the α/β power ratio decrease as 

WM load increases.  

 EEG data are susceptible to contamination by artifacts that may introduce changes in the recorded 

cerebral activity. These artifacts may mimic brain cognitive or pathological activity; these artifacts may 

also overlap with EEG frequency bands with a larger amplitude than cortical signals. In general, several 

types of artifacts, including physiological and non-physiological artifacts, may corrupt the EEG data 

[18,19]. Physiological artifacts originate from generator sources in the body, such as heart, eye, and/or 

muscles, and cause cardiac, ocular, eye blinking, and muscular artifacts; by contrast, non-physiological 

artifacts, which are of technical origin, are related to environment and equipment [18,19].  
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Different techniques have been applied to overcome this problem because these artifacts directly 

affect EEG signal processing. Studies on artifact removal have also been proposed. For instance, He et 

al. [20] applied adaptive filtering to remove ocular artifacts. Romero et al. [21] proposed regression 

analysis, adaptive filtering, and independent component analysis (ICA) to reduce eye movement and 

obtained the best results through ICA [22]. Romero et al. [23] also used ICA to remove ocular artifact. 

Zeng et al. [24] performed empirical mode decomposition (EMD) as an adaptive method to detect and 

separate ocular artifacts from EEG signals. Li et al. [25] investigated the neuronal population oscillations 

using EMD Wavelet transform (WT) is a common and powerful denoising method widely applied to 

biomedical signals because of its localization characteristics of non-stationary signals in time and 

frequency domains [26-28]. WT has also been extensively utilized because this method can remove 

ocular artifact noise, eye blinking noise and cardiac artifacts [29-33]. Patel et al. [34]  conducted a 

comparative study to remove ocular artifacts by using WT and EMD methods; WT with minimum signal 

distortion is more efficient than EMD [35]. Discrete wavelet transform (DWT) has also been considered 

as a promising technique to represent EEG signal characteristics by extracting features from the sub-

band of EEG signals [28,36]. 

The selection of mother wavelet (MWT) function is an important step and part of wavelet analysis to 

demonstrate the advantages of WT in denoising, component separation, coefficient reconstruction, and 

feature extraction from the signal in time and frequency domains. This step is necessary because studies 

have yet to provide specific MWT basis functions that cater to all EEG channels [28,36,37]. Several 

common standard families of WT basis functions, such as Haar (db1), Daubechies (db), Coiflets (coif), 

and Symlets (sym), are used. However, researchers have yet to establish well-defined rules on the 

selection of an efficient MWT basis function in a particular application or analysis. Despite the lack of 

such rules, a specific MWT becomes more suitable for a specific application and signal type because of 

WT properties. The selection of MWT can be either empirical or dependent on the visual inspection of 

the repeated signal pattern accompanied by previous experiences and knowledge [38]. Adeli et al. and 

several researchers have investigated Daubechies family of different orders ‘db2’, ‘db3’, ‘db4’, ‘db5’, 
and ‘db6’, particularly ‘db4,’ exhibits the highest cross-correlation with epileptic spike signals [28,39-

41]; ‘db2’ is more appropriate EEG smoothing [42]. Zikov et al. [43] chose ‘coif3’ because its shape 
resembles that of eye blink artifacts. Andrade et al. [44] used ‘db5’ to remove noise from EMG signals; 
Andrade et al. [45,46] also utilized ‘db4’, ‘sym7’, ‘coif3’, ‘coif4’, and ‘coif5’ to enhance ECG detection. 
However, a more precise selection of a MWT basis function remains a challenge because the properties 

of the WT functions and the characteristic of the signal to be analyzed should be carefully matched. 

Considering these findings, we conducted a comparative study to select the best MWT basis function 

of the characteristics of EEG datasets in a WM task. Forty-five MWTs, including Daubechies (db1–
db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5), were used to evaluate their compatibility with 

the EEG dataset. The similarities of these MWT functions to be matched to the recorded EEG dataset 

were also analyzed using a cross-correlation method (XCorr). Furthermore, significant differences in the 

selected MWT base functions among the scalp regions were evaluated through one-way ANOVA. The 

selection of optimal MWT is useful in denoising, decomposition, significant component reconstruction, 

and feature extraction from the EEG signal sub-bands that were used to understand the brain functions 

and reveal the hidden characteristics in the EEG spectra. 
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2. Methods  

Figure 1 shows the general block diagram of our proposed approach for selecting the optimal mother 

wavelet function among 45 functions. 

Figure 1. The block diagram of the proposed method. 

 
The EEG dataset was originally acquired from 19 sites on the scalp by using cap electrodes. 

Conventional filtering methods were used as an initial stage to process the 19 channels of the EEG data. 

A notch filter at 50 Hz was used to remove the power line interference noise; a band pass infinite impulse 

response filter with a frequency range of 0.5 Hz to 64 Hz was used to limit the band of the recorded EEG 

signals. 

2.1. Subjects and EEG Recording Procedure 

Ten EEG recordings were examined in this study. These EEG datasets were recorded from ten healthy 

control subjects composed of six males and four females aged 47.9 ± 6.5 years (mean ± standard 

deviation, SD). The subjects were recruited from the Pusat Perubatan Universiti Kebangsaan Malaysia, 

the Medical Center of National University of Malaysia. A critical concept in enrolment the volunteers 

was the subjects did not have a previous history of mental and neurological abnormalities. The 

neuropsychological assessments have been used to assess the volunteers and identifying the normal 

reference control subjects in order to enroll them. These subjects also underwent cognitive evaluation, 

including mini-mental state examination (MMSE) [47] and Montreal Cognitive Assessment (MoCA) 

[48] which involves tests of a variety of cognitive domains abilities including attention, memory, 

language, and orientation. The results of the working memory test performance were included within 

the MMSE and MoCA (attention and concentration parts of these assessments). All the control subjects 

were getting the maximum score in working memory test performance part to be included in our study. 

Besides, all the control subjects remembered (enumerated all the five words at the enumerate words 

step) at the end of EEG recording. Table 1 shows the socio-demographic and neuropsychological data 

of the control healthy subjects. 
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Table 1: Sociodemographic data of the control subjects. Mini-Mental State Examination (MMSE) 

and Montreal Cognitive Assessment (MoCA) scores are also shown, (Age in years, MMSE and 

MoCA, mean±standard deviation SD). 

Demographic and clinical features Control 

Number 10 

Age 47.9±6.5 

MMSE 29.7±0.67 

MoCA 28.9±0.87 

Female/Male 4F/6M 

 

The experimental protocols were approved by the Human Ethics Committee of the National 

University of Malaysia. Information consent forms were signed by the participants. The EEG activities 

were recorded using a NicoletOne system (V32), which was designed and manufactured by VIASYS 

Healthcare Inc., USA. A total of 19 electrodes, plus the ground and system reference electrodes, were 

positioned on the basis of the 10-20 international system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, T5, T4, T6, 

P3, Pz, P4, C3, Cz, C4, O1, and O2). The NicoletOne EEG system was sampled using referential 

montage at a sampling frequency of 256 Hz, an impedance of electrode/skin of <10 kΩ, sensitivity of 
100 µV/cm, a low cut of 0.5 Hz, and a high cut of 70 Hz. The subjects were asked to be motionless as 

possible and to memorize five words for 10 s. Subsequently, they were asked to remember the five words 

while the EEG data were recorded with their eyes closed. They were then instructed to open their eyes 

after 1 min and enumerate all they could remember from the five words (Figure 2) [49]. EEG data were 

recorded for 60 s during the WM task (Figure 3). 

Figure 2. The working memory experimental paradigm. 
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Figure 3. The EEG activities for a healthy subject during a working memory task using the 

NicoletOne systems (V32). 

 

2.2. Wavelet Analysis 

WT is a powerful spectral estimation technique for the time–frequency analysis of a signal. WT is an 

effective denoising method introduced to address the problem of non-stationary signals, such as EEG, 

electrocardiography (ECG), electromyography (EMG), and ocular artifacts [29-31,50]. The multi-

resolution analysis (MRA) method provides varying time–frequency resolutions in all frequency ranges. 

MRA provides varying resolution at different time and frequency [51,52]. It is designed to provide a 

good time resolution and a poor frequency resolution at high frequency and a good frequency resolution 

and a poor time resolution at low frequency. Moreover, WT can be applied to solve resolution-related 

problems by dividing the data of interest into different frequency components and by evaluating each 

component with a resolution matched to its scale [53,54]. Discrete wavelet transform (DWT), which has 

less computational time than continuous WT, is a fast and non-redundant transform used to analyze low- 

and high-frequency components in the EEG signals [55]. DWT can be processed by obtaining the 

discrete value of the parameters 𝑎  and 𝑏 , as in Equation (1). DWT can be obtained as a set of 

decomposition functions of the correlation between the signal 𝑓(𝑡) and the shifting and dilating of one 

specific function called the MWT function 𝜓(𝑡). MWT is shifted by the location parameter (𝑏) and 

dilated or contracted by the frequency scaling parameter 𝑎, as in Eq. (2) [52,56-58]: 𝐷𝑊𝑇𝑚,𝑛(𝑓) = 𝑎0−𝑚 2⁄ ∫ 𝑓(𝑡) 𝜓(𝑎0−𝑚𝑡 − 𝑛𝑏0)𝑑𝑡 (1)  𝑎0 and 𝑏0 values are set to 2 and 1, respectively. 𝜓𝑎,𝑏(𝑡) = 1√𝑎 𝜓 (𝑡 − 𝑏𝑎 ) , 𝑎𝜖ℝ+, 𝑏𝜖ℝ (2)  
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Mallat [54] developed a method by which DWT is implemented; in this method, the DWT 

decomposes a signal into different frequency bands by passing it through two quadrature mirror filters 

via a finite impulse response, where 𝑔 is a high-pass filter (HPF) and ℎ is a low-pass filter (LPF). ℎ is 

related to the scaling function, whereas 𝑔 is related to the MWT, as in Eqs. (3), (4), and (5) [54]: 𝑔(ℎ)=(−1)𝑛ℎ(1 − 𝑛) (3) 𝜙(𝑥) = ∑ ℎ(𝑛)√2𝜙(2𝑥 − 𝑛)𝑛  (4) 

𝜓(𝑥) = ∑ 𝑔(𝑛)√2 𝜙(2𝑥 − 𝑛)𝑛  (5)  

The QMF output is characterized as shown in equations 6 and 7: 𝐻𝐿 = ∑ ℎ(𝑛 − 2𝐿)𝑥(𝑛)𝑛  (6) 

𝐺𝐿 = ∑ 𝑔(𝑛 − 2𝐿)𝑥(𝑛)𝑛  (7)  

 The signal 𝑥(𝑛) convolves with ℎ(𝑛 − 2𝐿) when this signal acts as an LPF; otherwise, this signal 

acts as an HPF and convolves with 𝑔(𝑛 − 2𝐿). The result transforms the original signal into two sub-

bands [0 − 𝐹𝑁 2⁄ ] and [𝐹𝑁 2⁄ − 𝐹𝑁]. 𝐻𝐿 is the approximation component A that represents low-resolution 

components; 𝐺𝐿 is the detail decomposition component D that describes high-resolution components 

[59,60]. Several parameters, including the selected MWT, wavelet decomposition level, and selected 

threshold, should be selected carefully when WT-based processing methods are used. 

2.2.1. Mother Wavelet Optimal Selection 

In most cases, optimal MWT functions are selected on the basis of the compatibility with the EEG 

signal characteristics to be analyzed. Accurate MWT selection not only helps retain the original cortical 

signal but also enhances the frequency spectrum of the denoised signal [61]. However, several common 

standard wavelet families, including Daubechies, Symlets, Coiflets, Morlet, Mexicanhat, and Meyer 

wavelets, are considered [55]. A critical point in EEG signal processing via WT is the selection of a 

suitable MWT and decomposition level to reduce the artifacts that contaminate EEG signals. The 

selection of the base WT function from the WT families also depends on their characterization of 

orthogonality [62]. Therefore, the use of WT basis function from orthogonal families, such as 

Daubechies, Coiflets, and Symlets, helps conserve the decomposed EEG signal and obtain optimal 

reconstructed signals [63]. These MWTs are regarded as the most common parameters in biomedical 

signal processing [50,64-66]. 

To reduce computational complexity and to ensure an effective denoising procedure of the EEG 

signal to unique reconstructed signal, we selected 45 MWTs from three different orthogonal families, 

including Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5) [64,65,67,68]. 

These MWTs share orthogonality properties necessary to extract high- and low-frequency details from 

the original signal without losing information. The correlation 𝑋𝐶𝑜𝑟𝑟 between the band-limited EEG 

signals of interest 𝑋 and the wavelet denoised signal 𝑌  (Figure 4) is expressed in Eq. 8 [65,69].  
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𝑋𝐶𝑜𝑟𝑟(𝑋, 𝑌) = ∑(𝑋 − �̅�) (𝑌 − �̅�)√∑(𝑋 − �̅�)2 (𝑌 − �̅�)2 (8)  

Where �̅� and �̅� are the mean value of the 𝑋 and 𝑌, respectively. 

Figure 4. The block diagram of the correlation between the noisy EEG signals and denoised EEG 

signals using mother wavelet families. 

 
 

MWT was chosen by dividing each of the recorded 19 channels with a total length of 15,360 samples 

into 60 epochs; the length of each epoch was 256 data points (one segment), as shown in Figure 5. All 

of the MWTs were used to verify the correlation of the MWT basis function with a specific segment. 
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Figure 5. Noisy EEG epochs and mother wavelet of  Daubechies (db order from 2 to 5), 

Coiflets (coif order from 2 to 5) and symlet (sym order from 1 to 9) representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 𝑋𝐶𝑜𝑟𝑟 results of the 19 channels were grouped into five recording regions corresponding to the 

scalp region. These regions include the frontal region of the seven frontal channels (Fp1, Fp2, F3, F4, 

F7, F8, and Fz), the temporal region of the four temporal channels (T3, T4, T5, and T6), the parietal 

region of the three parietal channels (P3, P4, and Pz), the occipital region of the two occipital channels 

(O1 and O2), and the central region of the three central channels (C3, C4, and Cz). 
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2.2.2. Level of Decomposition and Threshold Selection 

The selection of a suitable number of decomposition levels is necessary to analyze in EEG signal 

analysis using DWT. Therefore, the number of decomposition levels can be chosen on the basis of the 

dominant frequency of signals and the usefulness of the extracted features from individual wavelet 

components [70-73]. Once the wavelet basis function and the decomposition level are specified, MRA 

methods can be performed. 

In this study, the sampling frequency was 256 Hz, the band-limited EEG was then subjected to a five-

level decomposition coefficient of six sub-band signals through DWT. The six sub-bands, particularly 

cD1, cD2, cD3, cD4, cD5 and cA5, represented the frequency range from the band-limited EEG signal, 

where cA is the decomposition approximation coefficient and cDs are the decomposition detail 

coefficients. Threshold limit and function are relevant factors to extract meaningful information by 

employing the WT denoising technique. Considering this finding, [74-77] proposed a WT threshold 

value by calculating the noise level of all WT sample coefficients, and then setting the threshold values 

to reveal noise-free WT coefficients. The SURE threshold, is an adaptive soft thresholding method, 

which is finding the threshold limit for each level based on Stein’s unbiased risk estimation [78] and 

commonly used value in [79-81]. 

Once the threshold coefficients were extracted from each level, the effect of the noises on the EEG 

signals were removed. The signals at each level were reconstructed using inverse DWT (Figure 6). The 

first reconstructed details D1 is considered to be mainly the noise components of the EEG signal (such 

as muscular artifacts), the four reconstruction details of the sub-band signals D2–D5 and the 

reconstruction approximation of the sub-band signal A5 yielded signal information related to each EEG 

frequency band (see Table 2). 
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Figure 6. Wavelet Multi-resolution analysis. 

 

 

Table 2.  The EEG signal decomposition into five frequency bands and noise. 

Decomposition 

levels 

Frequency bands 

(Hz) 
Decomposed signals EEG bands 

1 64-128 D1 Higher gamma and noise 

2 32-64 D2 Lower gamma (γ) 
3 16-32 D3 Beta (β) 
4 8-16 D4 Alpha (α) 
5 4-8 D5 Theta (θ) 
5 0-4 A5 Delta (δ) 

 

The sub-band features of the extracted wavelet coefficients provided a concise representation of the 

band-limited EEG signal. In addition, WT uses a variable window size across the whole signal length 

that helped quantify the changes in EEG in different frequency bands. In this research, the relative power 
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(RP) in alpha (αRP), beta (βRP), theta (θRP), delta (δRP), and gamma (γRP) were calculated to obtain 

the WT decomposed signals and to specify the changes in RP during the WM task. The RP of each of 

the selected frequency bands α, β, θ, δ, and γ can be calculated using Eq. (9) [82] 𝑅𝑃(%) = ∑ Selected frequency range ∑ Total range (0.5 − 64 Hz)     (9) 

2.3.  Statistical Analysis 

Normality was assessed through Kolmogrov–Smirnov test; homoscedasticity was verified with 

Levene’s test. Statistical analysis were performed through ANOVAs in SPSS 22. In the first session of 

ANOVA, the significant differences among the five groups of the scalp regions and the 45 MWTs were 

evaluated using XCorr as the dependent variable. A second session of ANOVA was performed on the 

RP. The significant differences among the five groups of the scalp regions and RP as dependent variable 

were evaluated. Post-hoc comparison was performed through Duncan’s test. The significance was set at 

p ˂ 0.05. 

3. Results and Discussion 

Two-way ANOVA was performed before data were analyzed to determine the best MWT of the 

frontal, temporal, parietal, occipital, and central regions of the scalp. The results of normality test 

revealed that the dependent variable 𝑋𝐶𝑜𝑟𝑟 was distributed normally in all of the regions. The results of 

homogeneity test showed that the variances among groups were homogeneous. The results of ANOVA 

demonstrated that the 45 MWTs significantly differed. A post-hoc test using Duncan multiple ray test 

showed that the highest mean in the frontal region (Fp1, Fp2, F3, F4, F7, F8, and Fz) channels belonged 

to ‘sym9’, which was significantly different from all of the MWTs except ‘sym5’, and ‘sym7’ (Figure 
7). In the temporal region (T3, T4, T5, and T6) channels, the highest mean that significantly differed 

from all of the MWTs belonged to ‘sym9’, which was significantly different from all of the MWTs 
except ‘sym5’ (Figure 8). The parietal region (P3, P4, and Pz) channels shared the temporal region and 

obtained the same results; the highest mean belonged to ‘sym9’, which was significantly different from 
all of the MWTs except ‘sym5’ (Figure 9). Furthermore, the occipital region (O1 and O2) channels, the 

highest mean belonged to ‘sym9’ (Figure 10). The central region (C3, C4, and Cz) channels, shared the 

occipital region and obtained the same results; ‘sym9’ was significantly different from all of the MWTs 
(Figure 11). 

 

 

 

 

 



Sensors 2015, 15 13 

 

 

Figure 7. Comparative plot of correlation coefficients with 45 mother wavelet filter for the 

frontal region of the brain for 10 control subjects. 

 

Figure 8. Comparative plot of correlation coefficients with 45 mother wavelet filter for the 

temporal region of the brain for 10 control subjects. 

 

Figure 9. Comparative plot of correlation coefficients with 45 mother wavelet filter for the 

parietal region of the brain for 10 control subjects. 
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Figure 10. Comparative plot of correlation coefficients with 45 mother wavelet filter for the 

occipital region of the brain for 10 control subjects. 

 

Figure 11. Comparative plot of correlation coefficients with 45 mother wavelet filter for the 

central region of the brain for 10 control subjects. 

 
 

Wavelet denoising method using ‘sym9’ has been applied to each individual channel of the EEG 
dataset (figure 12). It can be observed that the ocular artifacts are sufficiently removed (the blue), in 

contrast to the original recorded EEG (the red).  
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Figure 12. The removal results after the ‘sym9’ MWT were applied on the EEG channels, 
the EEG signals before artifact removal (in red), the EEG signals after denoising (in blue).  

 

 

Figure 13 shows the relative spectral power changes in the five scalp regions during WM tasks 

examined with EEG. δRP is significantly higher in frontal, central, parietal and temporal regions 

(P<0.05). Moreover, θRP is significantly higher in temporal, central, occipital and parietal regions 

(P<0.05). Furthermore, γRP is significantly higher in central, parietal and frontal regions (P<0.05) 

during WM task. On the contrary, αRP components are significantly lower in central and frontal region 

compared to other scalp regions. Interestingly, αRP has had the highest component in the occipital 

region, this may be related to eyes closing during WM task. βRP components are significantly smaller 

in parietal, frontal and central regions, but higher components in the temporal and occipital regions 

(P<0.05). Our findings regarding the spectral analysis agreed other studies. For instance, Klimesch 

described the changes in the brain activity which are strongly associated with cognitive and attentional 

working memory performance as decreasing in both alpha and beta but increasing in both delta and theta 

in [8]. Gevins et al. attributed the changes during working memory task to alpha and theta. frontal central 
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theta increased due to memory load whereas decreasing in central alpha during working memory load 

[15]. Finally, Lundqvist et al. correlated the changes in brain activity to encoding one or more items in 

WM and these changes have associated with increase in theta and gamma and decrease in alpha and beta 

power [16]. 

Figure 13. Comparative plot of the relative powers after using ‘sym9’ wavelet filter for the 

five scalp regions of the brain for 10 control subjects. 

 

This study showed several limitations. For instance, the sample size was small and an additional 

analysis with a large database should be performed in the future. Add to that a potential limitation for 

high gamma bands which were not used in this analysis, due to the cut off frequency of the EEG 

recording system used in this study, potentially missing information there but that such spectral range is 

particularly noisy as well due to muscular artifacts. Moreover, one MWT function cannot be applicable 

to all physiological and pathological states of the brain. Besides, previous studies focused on the 

selection of a MWT compatible with ECG and epileptic seizures [67,68]. For instance, Rafiee et al. [65] 

used two multi-channel datasets for EMG signals and three-channel datasets for EEG signals to select 

the most suitable MWT function for human biological signals; Kang et al. [83] proposed two-channel 

EEG electrode on the frontal region of the scalp to evaluate the frontal region simulated by mental 

workload. Singh et al. [67] examined a single-bit ECG signal. Messer et al. [55] used single 

phonocardiogram (PCG) signal to select the best MWT to remove the noise from PCG. Despite these 

drawbacks, this study may provide a method to identify suitable MWT functions for each region of the 

scalp during a WM task. The selection of optimal MWTs is necessary to achieve the most efficient 

denoising, decomposition, reconstruction, and feature extraction. In this manner, valuable physiological 

information can be retained to help improve diagnostic procedures through the adroit integration of 

wavelet denoising and sub-band feature extraction. EEGs are commonly used to diagnose epilepsy 

[36,84] and other neurological disorders, such as Alzheimer’s disease [85-88], and attention deficit 

hyperactivity disorder (ADHD) [89].   
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4. Conclusions 

Different types of artifacts contaminate EEG. In this study, the compatibility of 45 MWT basis 

functions from Daubechies, Symlets, and Coiflets orthogonal families were selected and subjected to 

analysis because of their similarities in the five scalp regions (the 19 EEG channels) during the WM 

task. We successfully selected an optimal wavelet function with the best performance for denoising and 

the highest compatibility with the EEG datasets of the ten control subjects. However, the selection of 

MWT functions was based on the best 𝑋𝐶𝑜𝑟𝑟 results between the recorded EEG signals and the WT 

denoising results.  

On the basis of Figure 14, we can conclude that ‘sym9’ from the Symlets family exhibits the highest 

similarities and compatibilities with the recorded EEG signals in all of the five scalp regions. Remarkable 

results were demonstrated by ‘coif3’ and ‘db7’ from the Coiflet and Daubechies families, respectively. 
Indeed, these results may be attributed to the similarity between ‘sym9’ and the EEG signal recorded 
from the scalp regions during the WM task; ‘coif3’ and ‘db7’ may resemble the EEG signals that 
appeared in the regions during memory load. Therefore, the most compatible MWT with the 19 EEG 

channels should be selected to perform wavelet denoising and decomposition. The selection method can 

also be considered as a complementary tool to help physicians diagnose diseases by using EEG data. 
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Figure 14. Comparative plot of the correlation coefficients with 45 mother wavelet filter for 

the 5 regions of the brain for 10 control subjects. 

 

In the future, our aim to analyze the EEG background activity in dementia patients starting from EEG 

signal acquisition, followed by EEG signal preprocessing stages using wavelet denoising method for 

signal enhancement, linear and non-linear features extraction will be the next focus to cater for the 

fluctuations of EEG signal and end with classification methods to discriminate dementia degree of 

severity. 

Acknowledgments 

The authors wish to express their gratitude to Mrs. Musmarlina Omar who recruited the healthy 

control subjects, Mr. Mohd Izhar Ariff and Neurology Unit staff from the Neurology Unit at PPUKM 

for their assistance in the acquisition of the EEG brain signals during working memory task. My sincere 

thanks also goes to Ms. Khairiyah Mohamad from the Neurology Unit at PPUKM who provided the 

neuropsychological assessment for all subjects. 

 

-3

-2

-1

0

1

2

3

4

d
b

1

d
b

2

d
b

3

d
b

4

d
b

5

d
b

6

d
b

7

d
b

8

d
b

9

d
b

1
0

d
b

1
1

d
b

1
2

d
b

1
3

d
b

1
4

d
b

1
5

d
b

1
6

d
b

1
7

d
b

1
8

d
b

1
9

d
b

2
0

S
y

m
1

S
y

m
2

S
y

m
3

S
y

m
4

S
y

m
5

S
y

m
6

S
y

m
7

S
y

m
8

S
y

m
9

S
y

m
1

0

S
y

m
1

1

S
y

m
1

2

S
y

m
1

3

S
y

m
1

4

S
y

m
1

5

S
y

m
1

6

S
y

m
1

7

S
y

m
1

8

S
y

m
1

9

S
y

m
2

0

C
o

if
1

C
o

if
2

C
o

if
3

C
o

if
4

C
o

if
5

Frontal region Temporal region Parietal region Occipital region Central region



Sensors 2015, 15 19 

 

 

Conflicts of Interest 

The authors declare no conflict of interest.  

Author Contributions 

NKQ: Acquisition, analysis, and interpretation of the EEG data for the work; drafting the manuscript. 

SHMA: Support the article by fund. SI: Support the article by fund. SAA: revising the work critically 

for important intellectual content. JE: revising the work critically for important intellectual content. All 

authors read and approved the final manuscript.  

References  

1. Davidson, P.R.; Jones, R.D.; Peiris, M.T. EEG-based lapse detection with high temporal 
resolution. IEEE Transactions on Biomedical Engineering 2007, 54, 832-839. 

2. Snyder, S.M.; Hall, J.R.; Cornwell, S.L.; Falk, J.D. Addition of EEG improves accuracy of a 
logistic model that uses neuropsychological and cardiovascular factors to identify dementia and 
mci. Psychiatry Research 2011, 186, 97-102. 

3. Al-Qazzaz, N.K.; Ali, S.H.B.; Ahmad, S.A.; Chellappan, K.; Islam, M.S.; Escudero, J. Role of 
EEG as biomarker in the early detection and classification of dementia. The Scientific World 

Journal 2014, 2014. 
4. Luu, P.; Tucker, D.M.; Englander, R.; Lockfeld, A.; Lutsep, H.; Oken, B. Localizing acute 

stroke-related EEG changes: Assessing the effects of spatial undersampling. Journal of Clinical 

Neurophysiology 2001, 18, 302-317. 
5. Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal—state-of-the-art and guidelines. 

Journal of Neural Engineering 2015, 12, 031001. 
6. Pizzagalli, D.A. Electroencephalography and high-density electrophysiological source 

localization In Handbook of psychophysiology USA, pp 8-12. 
7. Al-Kadi, M.I.; Reaz, M.B.I.; Ali, M.A.M.; Liu, C.Y. Reduction of the dimensionality of the EEG 

channels during scoliosis correction surgeries using a wavelet decomposition technique. Sensors 

2014, 14, 13046-13069. 
8. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A 

review and analysis. Brain Research Reviews 1999, 29, 169-195. 
9. Chellappan, K.; Mohsin, N.K.; Bin Md Ali, S.; Islam, M. In Post-stroke brain memory 

assessment framework, Biomedical Engineering and Sciences (IECBES), 2012 IEEE EMBS 
Conference on, 2012; IEEE: pp 189-194. 

10. Baddeley, A. Working memory. Science 1992, 255, 556-559. 
11. Jeong, J. EEG dynamics in patients with Alzheimer's disease. Clinical Neurophysiology 2004, 

115, 1490-1505. 
12. John, E.; Prichep, L.; Fridman, J.; Easton, P. Neurometrics: Computer-assisted differential 

diagnosis of brain dysfunctions. Science 1988, 239, 162-169. 
13. Leuchter, A.F.; Cook, I.A.; Newton, T.F.; Dunkin, J.; Walter, D.O.; Rosenberg-Thompson, S.; 

Lachenbruch, P.A.; Weiner, H. Regional differences in brain electrical activity in dementia: Use 
of spectral power and spectral ratio measures. Electroencephalography and Clinical 

Neurophysiology 1993, 87, 385-393. 
14. Lizio, R.; Vecchio, F.; Frisoni, G.B.; Ferri, R.; Rodriguez, G.; Babiloni, C. 

Electroencephalographic rhythms in alzheimer's disease. International Journal of Alzheimer's 

Disease 2011, 2011. 



Sensors 2015, 15 20 

 

 

15. Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-resolution EEG mapping of cortical 
activation related to working memory: Effects of task difficulty, type of processing, and practice. 
Cerebral Cortex 1997, 7, 374-385. 

16. Lundqvist, M.; Herman, P.; Lansner, A. Theta and gamma power increases and alpha/beta power 
decreases with memory load in an attractor network model. Journal of Cognitive Neuroscience 

2011, 23, 3008-3020. 
17. Onton, J.; Delorme, A.; Makeig, S. Frontal midline EEG dynamics during working memory. 

Neuroimage 2005, 27, 341-356. 
18. Guerrero-Mosquera, C.; Trigueros, A.M.; Navia-Vazquez, a.A. EEG Signal Processing for 

Epilepsy 2012. 
19. Blume, W.; Kaibara, M.; Young, G. Altas of adult electroencephalography. European Journal 

of Neurology 2002, 9, 326-326. 
20. He, P.; Wilson, G.; Russell, C. Removal of ocular artifacts from electro-encephalogram by 

adaptive filtering. Medical and Biological Engineering and Computing 2004, 42, 407-412. 
21. Romero, S.; Mananas, M.; Barbanoj, M.J. Ocular reduction in EEG signals based on adaptive 

filtering, regression and blind source separation. Annals of Biomedical Engineering 2009, 37, 
176-191. 

22. Kong, W.; Zhou, Z.; Hu, S.; Zhang, J.; Babiloni, F.; Dai, G. Automatic and direct identification 
of blink components from scalp EEG. Sensors 2013, 13, 10783-10801. 

23. Romero, S.; Mañanas, M.A.; Barbanoj, M.J. A comparative study of automatic techniques for 
ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A 
simulation case. Computers in Biology and Medicine 2008, 38, 348-360. 

24. Zeng, H.; Song, A.; Yan, R.; Qin, H. EOG artifact correction from EEG recording using 
stationary subspace analysis and empirical mode decomposition. Sensors 2013, 13, 14839-
14859. 

25. Li, X.; Jefferys, J.G.; Fox, J.; Yao, X. Neuronal population oscillations of rat hippocampus during 
epileptic seizures. Neural Networks 2008, 21, 1105-1111. 

26. Percival, D.B.; Walden, A.T. Wavelet methods for time series analysis. Cambridge University 
Press: 2006; Vol. 4. 

27. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bulletin of the American 

Meteorological Society 1998, 79, 61-78. 
28. Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet 

transform. Journal of Neuroscience Methods 2003, 123, 69-87. 
29. Krishnaveni, V.; Jayaraman, S.; Aravind, S.; Hariharasudhan, V.; Ramadoss, K. Automatic 

identification and removal of ocular artifacts from EEG using wavelet transform. Measurement 

Science Review 2006, 6, 45-57. 
30. Kumar, P.S.; Arumuganathan, R.; Sivakumar, K.; Vimal, C. Removal of ocular artifacts in the 

EEG through wavelet transform without using an EOG reference channel. Int. J. Open Problems 

Compt. Math 2008, 1, 188-200. 
31. Krishnaveni, V.; Jayaraman, S.; Anitha, L.; Ramadoss, K. Removal of ocular artifacts from EEG 

using adaptive thresholding of wavelet coefficients. Journal of Neural Engineering 2006, 3, 338. 
32. Jiang, J.-A.; Chao, C.-F.; Chiu, M.-J.; Lee, R.-G.; Tseng, C.-L.; Lin, R. An automatic analysis 

method for detecting and eliminating ECG artifacts in EEG. Computers in Biology and Medicine 

2007, 37, 1660-1671. 
33. Hsu, W.-Y.; Lin, C.-H.; Hsu, H.-J.; Chen, P.-H.; Chen, I.-R. Wavelet-based envelope features 

with automatic EOG artifact removal: Application to single-trial EEG data. Expert Systems with 

Applications 2012, 39, 2743-2749. 
34. Patel, R.; Sengottuvel, S.; Janawadkar, M.; Gireesan, K.; Radhakrishnan, T.; Mariyappa, N. 

Ocular artifact suppression from EEG using ensemble empirical mode decomposition with 
principal component analysis. Computers & Electrical Engineering 2015. 



Sensors 2015, 15 21 

 

 

35. Salis, C.; Malissovas, A.E.; Bizopoulos, P.; Tzallas, A.T.; Angelidis, P.A.; Tsalikakis, D.G. In 
Denoising simulated EEG signals: A comparative study of EMD, wavelet transform and kalman 

filter, Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International Conference on, 
2013; IEEE: pp 1-4. 

36. Übeyli, E.D. Combined neural network model employing wavelet coefficients for EEG signals 
classification. Digital Signal Processing 2009, 19, 297-308. 

37. Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. A wavelet-chaos methodology for analysis of EEGs 
and EEG subbands to detect seizure and epilepsy. Biomedical Engineering, IEEE Transactions 

on Biomedical Engineering 2007, 54, 205-211. 
38. Arafat, S.M.A. Uncertainty modeling for classification and analysis of medical signals. Doctor 

of Philosophy, University of Missouri-Columbia, 2003. 
39. Güler, I.; Übeyli, E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals 

using wavelet coefficients. Journal of Neuroscience Methods 2005, 148, 113-121. 
40. Indiradevi, K.; Elias, E.; Sathidevi, P.; Dinesh Nayak, S.; Radhakrishnan, K. A multi-level 

wavelet approach for automatic detection of epileptic spikes in the electroencephalogram. 
Computers in Biology and Medicine 2008, 38, 805-816. 

41. Guo, L.; Rivero, D.; Dorado, J.; Rabunal, J.R.; Pazos, A. Automatic epileptic seizure detection 
in EEGs based on line length feature and artificial neural networks. Journal of Neuroscience 

Methods 2010, 191, 101-109. 
42. Folkers, A.; Mösch, F.; Malina, T.; Hofmann, U.G. Realtime bioelectrical data acquisition and 

processing from 128 channels utilizing the wavelet-transformation. Neurocomputing 2003, 52, 
247-254. 

43. Zikov, T.; Bibian, S.; Dumont, G.; Huzmezan, M.; Ries, C.R. In A wavelet based de-noising 

technique for ocular artifact correction of the electroencephalogram, Engineering in Medicine 
and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical 
Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002; 
IEEE: pp 98-105. 

44. Andrade, A.O.; Soares, A.B.; Kyberd, P.J.; Nasuto, S.J. EMG decomposition and artefact 

removal. INTECH Open Access Publisher: 2012. 
45. Abi-Abdallah, D.; Chauvet, E.; Bouchet-Fakri, L.; Bataillard, A.; Briguet, A.; Fokapu, O. 

Reference signal extraction from corrupted ECG using wavelet decomposition for MRI sequence 
triggering: Application to small animals. Biomedical Engineering Online 2006, 5, 11. 

46. Alfaouri, M.; Daqrouq, K. ECG signal denoising by wavelet transform thresholding. American 

Journal of Applied Sciences 2008, 5, 276-281. 
47. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A prac-32 1998. 
48. Smith, T.; Gildeh, N.; Holmes, C. The montreal cognitive assessment: Validity and utility in a 

memory clinic setting. Canadian Journal of Psychiatry 2007, 52, 329. 
49. Al-Qazzaz, N.K.; Ali, S.H.; Ahmad, S.A.; Islam, S.; Mohamad, K. Cognitive impairment and 

memory dysfunction after a stroke diagnosis: A post-stroke memory assessment. 
Neuropsychiatric Disease and Treatment 2014, 10, 1677. 

50. Zikov, T.; Bibian, S.; Dumont, G.A.; Huzmezan, M.; Ries, C. In A wavelet based de-noising 

technique for ocular artifact correction of the electroencephalogram, Engineering in Medicine 
and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical 
Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002; 
IEEE: pp 98-105. 

51. Chen, L.; Zhao, Y.; Zhang, J.; Zou, J.-z. Automatic detection of alertness/drowsiness from 
physiological signals using wavelet-based nonlinear features and machine learning. Expert 

Systems with Applications 2015. 
52. Song, Y.; Zhang, J. Automatic recognition of epileptic EEG patterns via extreme learning 

machine and multiresolution feature extraction. Expert Systems with Applications 2013, 40, 
5477-5489. 



Sensors 2015, 15 22 

 

 

53. Sanei, S.; Chambers, J.A. EEG signal processing. John Wiley & Sons: 2008. 
54. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. 

Pattern Analysis and Machine Intelligence, IEEE Transactions on Biomedical Engineering 

1989, 11, 674-693. 
55. Messer, S.R.; Agzarian, J.; Abbott, D. Optimal wavelet denoising for phonocardiograms. 

Microelectronics Journal 2001, 32, 931-941. 
56. Shoeb, A.; Cliord, G. Chapter 16 - wavelets; multiscale activity in physiological signals. In 

Biomedical Signal and Image Processing, 2005. 
57. Li, X.; Yao, X.; Fox, J.; Jefferys, J.G. Interaction dynamics of neuronal oscillations analysed 

using wavelet transforms. Journal of Neuroscience Methods 2007, 160, 178-185. 
58. German-Sallo, Z.; Ciufudean, C. Waveform-adapted wavelet denoising of ECG signals. 

Advances in Mathematical and Computational Methods, 172-175. 
59. Mallat, S. A wavelet tour of signal processing. Academic press: 1999. 
60. German-Sallo, Z. Nonlinear filtering in ECG signal denoising. Acta Universitatis Sapientiae-

Electrical & Mechanical Engineering 2010, 2. 
61. Karlsson, S.; Yu, J.; Akay, M. Time-frequency analysis of myoelectric signals during dynamic 

contractions: A comparative study. Biomedical Engineering, IEEE Transactions on Biomedical 

Engineering 2000, 47, 228-238. 
62. Santoso, S.; Powers, E.J.; Grady, W.M.; Hofmann, P. Power quality assessment via wavelet 

transform analysis. Power Delivery, IEEE Transactions on Biomedical Engineering 1996, 11, 
924-930. 

63. Strang, G.; Nguyen, T. Wavelets and filter banks. SIAM: 1996. 
64. Rafiee, J.; Schoen, M.; Prause, N.; Urfer, A.; Rafiee, M. In A comparison of forearm EMG and 

psychophysical EEG signals using statistical signal processing, Computer, Control and 
Communication, 2009. IC4 2009. 2nd International Conference on, 2009; IEEE: pp 1-5. 

65. Rafiee, J.; Rafiee, M.; Prause, N.; Schoen, M. Wavelet basis functions in biomedical signal 
processing. Expert Systems with Applications 2011, 38, 6190-6201. 

66. Khanam, R.; Ahmad, S.N. Selection of wavelets for evaluating snr, prd and cr of ECG signal. 
International Journal of Engineering Science and Innovative Technology (IJESIT) 2013, 2, 112-
119. 

67. Singh, B.N.; Tiwari, A.K. Optimal selection of wavelet basis function applied to ECG signal 
denoising. Digital Signal Processing 2006, 16, 275-287. 

68. Al-kadi, M.I.; Reaz, M.; Ali, M. In Compatibility of mother wavelet functions with the 

electroencephalographic signal, Biomedical Engineering and Sciences (IECBES), 2012 IEEE 
EMBS Conference on, 2012; IEEE: pp 113-117. 

69. Menshawy, M.E.; Benharref, A.; Serhani, M. An automatic mobile-health based approach for 
EEG epileptic seizures detection. Expert Systems with Applications 2015. 

70. Walters-Williams, J.; Li, Y. A new approach to denoising EEG signals-merger of translation 
invariant wavelet and ICA. Int J Biometrics Bioinform 2011, 5, 130-149. 

71. Walters-Williams, J.; Li, Y. Performance comparison of known ICA algorithms to a wavelet-ica 
merger. Signal Processing: An International Journal 2011, 5, 80. 

72. Inuso, G.; La Foresta, F.; Mammone, N.; Morabito, F.C. In Wavelet-ICA methodology for 

efficient artifact removal from electroencephalographic recordings, Neural Networks, 2007. 
IJCNN 2007. International Joint Conference on, 2007; IEEE: pp 1524-1529. 

73. Mammone, N.; La Foresta, F.; Morabito, F.C. Automatic artifact rejection from multichannel 
scalp EEG by wavelet ICA. Sensors Journal, IEEE 2012, 12, 533-542. 

74. Donoho, D.L.; Johnstone, I.M. Ideal denoising in an orthonormal basis chosen from a library of 
bases. Comptes rendus de l'Académie des sciences. Série I, Mathématique 1994, 319, 1317-1322. 

75. Donoho, D.L. De-noising by soft-thresholding. Information Theory, IEEE Transactions on 

Biomedical Engineering 1995, 41, 613-627. 



Sensors 2015, 15 23 

 

 

76. Donoho, D.L.; Johnstone, I.M. Minimax estimation via wavelet shrinkage. The Annals of 

Statistics 1998, 26, 879-921. 
77. Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. Journal 

of the American Statistical Association 1995, 90, 1200-1224. 
78. Stein, C.M. Estimation of the mean of a multivariate normal distribution. The Annals of Statistics 

1981, 1135-1151. 
79. Romo-Vazquez, R.; Ranta, R.; Louis-Dorr, V.; Maquin, D. In EEG ocular artefacts and noise 

removal, Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual 
International Conference of the IEEE, 2007; IEEE: pp 5445-5448. 

80. Estrada, E.; Nazeran, H.; Sierra, G.; Ebrahimi, F.; Setarehdan, S.K. In Wavelet-based EEG 

denoising for automatic sleep stage classification, Electrical Communications and Computers 
(CONIELECOMP), 2011 21st International Conference on, 2011; IEEE: pp 295-298. 

81. Al-Qazzaz, N.K.; Ali, S.; Ahmad, S.A.; Islam, M.S.; Ariff, M.I. In Selection of mother wavelets 

thresholding methods in denoising multi-channel EEG signals during working memory task, 
Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on, 2014; IEEE: pp 
214-219. 

82. Ko, K.-E.; Yang, H.-C.; Sim, K.-B. Emotion recognition using EEG signals with relative power 
values and bayesian network. International Journal of Control, Automation and Systems 2009, 
7, 865-870. 

83. Kang, W.-S.; Cho, K.; Lee, S.-H. In A method of mother wavelet function learning for dwt-based 

analysis using EEG signals, Sensors, 2011 IEEE, 2011; IEEE: pp 1905-1908. 
84. Ghosh-Dastidar, S.; Adeli, H.; Dadmehr, N. Mixed-band wavelet-chaos-neural network 

methodology for epilepsy and epileptic seizure detection. Biomedical Engineering, IEEE 

Transactions on Biomedical Engineering 2007, 54, 1545-1551. 
85. Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. Alzheimer's disease and models of computation: 

Imaging, classification, and neural models. Journal of Alzheimer's Disease 2005. 
86. Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. Alzheimer's disease: Models of computation and 

analysis of EEGs. Clinical EEG and Neuroscience 2005, 36, 131-140. 
87. Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. A spatio-temporal wavelet-chaos methodology for 

EEG-based diagnosis of alzheimer's disease. Neuroscience letters 2008, 444, 190-194. 
88. Kramer, M.A.; Chang, F.-L.; Cohen, M.E.; Hudson, D.; Szeri, A.J. Synchronization measures of 

the scalp electroencephalogram can discriminate healthy from alzheimer's subjects. International 

Journal of Neural Systems 2007, 17, 61-69. 
89. Ahmadlou, M.; Adeli, H. Wavelet-synchronization methodology: A new approach for EEG-

based diagnosis of adhd. Clinical EEG and Neuroscience 2010, 41, 1-10. 
 

 


