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Abstract  

In this paper, a system is presented that can detect 48 human actions in realistic videos, ranging from 

simple actions such as ‘walk’ to complex actions such as ‘exchange’. We propose a method that gives a 

major contribution in performance. The reason for this major improvement is related to a different 

approach on three themes: sample selection, two-stage classification, and the combination of multiple 

features. First, we show that the sampling can be improved by smart selection of the negatives. Second, we 

show that exploiting all 48 actions’ posteriors by two-stage classification greatly improves its detection. 

Third, we show how low-level motion and high-level object features should be combined. These three yield 

a performance improvement of a factor 2.37 for human action detection in the visint.org test set of 1,294 

realistic videos. In addition, we demonstrate that selective sampling and the two-stage setup improve on 

standard bag-of-feature methods on the UT-Interaction dataset, and our method outperforms state-of-the-art 

for the IXMAS dataset. 

Keywords: human action detection, sparse representation, pose estimation, interactions between people, 

spatiotemporal features, STIP, tracking of humans, person detection, event recognition, random forest, 

support vector machines. 

1. Introduction 

The amount of image and video data being recorded and stored is increasing daily, both 

on the internet (e.g. YouTube) and for surveillance applications. This yields practical 

problems when analysts want to extract information from the huge data collection. What 

is needed are tools for automatic analysis of the data. One of the key technological 

capabilities to aid search for the relevant data, is automated detection of specific events in 

videos. In many applications, the relevancy of events is determined by the actions that are 

being performed by the humans in the scene. A typical event is that one person 

approaches the other, walks up to the other person, and gives him something. These 

actions, ‘walk’, ‘approach’ and ‘give’, occur in a particular order, and are partially 

overlapping. This complicates the search for particular events. Therefore, in this paper, 

we address the challenge of detecting many actions, occurring in isolation, or 

simultaneously.  

 

We consider the technological capability to analyse single- and multi-action events, 

where actions may involve a single actor (‘jump’), multiple actors (‘approach’), items 

(‘give’), and interaction with the environment (‘arrive’). An excellent overview of 

datasets related to action recognition was presented by Liu [36], however, the datasets 

discussed therein are not sufficient to test such a capability. Some datasets are single-
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actor, e.g. KTH [1] and Weizmann [2], and the performance on these datasets has almost 

been saturated [3] by methods with key components that serve as the basic pipeline in 

this paper (see Sec. 2). The MSR action dataset [37] contains only three actions but is 

very challenging because it requires spatio-temporal localization of the action, which is 

not a problem addressed by this paper. The UCF Sports [4], Hollywood2 [5], YouTube 

[6], Olympic sports [38] and the Columbia Consumer Video [46] datasets are more 

challenging (see e.g. [7]) as they involve interactions with other people and items and the 

recording conditions are hard. These actions in these datasets are all very context-

dependent, which makes it a concept search rather than purely an action recognition task. 

The IXMAS [39] and UT-Interaction [20] datasets contain subtle actions with 12 action 

types [39] and two-person interactions with 6 action types [20], respectively. A very 

challenging dataset is the visint.org [8], where multiple actions may happen at the same 

time, or just before or after each other. This dataset includes 4,774 videos of a wide range 

of events that involve a large number (48) of human actions, in various forms including 

humans inside a car or on a motor bike or bicycle. Due to its realism and complexity, we 

select the visint.org dataset for the study in this paper on human action detection. In 

addition, we will include IXMAS [39] and UT-Interaction [20] datasets in our 

experiments, which allows a comparison to state-of-the-art action recognition methods. 

Together these two datasets represent a broad scope of possible actions. 

The events in the visint.org dataset are realistic and each event is represented by multiple 

actions: on average 7 actions per movie clip. While each video scripts a single event, this 

event can be represented by several actions. For example, a transaction between persons 

can contain the actions “move”, “give” and “receive”. The actions vary from a single 

person (e.g. walk) to two or more persons (e.g. follow). Some of these actions are defined 

by the involvement of some object (e.g. give), or an interaction with the environment 

(e.g. leave). The most complex actions involve two persons and an object (e.g. exchange, 

throw-catch combination). Figure 1 depicts a few illustrations of this dataset. The dataset 

contains a test set of 1,294 realistic videos with highly varying recording conditions and 

on average 195 variations of each of the 48 actions. A complicating property of this 

dataset is that the actions are highly unbalanced: e.g. 1,947 positive learning samples for 

“move” to only 58 samples for “bury”, see Figure 2.  
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Fig. 1. Human actions in the visint.org dataset include persons, cars, interactions with other persons or cars, 

involvement of items like the balls (of which the ball in the upper-right video is practically not detectable), 

clutter in the background (such as the small car, at the upper-left video), and varying scenes and recording 

conditions. Green boxes depict the bounding boxes on which the EP features are based (Section 2.2), 

including e.g. pose information (as in the upper-right). 

 

The improvement in human action detection performance as proposed in this paper 

follow from the observation that particular human actions are highly correlated, see 

Figure 3. One category of actions shows correlations due to similarity, e.g. chase and 

follow. Another category is the sequential relations, e.g. leave and exit. There is also a 

category of compound actions, e.g. to exchange something requires both to give and to 

receive something. Indeed, all of the actions from these examples, and many others (see 

Figure 3), are highly correlated in the human annotations of the visint.org dataset. 

 

Fig. 2. The 48 human actions in the visint.org dataset and their (logarithmic) prevalence in the train set. 

 

We propose a method for the human-action recognition application that gives a major 

contribution in the performance on this visint.org dataset with a gain factor of 2.37 

relative to previously published results on this dataset [9]. The reason for this major 

improvement is the exploitation of the correlations between the 48 actions and it is 

related to a different approach on three themes: 

 

 Better selection of negative training samples, by choosing those that are most similar 

to positives. 

 Exploitation of the posterior probabilities of all action detectors in a two-stage SVM 

classifier. 

 Combination of multiple features that are based on low level motion and high level 

object features. 

 

The outline of this paper is as follows. Our method will be motivated and detailed in 

Section 2, where we also compare to related work. The experimental setup is defined in 

Section 3. The experiments and results on the visint.org dataset are shown in Section 4, 

and a comparison to state-of-the-art results on the IXMAS and UT-Interaction datasets is 

provided in Section 5. A discussion of the results is provided in Section 6, and Section 7 

concludes the paper with our main findings. 
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Fig. 3. Correlations of human action annotations in the visint.org dataset. Only correlations larger than 0.2 

are shown. All large correlations are positive. The thickest line indicates a correlation of 0.7. 

 

2. Method 

2.1 Overview of the action recognition framework 

The basic action recognition framework is similar to the bag-of-words model used in a 

recent performance evaluation [10]. The general scheme is that features are computed, 

quantized by a codebook, stored in histograms, and finally the action is detected by an 

action-specific classifier. More specifically, in [10], space-time interest points (STIP) 

features were used, quantized by a k-means codebook, and videos were classified by a 

SVM. Due to its simplicity and reasonable performance in various detector-feature 

configurations on the KTH dataset and also on the more challenging UCF Sports and 

Hollywood2 datasets [10], we select this framework as a baseline pipeline to which we 

can add our proposed improvements. We replace the k-means codebook by a random 

forest as a quantizer [11], because it worked better in our experiments (data not shown). 

Further we consider two types of features: the low-level STIP features and high-level 

event property (EP) features (Sec. 2.2), which we both compute on the data In our 

method and experimentation, we will compare and combine them.  

 

The basic pipeline and the advanced pipeline that we use in our experiments are shown in 

Figure 4. Each of the components in the advanced pipeline will be described and 

compared to the basic pipeline in the following subsections: feature computation (Sec. 

2.2); sampling for, and creation of, the random forest (Sec. 2.3); the classification, by a 

single classifier (one stage) and a two-stage classifier (Sec. 2.4); and finally combining 

features (Sec. 2.5).  
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Fig. 4. Overview of the basic pipeline and the proposed advanced framework that is used in our 

experiments. In the basic pipeline either EP or STIP features are used, indicated by EP | STIP, where in the 

advanced pipeline the EP and STIP features are combined on feature or on classifier level. 

 

In our ICPR ’12 paper [12], we performed initial experiments by comparing a STIP-

based two-stage classifier to its one-stage counterpart. In this paper, we extend this setup 

to include also a different video feature, i.e. the complementary EP feature. Thereby we 

generalize to the advanced pipeline shown in Figure 4, extending it further by exploring 

two schemes to combine the two features. In this paper, we show experimentally the 

impact of the several choices inside the pipelines. We demonstrate how an optimized 

pipeline design provides a major improvement for the detection of 48 human actions. 

2.2 Feature computation 

Many interesting features have been proposed for action recognition, which can be 

distinguished into two types of features: low-level motion features and high-level object 

features.  

 

The low-level features aim at capturing properties of the actions such as motion. A well-

known example is the motion template [13], which captures the motion of the full body. 

A drawback is that it depends on the silhouette, whose detection is known to be error-

prone. Local motions have been studied extensively, e.g. the representation of actions in 

terms of a PCA-basis of optical flow [14]. The segmentation is still a critical element 

here, which has been a motivation to consider motion in several feature point 

configurations. That proved to be a promising direction due to its success for action 

recognition, see e.g. [15]. Several motion-based descriptors have been proposed since. 

The space-time interest point (STIP) detector and descriptor [16] is an example, capturing 

the local motions and shapes around detected Harris points in (x,y,t) space. It is very 
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popular, because it has proven to be a very discriminative and robust feature for actions 

[17].  

 

The high-level features are a different category and include, among others, detection of 

persons in the image and estimation of their poses. Poses are interesting because they 

relate very directly to human actions, as opposed to the low-level features such as STIP. 

Pose estimation has been done by matching exemplars [18] and searching the image for 

poses by evaluating deformable part models in spatial windows [19]. The window-based 

approach has also been successfully applied to the detection of persons, which potentially 

can be applied as a first step before analyzing the pose. The representation of a person’s 

trajectory has enabled storyline generation [20]. In [21] the layout of the scene is 

exploited to interpret trajectories and actions. The Event Property (EP) features as 

proposed in [9] aim to combine the ideas that were proposed in previous work. Persons 

are detected by a dedicated detector [22] where other objects are detected by a generic 

moving object detector [23]. All entities are tracked with a standard search-and-update 

tracker, and described by 7 canonical poses that are classified from outputs of [19], and 

by additional event properties such as “two entities approach each other”.  

 

Our choice for the low-level feature is STIP due to its robustness, no need for 

segmentation, and its proven value for action recognition. Our choice for the high-level 

features is EP, because it combines several methods that each have proven their merit for 

representing meaningful intermediate-level aspects of human actions. In Sec. 2.5, we will 

show how these two can be combined.  

 

We note that there are other more specific features that can also be used for action 

recognition, such as frequency domain based features [45] that are informative of (quasi) 

periodic motion patterns such as walking and digging. It is our goal to include features 

that are common to a wide range of human activities. Therefore, we choose not to include 

such more specific features as they are representative of a subset of activities only.  

2.3 Sampling and the random forest 

During the training phase, two components are learned for an action detector: the random 

forest to create bag-of-feature histograms [11] and a classifier to detect the presence of 

actions. For the classifiers considered this learning is no problem: after the random forest 

the amount of data is limited and it is capable of learning from unbalanced classes. 

However, for the learning of the random forest, both the size of the data and the 

unbalanced classes are an issue [24]. 

 

Sampling is needed to reduce the amount of data and to obtain a proper balance in the 

training set between positive and negative examples. On the visint.org dataset, on average 

we have 500 STIP and EP feature vectors per video, resulting in approximately 2M 

feature vectors. Considering all these feature vectors in intractable: in recent applications 

of random forests typically 500K feature vectors are used for learning, see e.g. [25]. The 

other issue is the unbalanced presence of actions in this dataset. An extreme example is 

“bury” being present in 2% of the samples only. In fact, only 1 action, “move” occurs in 
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more than 50% of the clips. For all other actions, we are faced with the challenge of 

selecting proper negative samples for training. 

 

It has been shown previously that significant improvements can be achieved by doing 

such sampling carefully [26]. In previous work, the rationale has been proposed to select 

negatives that are similar to positives, social tags, i.e. free textual strings, have been 

exploited in [27]. However, social tags are unbound as a user can input any textual string. 

That makes the search for good negatives hard and therefore an iterative scheme is 

applied to find a good subset of negatives. In our case, the tags are bound: the annotations 

are fixed, as 48 binary judgements have been made by the annotators whether each action 

is present in a video. This opens up the opportunity to exploit the other 47 tags on 

whether other actions are present/absent in order to select the negatives for the current 

action.  

 

Each sample consist of one video clip, which typically has several action labels, and 

hundreds of feature vectors. For the positive class of a particular human action, the 

positive videos can be sampled randomly to obtain enough positive feature vectors. The 

most common approach to obtain the negatives is to do the same. However, the set of 

negative samples, is much more heterogeneous: these can consist of any combination of 

the other 47 human actions. Therefore, we propose a selective sampling scheme. For 

discriminative learning, the rationale is that good negative samples are similar to the 

positive samples. To select negatives that are similar to positives, we consider all 

remaining 47 binary judgements by the annotators whether each action is present. Due to 

the correlations between actions, we expect to be able to determine the similarity between 

videos based on correspondences between the remaining 47 annotations. Similarity is 

determined by comparing the 47 annotations based on the L
2
 distance metric, where we 

normalize these vectors before comparison, such that they sum to one. The random forest 

quantizes the equally balanced positive and negative feature vectors into histograms (or 

visual words).  

 

Furthermore, we investigate for each action which type of sampling (random or selective) 

works best. Selecting the best sampling strategy for each action allows further 

optimization of the performance.  

2.4 Two-stage classification 

Several classifiers have been used in previous work to estimate action probabilities, such 

as the Tag Propagation (TP) [9] or the Support Vector Machine (SVM), e.g. [10]. For 

classification we chose an SVM, which is currently the most popular classifier in bag-of-

feature models due to its robustness against large feature vectors and sparse labels (see 

‘Classifier’ in Figure 4). In preliminary experiments, the SVM proved indeed to be better 

than standard alternatives, e.g. K nearest neighbors, nearest mean, logistic linear, 

quadratic and Fisher classifiers (data not shown). 

 

In this paper, we additionally investigate the merit of a second-stage classifier, where all 

48 posterior probabilities of the first classifier bank are used as new features for a second 

stage. Both the first and the second stage consist of 48 single action classifiers. The 
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rationale behind using a second stage is that actions are correlated (Figure 3), so they are 

informative of each other. For instance, the likelihood of walking is very predictive of 

moving.  This is a source of information that we want to exploit, by a two-stage setup. In 

Figure 4 this is depicted by the ‘Classifier-2’ which is applied to ‘Classifier-1’ outputs. 

Note that the basic pipeline (Figure 4, left) does not exhibit this property. 

 

In machine learning, this is commonly known as Sequential Stacked Learning (SSL), see 

e.g. [49]. In video concept detection, others have investigated methods to combine class-

specific detectors in a second-stage classification. For instance, in the TRECVID 

challenge, the posterior probabilities of many concept detectors were taken as feature 

values and fed to a higher-level classifier [28]. Another technique for the second-stage 

analysis is a weighted linear combination of all posteriors, which yielded a better estimate 

of each of the classes in [29]. Typically, such techniques have been used to combine 

different feature modalities, like image and text features [30], and different concepts [28]. 

Very recently, for action detection, first-stage action detectors were used as an ‘action 

bank’ to represent activities in video and to be classified by a second-stage classifier [7]. 

In a first stage, action detectors were applied to the video frames, and in the second stage, 

the posteriors were max-pooled over volumes in the video and represented by a 

histogram. This advanced scheme involves sampling over viewpoints and scales, dividing 

the video into volumes, and accumulating the evidence from the first-stage detectors into 

a well-engineered histogram representation. This two-stage scheme proved to be very 

effective on multiple datasets, yet also computationally demanding. The authors indicate 

that on average 204 minutes are consumed to process a video of the UCF50 dataset, with 

a maximum of 34 hours [7]. Given that these are short video clips, we consider such a 

method currently computationally intractable for detection of action in thousands of 

realistic videos, which is the case that is investigated in this paper. 

 

In this paper, we answer the question how much performance can be gained by exploiting 

the information in the correlated actions. To that end, we want to assess the immediate 

advantage of exploiting the information in the first-stage detectors. Hence we use their 

continuous posterior probabilities directly without complex and computationally 

demanding operations that are needed to make advanced representations such as the 

action bank [7], although we acknowledge the potential that can be gained by such 

advanced representations. The added value of our paper is that we assess the merit of 

combining multiple action detectors in a simple two-stage setup, where each detector has 

been composed of the standard state-of-the-art components STIP features, a random 

forest, and a SVM (see Sec. 2.1) that have proven to perform well (see e.g. [1,5,10,17]) 

and are very efficient (STIPs run at approximately 10 fps and the random forest 

quantization and SVM classification are real-time). Combining the first-stage detector 

outputs by a weighted linear combiner as used in [29] proved not to be effective for our 

purpose (data not shown). Rather we consider the simple and computationally efficient 

scheme where the posterior probabilities from stage one are used as features in stage 2.  

2.5 Combining multiple features 

In the last step of the pipeline, we improve the action detection by combining low-level 

(STIP) and high-level (EP) features. The most straightforward approach is to directly 
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concatenate the EP and STIP histograms and feed them in a single classifier and create a 

detector for each action (dashed arrows in Figure 4). As an alternative, we also consider 

the concatenation of the posteriors of the first classifiers for both EP and STIP features 

and the creation of a final-stage combined detector for each action. Other combiner 

schemes are available, such as multiple kernel learning [31], but we will show that this 

simple two-stage combiner is effectively taking advantage of the complementarity both 

feature types. 

3. Experimental Setup 

3.1 Videos and Annotations 

The visint.org dataset [8] includes 48 human actions in a train set of 3,480 videos of 10-

30 seconds, and a test set of 1,294 similar video. This dataset is novel and contributed by 

the DARPA Mind’s Eye program. The annotation is as follows: for each of the 48 human 

actions, a human has assessed whether the action is present in each video or not (“Is 

action X present?”). Typically, multiple actions are reported for every video, on average 

the number of reported actions is seven.  

3.2 Implementation details of the framework 

For each action we create a random forest [32] with 10 trees and 32 leafs, based on 200K 

feature vectors, 100K from randomly selected positive videos, and 100K from either 

randomly selected or selective sampled negative videos. The random forest quantizes the 

features into histograms [11] and a SVM classifier with a χ
2
 kernel [33] is trained that 

serves as a detector for each action. For the random forest we use Breiman and Cutler's 

implementation [32], with the M-parameter equal to the total number of features (162 for 

STIP and 78 for EP features). For the SVM we use the libSVM implementation [34], 

where the χ
2
 kernel is normalized by the mean distance across the full training set [33], 

with the SVM's slack parameter default C=1. The weight of the positive class (i.e. the 

samples of a particular action) is set to (#pos+#neg)/#pos and the weight of the negative 

class (i.e. samples that do not contain the action) to (#pos+#neg)/#neg, where #pos and 

#neg are the amount of  positive and negative class samples [35]. 

3.3 Performance Measure 

Although detection of actions will simultaneously involve spatial localization in the 

video, the performance of action detection will not be measured in terms of localization 

accuracy in this paper. The reason for this is that not all datasets contain annotations of 

action location. The performance will be measured by the MCC measure,  

 

 
))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC




  

 

with T=true, F=false, P=positive and N=negative. The MCC measure has the advantage 

of its independence of the sizes of the positive and negative classes. This is important for 

our evaluation purpose, as the human actions are highly unbalanced (see Figure 2). This 
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evaluation metric was also used in the evaluation of the DARPA’s Mind’s Eye program 

and it allows comparison to previous results on this dataset [9,12].  In this paper we 

report the average and the standard deviation of the MCC per verbs (denoted as 

0.25±0.13) where in [9] we reported the MCC calculated using TP,TN,FP and FN 

averaged over all verbs. 

4. Experiments and results 

The parts of the pipeline that we vary are: the sampling of feature vectors for the random 

forest (Sec. 4.1), the usage of two-stage classification (Sec. 4.2), the combination of STIP 

and EP features in a joint pipeline (Sec. 4.3), and analysis of the best approach for each 

action (Sec. 4.4). The other parts remain fixed during the experiments. Optimization of 

the parameters, training of the random forest and classifiers, and selection of the best 

sampling approach for each action has been performed on the training set. The results in 

these sections are based on applying the trained method to the test set. A combined 

overview of these results is given in Section 4.5. 

4.1 Random and selective sampling 

Table 1 shows the results of random vs. selective sampling, for both EP and STIP 

features separately and one-stage classification. For completeness, we also inserted the 

state-of-the-art results [9] on the visint.org dataset (experiment number 00). 

 

We see that for EP-only results, the baseline [9] with tag propagation outperforms the 

one-stage SVM based results. We consider the SVM because it proved to work better 

than tag propagation for all other cases in this paper (data not shown). Table 1 shows that 

STIP features work much better than EP features. For EP features, the selective sampling 

gives an overall relative performance loss of -17% compared to random sampling. 

However, for 15 out of 48 actions the performance is improved. For STIP features, 

selective sampling of negatives yields an improvement for 21 out of 48 actions. Note 

however, that we intend to select the best sampling scheme per action. If we consider the 

best sampling scheme per action and compare to random sampling, EP performance 

increases with 29% and STIP performance with 19%. Compared to the baseline [9], STIP 

features with best sampling give an improvement of 73%. 

 

Table 1. Different sampling strategies, compared to the baseline from [9] (ExpNr 00).  

ExpNr Feature Classifier Sampling Classification MCC Improvement 

00 EP TP Random 1 stage 0.11±0.10 - 

01 EP SVM Random 1 stage 0.07±0.11 -36% 

02 EP SVM Selective 1 stage 0.06±0.09 -45% 

03 EP SVM Best 1 stage 0.09±0.11 -18% 

04 STIP SVM Random 1 stage 0.16±0.15 +45% 
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05 STIP SVM Selective 1 stage 0.18±0.15 +64% 

06 STIP SVM Best 1 stage 0.19±0.15 +73% 

 

4.2 One- and two-stage classification 

Table 2 shows the results of one- vs. two-stage classification, for both EP and STIP 

features separately and best sampling.  For comparison, we again inserted the best 

sampling one-stage results of the previous subsection (experiment number 03 and 06). 

The two-stage classifier improves the results for both EP and STIP features for more than 

20%. For EP features the detection is improved for 30 out of 48 actions, and for STIP 

features an improvement is achieved for 32 out of 48 actions. Compared to the baseline 

of [9], a gain of 109% is achieved. 
 

Table 2. The one- vs. two-stage classifier for both EP and STIP features separately.  

ExpNr Feature Sampling Classification Combining MCC Improvement 

03 EP Best 1 stage - 0.09±0.11 -18% 

06 STIP Best 1 stage - 0.19±0.15 +73% 

07 EP Best 2 stage - 0.13±0.09 +18% 

08 STIP Best 2 stage - 0.23±0.13 +109% 

 

4.3 Combining multiple features 

We consider two combination schemes and compare them in the experiments. One 

combination is to concatenate the EP and STIP histograms and feed them in a one-stage 

combining classifier and create a detector for each action. The other combination is to 

concatenate the EP and STIP posteriors and create a second-stage combining classifier 

for the detection of each. 

 

Table 3 shows the results for the two schemes of combining EP and STIP features. 

Compared to concatenation of the two features’ histograms, the detection improvement 

achieved by combining the posteriors of both advanced pipelines is almost doubled. Note 

that the one-stage combination of features are worse than the one-stage classifier with 

STIP only (experiment number 06). Relative to the performance of combining posteriors 

of STIP only (experiment number 08), the performance increase is 7% (from 0.23 to 

0.25). The posterior combination improves detection accuracy for 42 out of 48 human 

actions, and the relative improvement of the second-stage combiner is 39% with respect 

to the concatenated histograms, and 127% with respect to [9]. 
 

Table 3. The results for the two schemes of combining EP and STIP features, which combine either 

histograms in the first stage or posteriors in the second stage.  

ExpNr Feature Sampling Combining MCC Improvement 
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09 EP+STIP Best Histograms 0.18±0.14 +64% 

10 EP+STIP Best Posteriors 0.25±0.13 +127% 

 

4.4 Analysis of best feature, sampling and combiner 

Analysis of the best feature (EP and/or STIP), sampling (random or selective) and 

combiner (one or two stage) for each action separately leads to the conclusion that 73% 

would be based on the EP+STIP two-stage combiner. Table 4 summarizes how often a 

particular scheme of the best feature, sampling and combiner is optimal. Based on these 

results, we can also conclude that STIP features by themselves are optimal in 17% of the 

cases, and that the EP features by themselves are almost never the best  (2% of the overall 

cases). Interestingly, the combination of STIP and EP features add discriminative power 

to the overall solution in 73% of the cases. A surprise is that for two-stage classification, 

the combination of STIP and EP features are always better than either one of them alone 

in a two-stage classifier. Yet, the added value of EP features is limited: 7% (from 0.23 to 

0.25, see experiment numbers 08 and 10, and details in Sec. 4.3).  

 

Table 4. The number of the 48 human actions for which a particular scheme of “feature, sampling, 

combiner” performs best. (*) Only available for best sampling per action. 

Feature(s) Random 

sampling 

Selective 

sampling 

STIP: one-stage classifier 4/48 = 8% 4/48 = 8% 

EP: one-stage classifier 1/48 = 2% 0/48 = 0% 

STIP + EP: histograms combiner 1/48 = 2% 3/48 = 6% 

STIP + EP: posteriors combiner 35/48 = 73%  * 

 

If we select for each action the best feature, sampling and combiner, it would improve the 

results from experiment number 10. Figure 5 displays the results for this optimal scheme. 

The detection accuracy is on average for all 48 human actions: MCC = 0.26±0.13, which 

is slightly better than the two-stage combiner. Compared to the STIP features with 

random sampling and one-stage classification, a gain of 63% is achieved, and compared 

to the baseline [9], a major gain of 137% (gain factor 2.37) is achieved. 
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 DARPA evaluation Sep 2011 (0.11 ± 0.10)

eventproperties+stips: advanced baseline, best feature-sampling-classifier configuration per action (0.26 ± 0.13)

 

Fig. 5. The optimal scheme of “Best feature, sampling and combiner” per action (green, MCC=0.26±0.13), 

compared to the baseline on this dataset [9] (blue, MCC=0.11±0.10): the relative improvement overall is a 

gain factor of 2.37 compared to the baseline. 

 

Examples of human actions that are detected well by our method (MCC > 0.4) are: Go, 

Walk, Leave, Dig, Run, Flee. These actions have limited intra-class variation and are 

well-defined in terms of their motion. Actions that perform reasonably well (MCC > 

0.25) are e.g.: Approach, Arrive, Hold, Throw, Pass, Touch, Carry, Replace, etc. Here, 

some of the actions are quite complex, involving a person interacting with small items, 

such as to Hold and Carry something. We consider this result impressive. Examples of 

actions that do not perform well (MCC < 0.15) are: Stop, Collide, Hit, Catch, Get, Move, 

Push, Attach. These actions are hard due to the following reasons: subtle motion (Hit), 

very short duration (Catch), and badly annotated (Move) Overall, the results are 

promising, although we acknowledge that for an actual application the performance 

might need to be improved further. 

 

Practical usage of automatic recognition for a specific action may require a minimum 

performance for that particular action. Table 5 summarizes the results by listing per MCC 

score the percentage of the 48 human actions for which such detection accuracy is 

achieved. Of all 48 human actions, 6% has a strong performance, MCC > 0.5, and almost 

half of the actions, 44% has a reasonable performance, MCC > 0.25. 

 

Table 5. The cumulative histogram of the 48 human actions for which a level of MCC scores is achieved. 

MCC > 0.50 > 0.45 > 0.40 > 0.35 > 0.30 > 0.25 > 0.20 > 0.15 > 0.10 > 0.05 

Actions 6% 10% 13% 19% 27% 44% 60% 75% 94% 100% 
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4.5 Combined overview of results  

For all previous experiments (ExpNr 01 – 10) we display the performance by one 

precision-recall curve. A precision-recall curve provides an intuitive visualization of 

action detection performance for various thresholds of the detector [44]. Recall that the 

single MCC reported per experiment was computed by averaging the MCC per action. 

We follow a similar procedure for the precision-recall curve. For each action, we obtain a 

precision-recall curve. The single curves per experiment in Figure 6 are calculated by 

averaging the curves for all 48 actions. For readability of the figure, we have omitted the 

standard deviations from the points on the curve.  

The ordering of curves up to the upper- right point, the ideal operating point is at (1,1), 

follows the ordering we found when comparing the average MCC across the 48 actions. 

Compared to ExpNr 04, a standard STIP-based action detector with random sampling and 

one-stage classification (i.e., a setup often applied by the action recognition research 

community), the combination of features with best of random/selective sampling and 

two-stage classification achieves approximately a higher recall of 0.10 – 0.15 absolute 

gain at the same precision. 
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EP    + rand.sampl. + 1-SVM (ExpNr 01)

EP    + sel. sampl. + 1-SVM (ExpNr 02)

EP    + best sampl. + 1-SVM (ExpNr 03)

STIP  + rand.sampl. + 1-SVM (ExpNr 04)

STIP  + sel. sampl. + 1-SVM (ExpNr 05)

STIP  + best sampl. + 1-SVM (ExpNr 06)

EP    + best sampl. + 2-SVM (ExpNr 07)

STIP  + best sampl. + 2-SVM (ExpNr 08)

comb. + best sampl. + 1-SVM (ExpNr 09)

comb. + best sampl. + 2-SVM (ExpNr 10)

 

Fig. 6. Precision-recall curves corresponding to the visint.org experiments. 

 

5. Comparison to the State-of-the-Art 

In this section, we compare our approach to state-of-the-art methods on commonly used 

datasets. To the best of our knowledge, beside our earlier work [9,12] no results have 

been published on the visint.org dataset yet; it has been released very recently. Therefore, 
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we will compare to the state-of-the-art on the single-person multi-viewpoint IXMAS 

dataset of subtle actions [39], and the UT-Interaction dataset [40] containing two-person 

interactions. For both datasets we will investigate the added value of the selective 

sampling for the random forest and the two-stage classification setup. We do this for the 

STIP feature only; due to their performance and also as we expect the EP features do not 

map straightforward to other data sets. STIP features are easily computed and Section 4 

showed that they achieve near optimal results compared to the multi-feature setup. 

5.1 Experimental setup 

For the experiments on the IXMAS and UT-Interaction we follow an identical procedure. 

For each action we learn a random forest in two modes: random and selective. Random 

mode means that we learn the forest by labeling features from one action A and randomly 

selected features from all other actions. In selective mode we consider features from one 

action A and features from one other action B that is most similar. Contrary to visint.org 

with multiple labels per clip, we do not have metadata (like the correlations) to infer 

which action is most similar or related as IXMAS and UT-Interaction have only a single 

label per clip. Therefore we follow a slightly different approach for IXMAS and UT-

Interaction. To infer which other action is most similar to A, we use a cross-validation 

setup to select the action B that yields the forest with most discriminative power in terms 

of classification accuracy. In this way, we can sample selectively and this will 

demonstrate to be very powerful.  

For the first-stage action detectors, we obtain for each action a detector by training an 

SVM in an identical setup to Section 4. For the one-stage setup we classify the test 

sample as the single action that maximizes the a-posteriori probability. We also 

investigated the potential of the two-stage setup. Here we train a second-stage SVM on 

the posterior probabilities of the first-stage SVMs identical to Section 4. All random 

forests and SVMs are trained separately for each action in each dataset, and for each 

camera viewpoint in IXMAS. We report on the classification accuracy 

FNTNFPTP

TNTP
accuracy




  

averaged over all actions, similar to results previously have been reported in literature. 

5.2 IXMAS dataset 

The IXMAS dataset [39] consists of 12 complete action classes with each action executed 

three times by 12 subjects and recorded by five cameras with the frame size of 390 × 291 

pixels. These actions are: check watch, cross arms, scratch head, sit down, get up, turn 

around, walk, wave, punch, kick, point and pick up. The body position and orientation are 

freely decided by different subjects. The standard setup on this dataset is leave - one 

subject - out cross validation setting. We compare against the state-of-the-art result of 

[41], who achieved a 78.0% recognition accuracy across the five cameras using the 

Multiple-Kernel Learning with Augmented Features (AFMKL) method.  

We tested the performance of each sampling strategy and the one-stage and two-stage 

classification setup. The results are provided in Table 6. The best setting is the selective 
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sampling with one classification stage. The improved sampling yields a much more 

distinctive description of each action. The two-stage setup is no advantage here, we 

expect that this is due to the uncorrelated actions: waving is not informative of turning 

around, etc. The actions in IXMAS are much more dissimilar than in the visint.org 

dataset, and therefore they are not predictive of each other. The best performance that we 

obtain is 87.3%, thereby outperforming [41] by 9.3% (absolute), see Table 6.  

 

Table 6. Mean accuracy on the IXMAS dataset [39] of the state-of-the-art (AFMKL [41]) method on this 

dataset and of our method for the random vs. selective sampling strategy and the one-stage and two-stage 

classification setup. 

   Camera Viewpoint 

 Sampling Stages 1 2 3 4 5 Average (%) 

AFMKL [41] - - 81.9 80.1 77.1 77.6 73.4 78.0 

Ours Random One 72.6 73.6 72.3 75.6 68.7 72.6 

 Selective One 85.3 88.4 87.5 87.3 88.0 87.3 

 Random Two 71.0 74.6 69.6 78.5 69.1 72.6 

 Selective Two 82.6 87.7 86.4 87.5 86.2 86.1 

 

5.3 UT-Interaction dataset 

We used the segmented version of the UT-Interaction dataset [40] containing videos of 

six human activities: hand-shaking, hugging, kicking, pointing, punching, and pushing. 

The UT-Interaction dataset is a public video dataset containing high-level human 

activities of multiple actors. We consider the #1 set of this dataset, following the setup in 

[42]. The #1 set contains a total of 60 videos of six types of human-human interactions. 

Each set is composed of 10 sequences, and each sequence contains one execution per 

activity. The videos involve camera jitter and/or background movements (e.g., trees). 

Several pedestrians are present in the videos as well, making the recognition harder. 

Following [42], we consider the leave-one-sequence-out cross validation, performing a 

10-fold cross validation. That is, for each round, the videos in one sequence were selected 

for testing, and videos in the other sequences were used for the training. We compare 

against three well-performing methods, [40,42,43]. In [42] a Hough-voting scheme is 

proposed. In [43] a dynamical bag-of-words model is proposed, which together with the 

cuboid + SVM setup in [40] are very similar to our STIP single stage setup, being also 

bag-of-words methods. More advanced methods using local features have been proposed 

recently. For instance, in [48] the spatio-temporal layout has been taken into account. In 

[47] the local features do not vote individually, but feature voting using random 

projection trees (RPT) is performed. RPTs demonstrated to leverage the low-dimension 

manifold structure and they proved to be very discriminative for action recognition.  

We tested the performance of each sampling strategy and the one-stage and two-stage 

classification setup. The results are provided in Table 7. The results show clearly that for 

various settings almost the same performance is achieved, all with accuracies similar to 

state-of-the-art. With the one-stage classification setup, the selective sampling does not 
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add discriminative power. We think that this is due to the distinctive appearance of the 

actions, which make the forests obtained by random sampling very discriminative 

already. The performance with random sampling and the one-stage classification setup is 

slightly better than other bag-of-words methods [40,43]. We hypothesize that the small 

improvement over those methods is due to usage of the random forest in our method, 

which has proven to be generally more distinctive than k-means as used in [40,43]. The 

best setting is the selective sampling with two-stage classification, resulting in a slight 

improvement over the state-of-the-art. Contrary to IXMAS, for UT-Interaction the two-

stage setup provides a slight advantage here. The best performance that we obtain is 

88.3%, thereby achieving a similar performance to [42]. Our result is not as good as the 

state-of-the-art on UT-Interaction, being [47,48]. These methods have successfully 

exploited additional properties of the data, resp. the low-dimensional manifold structure 

and the spatio-temporal layout. For the standard bag-of-features model, we have shown 

that an advantage can be obtained by the two-stage setup in combination with the 

selective sampling.  

 

Table 7. Mean accuracy on the UT-Interaction dataset [40] of the state-of-the-art methods on this dataset 

and of our method. 

Method  Sampling  Stages  Accuracy  

Yu et al. [47] - - 93.3% 

Burghouts et al. [48] - - 93.3% 

Waltisberg et al. [42] - - 88.0% 

Ryoo [43] - - 85.0% 

Ryoo et al. [40] - - 83.3% 

Ours Random One 86.7% 

 Selective One 86.7% 

 Random Two 86.7% 

 Selective Two 88.3% 

 

6. Discussion 

We have performed experiments on three very different datasets: visint.org, IXMAS and 

UT-Interaction. The visint.org dataset has the most samples, with the broadest set of 

actions, ranging from single-person actions both simple (e.g., jump) and complex (e.g., 

open an item), to multi-entity actions such as two persons exchanging an item. This is the 

only dataset which contains multiple actions per sample. The IXMAS is the second 

largest dataset and contains 12 single-person actions from multiple viewpoints, where the 

actions include very detailed motions (e.g., check watch). The UT-Interaction is the 
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smallest dataset, and it contains 6 two-person interactions, with clearly visible motion 

patterns. This is the reason why the results on UT-Interaction are showing saturation: 

many different methods perform roughly the same (see Section 5) and that also holds for 

the two innovations that we propose in this paper, see Table 8 where we have 

summarized the relative contributions of the two innovations separately and combined. 

The accuracy on the IXMAS dataset has been significantly improved by our method (see 

Section 5) and the selective sampling is the reason for the performance gain, see Table 8. 

For the IXMAS dataset, the two-stage classification does not add value, while for the UT-

Interaction dataset, the effect of two-stage classification is very limited. This is due to the 

fact that both datasets contain actions that are fairly distinct (for the IXMAS more so than 

for UT-Interaction), so the actions are not very informative of each other. Contrary, for 

the visint.org dataset, some actions are very similar and they correlate significantly. For 

the performance on the visint.org dataset we have shown that both innovations – selective 

sampling and two-stage classification – are adding discriminative power to the bag-of-

words method. 
 

Table 8. Our innovations and the relative improvements on the visint.org, IXMAS and UT-Interaction 

datasets. 

Dataset Stages 
Random 

sampling  

Selective 

sampling  

visint.org One Baseline
(a)

 +19%
(b)

 

 Two +19%
(c)

 +44%
(b)

 

IXMAS [39] One baseline +20% 

 Two 0% +19% 

UT-Interaction [40] One baseline 0% 

 Two 0% +2% 

 
(a) For visint.org, this table includes the results using STIP features as they are most 

commonly used by the research community. 

(b) For visint.org, this number reflects the best of random/selective sampling per action, 

because for that dataset the optimal setting was different for each action. 

(c) This number is based on an experiment that was not reported in Section 4.  

 

7. Conclusions 

For human action detection, we have considered the visint.org dataset of 48 actions in 

3,480 train and 1,294 test videos of 10-30 seconds each, ranging from simple actions 

such as walk to complex actions such as exchange. We have effectively merged high-

level Event Property (EP) features and low-level space-time interest point (STIP) 

features, which capture complementary properties about human behavior. We have used 

a pipeline of visual processing leading to a sparse feature representation, a random forest 

to quantize the features into histograms, and an SVM classifier.  
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We have shown that our optimal advance pipeline results in a performance gain factor of 

2.37 compared to the earlier baseline. The major improvement is related to a different 

approach on three themes: sample selection, two-stage classification, and the combination 

of multiple features. First, we have shown that the sampling of training data for the 

random forest can be improved by smart selection of the negatives. Second, we have 

shown that exploiting all 48 actions' posteriors by two-stage classification greatly 

improves its detection. Third, we have shown how the low-level motion STIP and high-

level object EP features should be combined in a two-stage process. 

 

Furthermore, we see that for EP-only results, the earlier baseline [9] outperforms the one-

stage SVM based results. STIP features are clearly more discriminative than the EP 

features, but the posterior STIP and EP combination based configuration outperforms the 

STIP-only classifiers. Although the difference to the final two-stage combiner solution is 

quite small, as expected a per-action selection of the best classifier provides the best 

results. 

 

Finally, we have compared our method to the existing state-of-the-art on the IXMAS and 

UT-Interaction datasets, and have shown that selective sampling for the random forest 

and two-stage classification improves the recognition results. For the UT-Interaction 

dataset, we show that selective sampling and the two-stage setup improve on standard 

bag-of-feature methods. On the IXMAS dataset, we outperform the state-of-the-art by 

9.3% (was 78.0%, ours 87.3%). 
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