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Abstract. We develop a novel time-selection strategy for iterative image
restoration techniques: the stopping time is chosen so that the correlation
of signal and noise in the filtered image is minimised. The new method is
applicable to any images where the noise to be removed is uncorrelated
with the signal; no other knowledge (e.g. the noise variance, training
data etc.) is needed. We test the performance of our time estimation
procedure experimentally, and demonstrate that it yields near-optimal
results for a wide range of noise levels and for various filtering methods.

1 Introduction

If we want to restore noisy images using some method which starts from the
input data and creates a set of possible filtered solutions by gradually removing
noise and details from the data, the crucial question is when to stop the filtering
in order to obtain the optimal restoration result. The restoration procedures
needing such a decision include the linear scale space [3], the nonlinear diffusion
filtering [6,1], and many others. We employ a modified version of the Weickert’s
edge-enhancing anisotropic diffusion [9] for most experiments in this paper.

The stopping time T has a strong effect on the diffusion result. Its choice
has to balance two contradictory motivations: small T gives more trust to the
input data (and leaves more details and noise in the data unfiltered), while large
T means that the result becomes dominated by the (piecewise) constant model
which is inherent in the diffusion equations. The scale-space people often set T
to a large value (ideally infinity) and observe how the diffused function evolves
with time (and converges to a constant value). As we are more concerned with
image restoration and we want to obtain nontrivial results from the diffusion
filter, we will have to pick a single (finite) time instant T and stop the diffusion
evolution there.

We work with the following model (see Fig. 1): let f̃ be an ideal, noise-free
(discrete) image; this image is observed by some imprecise measurement device
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Fig. 1. Model of the time-selection problem
for the diffusion filtering. We want to select
the filtered image u(T ) which is as close as
possible to the ideal signal f̃ .

to obtain an image f . We assume that some noise n is added to the signal during
the observation so that

f = f̃ + n. (1)

Furthermore, we assume that the noise n is uncorrelated with the signal f̃ , and
that the noise has zero mean value, E(n) = 0.1

The diffusion filtering starts with the noisy image as its initial condition,
u(0) = f , and the diffusion evolves along some trajectory u(t). This trajectory
depends on the diffusion parameters and on the input image; the optimistic
assumption is that the noise will be removed from the data before any important
features of the signal commence to deteriorate significantly, so that the diffusion
leads us somewhere ‘close’ to the ideal data. This should be the case if the signal
adheres to the piecewise constant model inherent in the diffusion equation.

The task of the stopping time selection can be formulated as follows: select
that point u(T ) of the diffusion evolution which is nearest to the ideal signal f̃ .
Obviously, the ideal signal is normally not available; the optimal stopping time
T can only be estimated by some criteria, and the distance2 between the ideal
and the filtered data serves only in the experiments to evaluate the performance
of the estimation procedure.

1 Let us review the statistical definitions used in the paper (see e.g. Papoulis [5]). For
the statistical computations on images, we treat the pixels of an image as indepen-
dent observations of a random variable.
The mean or expectation of a vector x is x = E(x) = 1

N

∑N
i=1 xi.

We define the variance of a signal x as var(x) = E
[
(x− x)2

]
.

The covariance of two vectors x, y is given by cov(x, y) = E [(x− x) · (y − y)] .
The normalized form of the covariance is called the correlation coefficient,
corr(x, y) = cov(x,y)√

var(x)·var(y)
.

2 In the experiments below, we measure the distance of two images by the mean
absolute deviation, MAD(x− y) = E(|x− y|).



In the following paragraphs we first cite the approaches to stopping time
selection which have appeared in the literature, and comment on them. Then
we develop a novel and reliable time-selection strategy based on signal–noise
decorrelation.

2 Previous work

In the diffusion model of Catté et al. [1], the image gradient for the diffusivity
computation is regularized by convolution with a Gaussian smoothing kernel
Gσ. The authors argue that this regularization introduces a sort of time: the
result of convolution is the same as the solution to the linear heat equation at
time t = σ2

2 , so it is coherent to correlate the stopping time T and the ‘time’
of the linear diffusion. However, the equality t = σ2

2 is rather a lower estimate
of the stopping time: because of the diffusion process inhibited near edges, the
nonlinear diffusion is always slower than the linear one, and needs a longer time
to reach the desired results.

Dolcetta and Ferretti [2] recently formulated the time selection problem as a
minimization of the functional

E(T ) =
∫ T

0

Ec + Es (2)

where Ec is the computing cost and Es the stopping cost, the latter encourag-
ing filtering for small T . The authors provide a basic example Ec = c, Es =
−

(∫
Ω
|u(x, T )− u(x, 0)|2dx

)2 where the constant c balancing the influence of
the two types of costs has to be computed from a typical image to be filtered.

Sporring and Weickert in [7] study the behaviour of generalized entropies, and
suggest that the intervals of minimal entropy change indicate especially stable
scales with respect to evolution time. They estimate that such scales could be
good candidates for stopping times in nonlinear diffusion scale spaces. However,
as the entropy can be stable on whole intervals, it may be difficult to decide on
a single stopping instant from that interval; we are unaware of their idea being
brought to practice in the field of image restoration.

Weickert mentioned more ideas on the stopping time selection, more closely
linked to the noise-filtering problem, in [10]. They are based on the notion of
relative variance.

The variance var(u(t)) of an image u(t) is monotonically decreasing with t
and converges to zero as t →∞. The relative variance

r(u(t)) =
var(u(t))
var(u(0))

(3)

decreases monotonically from 1 to 0 and can be used to measure the distance of
u(t) from the initial state u(0) and the final state u(∞). Prescribing a certain
value for r(u(T )) can therefore serve as a criterion for selection of the stopping
time T .



Let again f̃ be the ideal data, the measured noisy image f = f̃ +n, and let the
noise n be of zero mean and uncorrelated with f̃ . Now assume that we know the
variance of the noise, or (equivalently, on the condition that the noise and the
signal are uncorrelated) the signal-to-noise ratio, defined as the ratio between
the original image variance and the noise variance,

SNR ≡
var

(
f̃
)

var(n)
. (4)

As the signal f̃ and the noise n are uncorrelated, we have

var(f) = var
(
f̃
)

+ var(n). (5)

Substituting from this equality for var(n) into (4), we obtain by simple rear-
rangement that

var
(
f̃
)

var(f)
=

1
1 + 1

SNR

. (6)

We take the noisy image for the initial condition of our diffusion filter, u(0) =
f . An ideal diffusion filter would first eliminate the noise before significantly
affecting the signal; if we stop at the right moment, we might substitute the
filtered data u(T ) for the ideal signal f̃ in (6). Relying on this analogy, we can
choose the stopping time T such that the relative variance satisfies

r(u(T )) =
var(u(T ))
var(u(0))

=
1

1 + 1
SNR

(7)

Weickert remarks that the criterion (7) tends to underestimate the optimal stop-
ping time, as even a well-tuned filter cannot avoid influencing the signal before
eliminating the noise.

So far the Weickert’s suggestions from [10]: knowing the SNR, we decide to
filter the image until some distance from the noisy data is reached, and the
formula (7) tells us when to stop the diffusion. This idea seems natural and
resembles also that used in the total variation minimizing methods (see overview
in [9, pp. 50-52]). However, our experiments indicate that this approach does
not usually yield the optimal stopping time. Let us study in more detail why the
problems occur.

3 Decorrelation criterion

The equality (5) and hence the equation (6) are valid only if the signal and the
noise are uncorrelated. This assumption holds for f̃ and n, but not necessarily
for the filtered signal u(T ) and the difference u(0) − u(T ); the latter is needed
for the equation (7) to be justified. In other words (if we substitute mentally the
filtered function u(T ) for f̃ , the difference nu ≡ u(0)−u(T ) for the noise n, and
u(0) for f in (5) and (6)), the formula (7) is useful only if the random variables
u(T ) and (u(0)− u(T )) are uncorrelated.



a b

Fig. 2. Experimental data. Left: Cymbidium image (courtesy Michal Haindl).
Right: Noisy input image ([0, 127]2 → [0, 255]) for the ‘Triangle and rectangle’
experiment. Noise with uniform distribution in the range [−255, 255] was added
to two-valued synthetic data.

Inspired by these observations, we arrive to the following idea: if the unknown
noise n is uncorrelated with the unknown signal f̃ , wouldn’t it be reasonable to
minimize the covariance of the ‘noise’ (u(0) − u(t)) with the ‘signal’ u(t), or –
better – employ its normalized form, the correlation coefficient

corr
(
u(0)− u(t),u(t)

)
=

cov
(
u(0)− u(t),u(t)

)√
var

(
u(0)− u(t)

)
· var

(
u(t)

) (8)

and choose the stopping time T so that the expression (8) is as small as possi-
ble? This way, instead of determining the stopping time so that (u(0) − u(T ))
satisfies a quantitative property and its variance is equal to the known variance
of the noise n, we try to enforce a qualitative feature: if the ideal f̃ and n were
uncorrelated, we require that their artificial substitutes u(T ) and (u(0)−u(T ))
reveal the same property, to the extent possible, and select

T = arg min
t

corr
(
u(0)− u(t),u(t)

)
. (9)

Let us test and validate this new stopping time criterion experimentally.

4 Experiments

We added various levels of Gaussian noise to the cymbidium image shown in
Fig. 2 left, filtered by nonlinear diffusion (more precisely a modified version of
the Weickert’s edge-enhancing anisotropic diffusion [9], numerically implemented
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Fig. 3. Left: The distance MAD(u(t)− f̃) (solid line) and the correlation coeffi-
cient corr

(
u(0)− u(t),u(t)

)
(dashed line) developing with the diffusion time.

Right: The stopping time TSNR determined by the SNR method (dotted with
crosses), and Tcorr obtained through the covariance minimization (dotted with
diamonds) compared to the optimal stopping time Topt (solid line). The graphs
are plotted against the standard deviation of noise in the input image.

using the AOS scheme [8]), and observed how the signal–noise correlation mea-
sured by equation (8) develops with the diffusion time. A typical example is
drawn in Fig. 3 left: you can observe that the plot of the MAD criterion of the
filtering quality coincides very well with the graph of the correlation coefficient
corr

(
u(0)− u(t),u(t)

)
.

A more thorough study of the performance of the stopping time selection
criteria (measured again on the cymbidium data) is seen in figures 3 right and 4.
The former compares three stopping times: the optimal Topt is the time instant
for which the filtered image u(t) is closest to the noise-free f̃ in the MAD dis-
tance; obviously, Topt can be found only in the artificial experimental setting,
the noise-free f̃ is normally not available. The second stopping time TSNR is
determined using the criterion (7) (which requires the knowledge of the noise
variance or SNR). The stopping time Tcorr minimizes the correlation coefficient
of equation (8). All alternative stopping times are computed for a series of in-
put images with varied amount of noise present. While the SNR method easily
underestimates or overestimates the optimal stopping time (depending on the
amount of noise in the input data), the correlation minimization leads to near-
optimal results for all noise levels. The graph is plotted for iteration time step
τ = 0.5, other choices τ ∈ {0.1, 1} gave similar results.

The actually obtained quality measure MAD(u(T ) − f̃) is shown in Fig. 4,
again with τ = 0.5. You can see that for all noise levels the correlation-estimated
time leads to filtering results very close to the optimal values obtainable by the
nonlinear diffusion.

Let us return for a moment to Fig. 3 left. At the beginning of the diffusion
filtering, the correlation coefficient declines fast until it reaches its minimum.
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Fig. 4. Left: the MAD distance of the filtered data from the ideal noise-free
image, MAD(u(T ) − f̃), using the SNR and the correlation-minimization time
selection strategies. Right: the difference between the estimated result and the
optimal one, MAD(u(T )− u(Topt)).

If for some data the graph behaves differently, it may serve as a hint on some
problems. As an example, we observed that if there is only a small amount of
noise in the input image, the correlation corr

(
u(0)−u(t),u(t)

)
might grow from

the first iterations. In such a case, the iteration time step τ has to be decreased
adaptively and the diffusion restarted from time t = 0 until the correlation plot
exhibits a clear minimum.

Another experiment compares the results of different diffusion algorithms
filtering an originally black and white image with non-Gaussian additive noise.
The input data are shown in Fig. 2 right: the noisy image was obtained by adding
noise of uniform distribution in the range [−255, 255] to the ideal input, and by
restricting the noisy values into the interval [0, 255].

In Fig. 5, the noise is smoothed by linear diffusion, isotropic nonlinear dif-
fusion, and two anisotropic diffusion filters; the grey-values are stretched to the
whole interval [0, 255] so that a higher contrast between the dark and bright
regions corresponds to a better noise-filtering performance. In all cases, the
stopping time was determined autonomously by the signal–noise decorrelation
criterion (9). You can see that in all cases, although quite different filtering algo-
rithms were employed, the stopping criterion leads to results where most of the
noise is removed and the ideal signal becomes apparent or suitable for further
processing; we support this statement by showing the thresholded content of the
filtered images in Fig. 6.

The stopping criterion was designed to minimize the MAD distance from the
ideal function. If visual quality was the goal to be achieved, we would probably
stop the diffusion later, especially as linear diffusion (Fig. 5a) and the Weickert’s
edge-enhancing anisotropic diffusion [9] with maximum amount of diffusion in
the coherence direction (ϕ2 = 1, Fig. 5c) are concerned. We find however that the
MAD distance and the visual quality are in a good agreement in Fig. 5d which
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Fig. 5. Comparing the different diffusion algorithms on the noisy data of Fig. 2
right, all with the stopping time selected autonomously by minimizing the crite-
rion (8): (a) linear diffusion, T = 3.8; (b) isotropic nonlinear diffusion, T = 125;
(c) anisotropic NL diffusion, ϕ2 = 1, T = 15; (d) anisotropic NL diffusion,
ϕ2 = 0.2, T = 32.
In (b)–(d), the parameters σ = 1, τ = 1 were employed, and the parameter λ
was estimated using the Perona-Malik procedure from percentile p = 0.9 in each
step.

a b c d

Fig. 6. Thresholded versions of the images in Fig. 5



represents the result of the edge-enhancing diffusion with a smaller amount of
diffusion in the coherence direction, ϕ2 = 0.2. Because of limited space, we have
to refer the reader to Pavel Mrázek’s thesis [4] for details on the filtering proce-
dures and for more experimental results verifying the decorrelation criterion.

5 Conclusion

We have developed a novel method to estimate the optimal stopping time for
iterative image restoration techniques such as nonlinear diffusion. The stopping
time is chosen so that the correlation of signal u(T ) and ‘noise’ (u(0) − u(T ))
is minimised. The new criterion outperforms other time selection strategies and
yields near-optimal results for a wide range of noise levels and filtering param-
eters. The decorrelation criterion is also more general, being based only on the
assumption that the noise and the signal in the input image are uncorrelated;
no knowledge on the variance of the noise, and no training images are needed to
tune any parameters of the method.
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