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Abstract. Over the last years recurrence plots (RPs) and recurrence quantification
analysis (RQA) have become quite popular in various branches of science. One
key problem in applying RPs and RQA is the selection of suitable parameters for
the data under investigation. Whereas various well-established methods for the
selection of embedding parameters exists, the question of choosing an appropriate
threshold has not yet been answered satisfactorily. The recommendations found
in the literature are rather rules of thumb than actual guidelines. In this paper
we address the issue of threshold selection in RP/RQA. The core criterion for
choosing a threshold is the power in signal detection that threshold yields. We
will validate our approach by applying it to model as well as real-life data.

1 Introduction

As recurrence plots (RPs) and their quantification (recurrence quantification analysis, RQA)
[11] are becoming ever more popular in many disciplines, beginners are often faced with the
problem of finding suitable parameters for embedding and recurrence threshold. For find-
ing suitable embedding parameters, different approaches were suggested, like auto-correlation,
mutual information, false nearest neighbours etc., and were already discussed in the literature
[2,4,6,19]. Yet the choice of the neighbourhood size is still under discussion and often causes
uncertainties in applying RPs and RQA.
Several rules of thumb for the choice of the threshold have been suggested – a few per cent

of the maximum phase space diameter [13], a value which should not exceed 10% of the mean
or the maximum phase space diameter [7,23], or a value that ensures a recurrence point density
of approximately 1% [24]. Further suggestions are to choose ε according to the recurrence
point density of the RP by seeking a scaling region in the recurrence point density [24] or to
take into account that a measurement of a process is a composition of the real signal and some
observational noise with standard deviation σ [18]. In order to get similar results as in noise-free
situations, ε has to be about five times larger than the standard deviation of the observational
noise, i. e. ε > 5σ. But this approach fails for signals of very low signal-to-noise ratio (SNR)
or if the amount of noise is unknown. In any case, the choice of the threshold depends on the
aim of the analysis. For example, in a recurrence based synchronisation analysis or for joint
recurrence plots (JRPs) [15], the threshold should be chosen in a fashion, that the recurrence
point density is the same in the individual RPs.
In the following we will study the impact of recurrence threshold on signal detection

[1,21,22]. As a prototypical and analytically well understood example we consider deterministic
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signals in a noisy environment (additive noise) and use several recurrence based measures in
order to separate a signal from noise. We evaluate the applicability of this procedure in signal
detection by receiver operating characteristics (ROC) [3,14,25]. To assess our findings in the
model system we apply it to electroencephalographic (EEG) data obtained in a classical setup –
the oddball paradigm [17].

2 Recurrence based detectors

Deterministic signals have a different recurrence structure than purely stochastic ones. There-
fore, it was suggested to apply RQA to distinguish stochastic and deterministic processes
[1,14,21,22]. The base of the RQA is the recurrence plot, which visualises recurrences in the
phase space of a state vector xi (i = 1, . . . , N),

Ri,j = Θ(ε− ||xi − xj||), (1)

where Θ is the Heaviside function, || · || is a norm and ε is the recurrence threshold. For an
overview about RPs and related aspects see [11]. RQA provides several measures of complexity.
The recurrence rate RR

RR =
1

N2

∑
i,j

Ri,j , (2)

is the density of recurrence points in an RP and can be interpreted as the probability that
any state will recur. A phase space trajectory of a deterministic system is characterised by
epochs where different segments of this trajectory run parallel for some time. This behaviour
is mirrored in the formation of diagonal line structures in the RP.
Denoting the number of lines of exactly length l with P (l), the RQA measure determinism

DET is defined by

DET =

∑
l≥lmin l P (l)∑
l l P (l)

, (3)

where lmin is the minimal length of a diagonal line necessary to be considered; in the present
work we use lmin = 2. DET can be interpreted as the probability that two closely evolving
segments of the phase space trajectory will remain close for the next time step. Note that
determinism does not relate to the mathematical notion of the term as such but rather stresses
the fact that RPs of stochastic processes usually reveal fewer diagonal lines, whereas RPs of
deterministic processes contain more and longer diagonal line structures.
Instead of considering diagonal lines, we can measure vertical recurrence lines and estimate

histograms P (v) of vertical line lengths v. The measure

LAM =

∑
v≥vmin l P (v)∑
v v P (v)

, (4)

is called laminarity (in the present work we use vmin = 2) and measures the probability that a
state will not change (within the ε error) for the next time step. Such behaviour is typical for
intermittency and laminar states [12].
The last measure considered here is the mean recurrence time RT ,

RT =

∑N
w=1 wP (w)∑N
w=1 P (w)

. (5)

As an estimator of recurrence time, we measure the vertical distance w between recurrence
structures in an RP (corresponding to the length of white vertical lines if Ri,j = 1 is black and
Ri,j = 0 is white). The number of vertical distances of exact length w is denoted by P (w). Note
that this estimator is a lower limit estimator. A definition of an upper limit estimator can be
found in [5].
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3 Receiver operating characteristic

Signal detection can be considered as a binary classification procedure by using a measure λ,
where for λ ≥ η the signal is detected – otherwise not. The receiver operating characteristic
(ROC) is a plot of the probability to detect the signal correctly with λ (true positives, pt)
vs. the probability to classify the measurement as a signal although it is not (false positives,
pf ) [3,25]. In the theory of statistical testing pt is also referred to as the power of a test. As
the values of pt and pf correspond to the sensitivity and (1− specificity) respectively, for an
optimal detection, a high value of pt and a low value of pf is desired.
The ROC curve serves as a performance measure of the chosen detector λ. A diagonal line

means that classification of the signal or the noise as signal is equiprobable. Therefore, a reliable
signal detection is only achieved, if the ROC curve evolves above the diagonal (Fig. 3C).
As a summary of the ROC the area under the curve (AUC) is frequently used. The higher

the AUC the better the detector performs. The AUC corresponds to the probability that a
signal will have a higher λ than the “no-signal”. A value of AUC = 1 corresponds to a 100%
correct classification, whereas for AUC = 0.5 we are not able to distinguish signal from noise.
To calculate the ROC we use 10,000 realisations of Gaussian white noise ξ, where we consider

a signal s to be modified by additive noise resulting in the measurement x = s + ξ. For each
realisation we compute the measures RR, DET and RT of the measurement x as well as
for the noise ξ, providing the frequency distributions hx(λ) and hξ(λ) of the values of the
detector for the measurement x and the noise ξ (Fig. 3A, B). From the probability distributions

h̃x = hx/
∑
hx and h̃ξ = hξ/

∑
hξ we calculate the probabilities of true and false positives by

pt =

∫ ∞
η

hx(λ) dλ and pf =

∫ ∞
η

hξ(λ) dλ. (6)

In order to get the ROC curve, pt and pf are calculated for η ∈ [min(λ) max(λ)].

4 Optimal recurrence threshold for a prototypical example

The main purpose of this work is to find a suitable criterion for the selection of an optimal recur-
rence threshold ε capable of detecting a deterministic signal in a noisy environment. Therefore
the threshold with the highest AUC would be optimal for our purpose.
In order to study the AUC for different ε, we use a prototypical example providing a deter-

ministic chaotic signal. We employ the first component of the quasiperiodically forced logistic
map [20] as the deterministic signal s

si+1 = f cos(2πθi)− asi + s3i (7)

θi+1 = θi + ω mod 1. (8)

For parameters a = 1.3 and f = 0.7, the system is in a chaotic regime (Fig. 1). For the analysis
we used only 600 values (transients at the beginning were removed). The measurement x is
formed by the composition of the normalised signal s (µ = 0, σ = 1) and Gaussian white noise
ξ (µ = 0, σ = 1), i.e. x = s + aξ, where a is the noise level, µ the mean and σ the standard
deviation. In this example we use a noise level of a = 0.75.
As the map is 2-dimensional the RP is calculated using an embedding dimension of m = 2

and a delay of τ = 1. The RP of the signal s clearly reveals diagonal line structures indicating
deterministic behaviour (Fig. 2A). These structures persist if the signal is slightly corrupted by
noise (Fig. 2C).
For a given recurrence threshold (ε = 0.5), the histograms for the RR measure are presented

in Fig. 3A and B. The overlap of the histograms of RR for the noise corrupted signal and the
Gaussian white noise is small, providing a good discrimination of the signal. The corresponding
ROC confirms the good performance of this measure (Fig. 3C). It should be noted that the
distributions of the measures do not follow a normal distribution (gray line in Fig. 3A, B). This
is important for the calculation of the ROC, because it can yield different results [9].
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Fig. 1. Quasiperiodically forced logistic map.
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Fig. 2. Detail of the recurrence plot of (A) the quasiperiodically forced logistic map, (B) Gaussian
white noise and (C) a noise corrupted signal of the quasiperiodically forced logistic map (noise level
0.1). Embedding parameters m = 2, τ = 1, recurrence threshold ε = 0.5.

We calculate the AUC for the measures RR, DET , LAM and RT with varying ε ∈ [0 1.5].
If ε is too small, recurrences mainly appear due to the fluctuations caused by the noise.
A discrimination of the signal is therefore difficult and the AUC is low (Fig. 4). For increasing
ε the RP obtains the recurrence structure contained in the signal. The detection of the signal
becomes better and the AUC is high. If ε becomes too large almost every point is in the neigh-
bourhood of every other point, thus hiding the characteristic recurrence structure. The signal
is again not well detectable and the AUC is decreasing. Such a behaviour can be observed in
RR, DET and RT (Fig. 4). The measures RR and DET perform best with a maximum AUC
of about .8 (RR) or even .9 (DET ) for ε = 0.4. In contrast, the AUC for RT is significantly
smaller and has its maximum of 0.6 for ε = 0.15. This suggests that RT is not an optimal de-
tector for chaotic maps. The measure LAM shows a completely different behaviour. Its values
are below 0.5, indicating that LAM falsely classifies noise as the signal. That is due to the fact
the RP of noise contains more vertical structures than the RP of the signal (Fig. 2) which does
not contain any laminar phases. Therefore, the measure LAM is not appropriate for detecting
a deterministic signal as considered here. However, as we will see later, this measure is a useful
detector for signals like EEGs which do contain laminar phases.
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Fig. 3. Histogram of the RR detector for 10,000 realisations of a measurement containing (A) a
signal from the quasiperiodically forced logistic map and (B) Gaussian white noise. A fit of a normal
distribution is presented as a gray line. By applying a threshold on the detector RR we will be able
to detect the signal in most cases. This is characterised by (C) the ROC curve, which is based on the
probabilities to detect true positives (pt) and false positives (pf ). If the ROC curve would follow the
diagonal line (dotted line), we would not be able to distinguish the signal from noise.

5 Application to EEG measurements

We apply the suggested procedure to EEG measurements of a study on event-related potentials
(ERPs). The paradigm used was a visual oddball featuring a prominent P300, which is a centro-
parietal positivity peaking at about 300ms after the presentation of a stimulus. The P300
has been shown to be senstive to stimulus category (target vs. non-target) of the eliciting
stimulus [17].
The simuli were red and green disks presented in randomised, equiprobable order. Stimula-

tion duration was 100ms, the interval between successive stimuli 900ms. The task was to count
the items of one colour (green or red) thereby constituting the target (A) (items to be counted)
and non-target condition (B). This setup is known to elicit a prominent and reproducible P300
in the target condition (compared to the non-target condition).
The EEG was recorded from 40 Ag/AgCl electrodes (impedances ≤ 5 kΩ) at a sampling

rate of 250Hz using a BrainAmp DC amplifier (Brain Products GmbH, Munich, Germany). All
electrodes were initially referenced to an electrode on the left mastoid bone (A1) and converted
to average reference off-line. After standard artifact rejection about 250 trials remained in
each condition. For our purpose we selected 200 trials of one subject recorded at electrode
PZ. The data was baseline corrected to 100ms pre-stimulus. Details of artifact rejection and
pre-processing can be found in [26].
We consider a pre-stimulus interval of 250ms duration, immediately before the stimulus

(−200–50ms) and a 250ms interval during the P300 (200–450ms). During the pre-stimulus,
the two measurements of condition A and B should not be distinct, resulting in a AUC of
around 0.5. In contrast, if the detectors are able to distinguish the two conditions, their AUC
values should be higher than 0.5. For the computation of the ROC the 200 trials are used as
realisations. The AUCs are calculated for recurrence thresholds ε between 0.1 and 1.0 with
steps of 0.01, and using an embedding of m = 3 and τ = 2. The embedding parameters
were estimated using the commonly accepted methods of false nearest neighbours and mutual
information [6].
As expected, the AUCs for all detectors in the pre-stimulus interval are around 0.5,

indicating that there is no difference between the measurements before the onset of the
stimulus (Fig. 6). Only LAM and RT reveal slightly smaller or higher values for ε between 0.1
and 0.2.
During the occurrence of the P300, the AUCs for the detectors RR, DET , and LAM are

higher than 0.5, indicating that these measures are able to discriminate between condition A
and B. However, the highest AUC value is 0.61 for RR and LAM , and 0.63 for DET , which
is not really high. The RT is not a good detector as it again fails in discriminating the two
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Fig. 4. AUCs vs. ε for the measures (A) RR, (B) DET , (C) LAM and (D) RT for the quasiperiodically
forced logistic map. The AUC for RR and DET (A, B) is rather high in a range of ε ∈ [0.2 0.78], with
the maximum at ε = 0.4 (dotted line). The AUC of RT (D) is significantly lower, with a maximum
at ε = 0.15 (dotted line). The AUC of LAM is lower than 0.5, indicating that this measure falsely
classifies noise as signal. An AUC level of 0.5 (dash-dotted line) means that the detector is not able to
find the signal.
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Fig. 5. Distribution of (A) mean and (B) maximal phase space diameter of 10,000 realisations of the
noise corrupted quasiperiodically forced logistic map in an embedding space of m = 2 and τ = 1.

conditions. As we found in previous works, other RQA measures (like trapping time) [10] or
the application of order pattern recurrence plots [8,16] reveal better results. Nevertheless, we
find the optimal recurrence threshold as ε = 0.25, for RR and LAM , or as ε = 0.22, for DET .
The mean and maximal phase space diameter for the pre-stimulus and the P300 epochs of the
ERP data of both conditions are 2.40 and 5.55, respectively. Thus, the optimal ε = 0.25
found corresponds to 10% of the mean and 5% of the maximal phase space diameter.
Regarding the standard deviation σ(x) = 1 of the ERP signal itself, ε is 25% of the standard
deviation.
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Fig. 6. AUCs vs. ε for the measures (A) RR, (B) DET , (C) LAM and (D) RT for ERP data on a
pre-stimulus period (dashed line) and during the P300 event (line). AUC maxima for RR and LAM
at ε = 0.25, and for DET at ε = 0.22 (dotted line). An AUC level of 0.5 (dash-dotted line) means that
the detector is not able to find the signal. Embedding parameters are m = 3 and τ = 2.

In contrast to the prototypical example of the quasiperiodically forced logistic map discussed
above, the ERP signal contains laminar states at the P300. Therefore, LAM now is a suitable
detector for the P300.

6 Discussion

The search for a recurrence threshold for an optimal discrimination of signals has revealed dif-
ferent optimal thresholds ε depending on the application and considered type of signal (Tab. 1).
Using the recurrence probability alone for the detection may require another threshold than
using diagonal and vertical line structures. However, the differences in the optimal ε are not
big, and of course the optimal threshold also depends on the amount of noise present in the
measurement.
For the quasiperiodically forced logistic map the threshold ε = 0.4 at the maximum of AUC

corresponds to a calculated RR of the system of 4%. This suggests that the threshold should be
chosen in such a way that the RR would be around 5%. Several authors suggested values of ε
relative to the mean and maximal phase space diameter [7,23]. The mean phase space diameter

Table 1. Optimal recurrence thresholds ε and corresponding percentages of mean and maximal phase
space diameter (mean PSD and max. PSD) as well as signal standard deviation σ.

ε mean PSD max. PSD σ

quasiperiodically forced logistic map 0.4 18% 6% 40%
ERP data 0.25 10% 5% 25%
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of the noise corrupted quasiperiodically forced logistic map (normalised to standard deviation
one) is 2.23 and its maximal diameter is 6.43 (Fig. 5). Therefore ε = 0.4 corresponds to 18%
of the mean and 6% of the maximal phase space diameter respectively. As our aim here is an
appropriate classification of signal and noise and not the detection of the original recurrence
structure, choosing ε > 5σ, as suggested for the case of observational noise [18], is not beneficial
here. Considering the noise level of a = 0.7, 5σ(ξ) would result in a value of 2.5 for ε. Indeed,
this value is too high to correctly classify signal and noise. Compared to the standard deviation
of the entire, normalised signal σ(x) = 1, ε equals 40% of σ(ξ).
For the experimental data, we found that the optimal threshold is 10% of the mean phase

space diameter or 25% of the standard deviation. For the prototypical example, where the
influence of noise is far smaller than in the experimental data, we found a threshold almost twice
as large, given as 18% of the mean phase space diameter and 40% of the standard deviation.
The most consistent choice would be regarding the maximal phase space diameter, where we
found values of around 5–6% of the maximal phase space diameter in both experiments.
Although only demonstrated using two examples and knowing well that the matter needs to

be investigated more comprehensively, our study confirms the suggested rule of thumb that the
threshold should be around 5% of the maximal phase space diameter. This suggestion remained
valid for two very different kinds of signal of different complexity, a priori knowledge and noise
influence. Hence it seems to be rather robust, at least for the purpose of signal detection.

7 Conclusions

We have proposed a new approach for the choice of an optimal recurrence threshold ε for the
classification of signals. Our method uses the notion of receiver operating characteristics (ROC),
a statistical tool to validate a classification process and investigate its discriminative power in
dependence of a given detector, in the present case the complexity measures as derived from
an RP using the RQA. We could demonstrate the discrimination of (i) signals from pure noise
and (ii) of different experimental conditions given as extremely noisy and instationary time
series typical for EEG measurements. Our results support the proposed rule of thumb, that the
recurrence threshold ε for optimal signal classification/discrimination should be about 5% of
the maximal phase space diameter.
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