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Abstract 

In this survey, we review work in machine learning on methods for handling data sets containing 

large amounts of irrelevant information. We focus on two key issues: the problem of selecting 

relevant features, and the problem of selecting relevant examples. We describe the advances that 

have been made on these topics in both empirical and theoretical work in machine learning, and 

we present a general framework that we use to compare different methods. We close with some 

challenges for future work in this area. @ 1997 Elsevier Science B.V. 
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1. Introduction 

As machine learning aims to address larger, more complex tasks, the problem of 

focusing on the most relevant information in a potentially overwhelming quantity of data 

has become increasingly important. For instance, data mining of corporate or scientific 

records often involves dealing with both many features and many examples, and the 

internet and World Wide Web have put a huge volume of low-quality information at the 

easy access of a learning system. Similar issues arise in the personalization of filtering 

systems for information retrieval, electronic mail, netnews, and the like. 

In this paper, we address two specific aspects of this “focusing” task that have received 

significant attention in the AI literature: the problem of focusing on the most relevant 
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features for use in representing the data, and the problem of selecting the most relevant 

examples to drive the learning process. We review recent work on these topics, presenting 

general frameworks that we use to compare and contrast different approaches. 

We begin with the problem of focusing on relevant features. In Section 2 we present 

and relate several important notions of “relevance” for this task and describe some 

general goals of feature-selection algorithms. We report on methods that have been 

developed for this problem, characterizing them as “embedded”, “filter”, or “wrapper” 

approaches, and we compare explicit feature-selection techniques to those based on 

weighting schemes. We then turn (in Section 3) to the problem of focusing on relevant 

examples, describing methods for filtering both labeled and unlabeled data. We conclude 

(in Section 4) with open problems and challenges for future work, on both the empirical 

and theoretical fronts. 

Before proceeding, we should clarify the scope of our survey, which focuses on meth- 

ods and results from computational learning theory and experimental machine learning. 

There has been substantial work on feature selection in other fields such as pattern 

recognition and statistics, and on data selection in fields such as statistics, information 

theory, and the philosophy of science. Although we do not have the space to cover the 

work in these areas, readers should be aware that there are many similarities to the 

approaches we will discuss. 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe problem of irrelevant features 

At a conceptual level, one can divide the task of concept learning into two subtasks: 

deciding which features to use in describing the concept and deciding how to combine 

those features. In this view, the selection of relevant features, and the elimination of 

irrelevant ones, is one of the central problems in machine learning, and many induction 

algorithms incorporate some approach to addressing it. 

At a practical level, we would like induction algorithms that scale well to domains 

with many irrelevant features. More specifically, as one goal we would like the number 

of training examples needed to reach a desired level of accuracy, often called the sample 

complexity, to grow slowly with the number of features present, if indeed not all these 

are needed to achieve good performance. For instance, it is not uncommon in a text 

classification task to represent examples using lo4 to lo7 attributes, with the expectation 

that only a small fraction of these are crucial [ 62,631. In recent years, a growing amount 

of work in machine learning-both experimental and theoretical in nature-has focused 

on developing algorithms with such desirable properties. 

Induction algorithms differ considerably in their emphasis on focusing on relevant 

features. At one extreme lies the simple nearest-neighbor method, which classifies test 

instances by retrieving the nearest stored training example, using all available attributes 

in its distance computations. Although Cover and Hart [25] showed that this approach 

has excellent asymptotic accuracy, a little thought reveals that the presence of irrelevant 

attributes should considerably slow the rate of learning. In fact, Langley and Iba’s [58] 

average-case analysis of simple nearest-neighbor indicates that number of training exam- 

ples needed to reach a given accuracy (similar to the PAC notion of sample complexity) 
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grows exponentially with the number of irrelevant attributes, even for conjunctive tar- 

get concepts. Experimental studies of nearest-neighbor [ 1,611 are consistent with this 

discouraging conclusion. 

At the other extreme lie induction methods that explicitly attempt to select relevant 

features and reject irrelevant ones. Techniques for learning logical descriptions constitute 

the simplest example of this approach, and there are more sophisticated methods for 

identifying relevant attributes that can augment and improve any induction method, 

including nearest-neighbor. Theoretical and experimental results for these methods are 

much more encouraging. For instance, theoretical results show that if, by focusing on 

only a small subset of features, an algorithm can significantly reduce the number of 

hypotheses under consideration, then there is a corresponding reduction in the sample 

size sufficient to guarantee good generalization [ 131. Somewhat in the middle of the 

above two extremes are feature-weighting methods that do not explicitly select subsets 

of features, but still aim to achieve good scaling behavior. 

We structure the remainder of this section as follows. We begin by describing several 

important formal notions of ‘relevance’ in the context of supervised learning. In addition 

to introducing terminology, these definitions help to illustrate some of the general goals 

of feature-selection algorithms. We then turn to discussing some of the methods that have 

been developed for this problem, characterizing them as either “embedded”, “filter”, or 

“wrapper” approaches, based on the relation between the selection scheme and the basic 

induction algorithm. This decomposition in part reflects historical trends, but it also 

helps for comparing approaches that may seem to be very different, but can be seen to 

belong to the same category and therefore in certain ways have similar motivations. We 

also compare explicit feature-selection techniques to those based on weighting schemes, 

which tackle the same problem from a somewhat different perspective. 

2.1. De@ itions of “relevance” 

There are a number of different definitions in the machine learning literature for what 

it means for features to be “relevant”. The reason for this variety is that it generally 

depends on the question: “relevant to what?’ More to the point, different definitions 

may be more appropriate depending on one’s goals. Here, we describe several important 

definitions of relevance, and discuss their significance. In doing so, we hope to illustrate 

some of the issues involved and some of the variety of motivations and approaches taken 

in the literature. 

For concreteness, let us consider a setting in which there are n features or attributes 

used to describe examples and each feature i has some domain Fi. For instance, a 

feature may be Boolean (isred?), discrete with multiple values (what-color?), 

or continuous (what-wavelength?). An example is a point in the instance space 

F, x F2 x ’ . . x F,. The learning algorithm is given a set S of training data, where each 

data point is an example paired with an associated label or classification (which might 

also be Boolean, multiple valued, or continuous). 

Although the learning algorithm sees only the fixed sample S, it is often helpful to 

postulate two additional quantities, as is done in the PAC learning model (see, e.g., 

[46] ): a probability distribution D over the instance space, and a target function c 
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from examples to labels. We then model the sample S as having been produced by 

repeatedly selecting examples from D and then labeling them according to the function 

c. The target function c may be deterministic or probabilistic: in the latter case, for 

some example A, c(A) would be a probability distribution over labels rather than just 

a single label. Note that we can use the distribution D to model “integrity constraints” 

in the data. For instance, suppose we are representing a decimal digit by nine boolean 

features such that feature i is 1 if the digit is greater than or equal to i. We can model 

this by having D assign examples such as 101010101 the probability zero (even though 

the target function c is still defined on such examples). 

Given this setup, perhaps the simplest notion of relevance is a notion of being “relevant 

to the target concept”. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 1 (Relevant to the target). A feature xi is relevant to a target concept c if 

there exists a pair of examples A and B in the instance space such that A and B differ 

only in their assignment to Xi and c(A) # c(B). 

Another way of stating this definition is that feature xi is relevant if there exists 

some example in the instance space for which twiddling the value of xi affects the 

classification given by the target concept. 

Notice that this notion has the drawback that the learning algorithm, given access 

to only the sample S, cannot necessarily determine whether or not some feature xi is 

relevant. Even worse, if the encoding of features is redundant (say every feature is 

repeated twice), it may not even be possible to see two examples that differ in only 

one feature, since at least one of those examples would have probability zero under 

D. On the other hand, this is often the definition of choice for theoretical analyses of 

learning algorithms, where the notion of relevance is used to prove some convergence 

properties of an algorithm, rather than in the algorithm itself. The definition also is 

useful in situations where the target function c is a real object that the learning algo- 

rithm can actively query at inputs of its own choosing (e.g., if the learning algorithm 

is trying to reverse engineer some piece of hardware) rather than just a convenient 

fiction. 

To remedy some of the drawbacks of the above definition, John, Kohavi and Pfleger 

[42] define two notions of what might be termed “relevance with respect to a distribu- 

tion,” which also has a nice interpretation as a notion of “relevance with respect to a 

sample”. 

Definition 2 (Strongly relevant to the sample/distribution). A feature Xi is strongly 

relevant to sample S if there exist examples A and B in S that differ only in their 

assignment to Xi and have different labels (or have different distributions of labels if 

they appear in S multiple times). Similarly, xi is strongly relevant to target c and dis- 

tribution D if there exist examples A and B having non-zero probability over D that 

differ only in their assignment to xi and satisfy c(A) # c(B). 

In other words, this is just like Definition 1 except A and B are now required to be 

in S (or have non-zero probability). 
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Definition 3 (Weakly relevant to the sample/distribution). A feature Xi is weakly rele- 

vant to sample S (or to target c and distribution D) if it is possible to remove a subset 

of the features so that xi becomes strongly relevant. 

These notions of relevance are useful from the viewpoint of a learning algorithm 

attempting to decide which features to keep and which to ignore. Features that are 

strongly relevant are generally important to keep no matter what, at least in the sense 

that removing a strongly relevant feature adds ambiguity to the sample. Features that 

are weakly relevant may or may not be important to keep depending on which other 

features are ignored. In practice, one may wish to adjust these definitions to account 

for statistical variations. For instance, a special case of Definition 3 is that feature X, is 

weakly relevant if it is correlated with the target function (i.e., Xi is strongly relevant 

when all other features are removed), so given a finite sample, one would want to 

account for variance and statistical significance. 

In a somewhat different vein than the above definitions, in many cases rather than 

caring about exactly which features are relevant, we simply want to use relevance as 

a measure of complexity. That is, we want to use relevance to say how “complicated” 

a function is, and rather than requiring our algorithm to explicitly select a subset of 

features, we just want it to perform well when this quantity is low. For this purpose, 

another notion of relevance as a complexity measure with respect to a sample of data S 

and a set of concepts C is useful: 

Definition 4 (Relevance as a complexity measure). Given a sample of data S and a 

set of concepts C, let r( S, C) be the number of features relevant using Definition 1 to 

a concept in C that, out of all those whose error over S is least, has the fewest relevant 

features. 

In other words, we are asking for the smallest number of features needed to achieve 

optimal performance over S via a concept in C. The reason for specifying the concept 

class C is that there may be a feature, such as a person’s social-security number, that is 

highly relevant from the point of view of the information contained, but that is useless 

with respect to the sorts of concepts under consideration. For additional robustness, this 

definition is sometimes modified to allow concepts in C with “nearly” minimal error 

over S, if this produces a smaller relevant set. 

The above notions of relevance are independent of the specific learning algorithm 

being used. There is no guarantee that just because a feature is relevant, it will necessarily 

be useful to an algorithm (or vice versa). Caruana and Freitag [ 191 make this explicit 

with a notion of what we might term “incremental usefulness” (and which they simply 

call “usefulness”) : 

Definition 5 (Incremental usefulness). Given a sample of data S, a learning algorithm 

L, and a feature set A, feature Xi is incrementally useful to L with respect to A if the 

accuracy of the hypothesis that L produces using the feature set {xi} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU A is better than 

the accuracy achieved using just the feature set A. 
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This notion is especially natural for feature-selection algorithms that search the space 

of feature subsets by incrementally adding or removing features to their current set-for 

instance, many that follow the general framework described in Section 2.2. 

To make these definitions more clear, consider concepts that can be expressed as 

disjunctions of features (e.g., xt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV x3 V x7), and suppose that the learning algorithm sees 

these five examples: 

100000000000000000000000000000 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111111111100000000000000000000 + 

000000000011111111110000000000 + 

000000000000000000001111111111 + 

000000000000000000000000000000 - 

The relevant features using Definition 1 would depend on the true target concept 

(though any consistent target disjunction c must include the first feature). Using Def- 

initions 2 and 3, we would say that xi is strongly relevant and the rest are weakly 

relevant (note that x:! is weakly relevant because it can be made strongly relevant by 

removing xi and x3,. . . ,x10). Using Definition 4 we would say simply that there are 

three relevant features (r( S, C) = 3), since this is the number of features relevant to 

the smallest consistent disjunction. The notion of incremental usefulness in Definition 5 

depends on the learning algorithm but, presumably, given the feature set { 1,2}, the third 

feature would not be useful but any of features xii to x30 would be. We will revisit the 

question of how Definition 5 is related to the others at the end of Section 2.2 when we 

discuss a simple specific algorithm. 

There are a variety of natural extensions one can make to the above definitions. For 

instance, one can consider relevant linear combinations of features, rather than just 

relevant individual features. In this case, in analogy to Definition 4 above, one could 

ask: “What is the lowest-dimensional space such that projecting all the examples in S 

onto that space preserves the existence of a good function in the class C?” This notion 

of relevance is often most natural for statistical approaches to learning. Indeed, methods 

such as principal component analysis [44] are commonly used as heuristics for finding 

these low-dimensional subspaces. 

2.2. Feature selection as heuristic search 

We now turn to discussing feature-selection algorithms and, more generally, algorithms 

for dealing with data sets that contain large numbers of irrelevant attributes. A convenient 

paradigm for viewing many of these approaches (especially those that perform explicit 

feature selection) is that of heuristic search, with each state in the search space specifying 

a subset of the possible features. According to this view, we can characterize any feature- 

selection method in terms of its stance on four basic issues that determine the nature of 

the heuristic search process. 

First, one must determine the starting point (or points) in the space, which in turn 

influences the direction of search and the operators used to generate successor states. 

As Fig. 1 depicts, there is a natural partial ordering on this space, with each child 

having exactly one more feature than its parents. This suggests that one might start 
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Fig. 1, Each state in the space of feature subsets specifies the attributes to use during induction. Note that the 

states in the space (in this case involving four features) are partially ordered, with each of a state’s children 

(to the right) including one more attribute (dark circles) than its parents. 

with nothing and successively add attributes, or one might start with all attributes and 

successively remove them. The former approach is sometimes called forward selection, 

whereas the latter is known as backward elimination. One can also use variations on 

this partial ordering: Devijver and Kittler [27] report an operator that adds k features 

and takes one away, and genetic operators like crossover produce somewhat different 

types of connectivity. 

A second decision involves the organization of the search. Clearly, an exhaustive 

search of the space is impractical, as there exist 2’ possible subsets of a attributes. A 

more realistic approach relies on a greedy method to traverse the space. At each point 

in the search, one considers local changes to the current set of attributes, selects one, 

and then iterates. For instance, the hill-climbing approach known as stepwise selection 

or elimination considers both adding and removing features at each decision point, 

which lets one retract an earlier decision without keeping explicit track of the search 

path. Within these options, one can consider all states generated by the operators and 

then select the best, or one can simply choose the first state that improves accuracy 

over the current set. One can also replace the greedy scheme with more sophisticated 

methods, such as best-first search, which are more expensive but still tractable in some 

domains. 

A third issue concerns the strategy used to evaluate alternative subsets of attributes. 

One commonly used metric involves an attribute’s ability to discriminate among classes 

that occur in the training data. Many induction algorithms incorporate a criterion based 

on information theory, but others directly measure accuracy on the training set or on 

a separate evaluation set. A broader issue concerns how the feature-selection strategy 

interacts with the basic induction algorithm, as we discuss shortly in more detail. 
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Finally, one must decide on some criterion for halting the search. For example, one 

might stop adding or removing attributes when none of the alternatives improves the 

estimate of classification accuracy; one might continue to revise the feature set as long 

as accuracy does not degrade; or, one might continue generating candidate sets until 

reaching the other end of the search space and then select the best. One simple halting 

criterion is to stop when each combination of values for the selected attributes maps 

onto a single class value, but this assumes noise-free training data. A more robust 

alternative simply orders the features according to some relevancy score, then uses a 

system parameter to determine the breakpoint. 

Note that the above design decisions must be made for any induction algorithm that 

carries out feature selection. Thus, they provide useful dimensions for describing the 

techniques developed to address this problem, and we will refer to them repeatedly. 

To make this more concrete, let us revisit the scenario given at the end of Section 2.1 

(we are considering concepts expressible as a disjunction of Boolean features) with a 

simple strategy known as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgreedy set-cover algorithm: 

Begin with a disjunction of zero features (which by convention outputs “nega- 

tive” on every example). Then, out of those features not present in any negative 

example (and thus are “safe” to add into the hypothesis) choose the one whose 

inclusion into the current hypothesis most increases the number of correctly 

classified positive examples (breaking ties arbitrarily). Repeat until there are 

no more “safe” features that would increase the number of correctly classified 

positives, and then halt. 

With respect to our framework, this algorithm begins at the leftmost point in Fig. 1, 

incrementally moves rightward only, evaluates subsets based on performance on the 

training set with an infinite penalty for misclassifying negative examples, and halts 

when it can take no further step that strictly improves its evaluated performance. 

Given the five data points listed at the end of Section 2.1, this algorithm would first 

put in xi, then perhaps xii, then perhaps xpt, and then would halt. It is not hard to see 

that if there exists a disjunction consistent with the training set, then this method will 

find one. In fact, the number of features selected by this method is at most O(log ISI) 

times larger than the number of relevant features using Definition 4 [ 39,451. 2 

We can also use this algorithm to illustrate relationships between some of the defi- 

nitions in the previous section. For instance, the incrementally useful features for this 

algorithm (Definition 5) will also be weakly relevant (Definition 3), but the converse is 

not necessarily true. In fact, if the data is not consistent with any disjunction, then even 

strongly relevant features (Definition 2) may be ignored by the algorithm due to the 

algorithm’s conservative nature (it ignores any feature that may cause it to misclassify 

a negative example). On the other hand, if the data is consistent with some disjunction, 

2 This is not too hard to see, and follows from the fact that there must always exist some feature to add that 

captures at least a 1 /r( S, C) fraction of the still-misclassified positive examples. In the other direction, finding 

the smallest disjunction consistent with a given set of data is NP-hard [ 351; a polynomial-time algorithm to 

find disjunctions only clog n times larger than the smallest for c < l/4 would place NP into quasi-polynomial 

time 1711. 
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then all strongly relevant features are incrementally useful (and all will eventually be 

placed in the algorithm’s hypothesis), though the algorithm may prefer a weakly relevant 

feature to a strongly relevant one due to its evaluation criterion. 

We now review some specific feature-selection methods, which we have grouped into 

three classes: those that embed the selection within the basic induction algorithm, those 

that use feature selection tofilter features passed to induction, and those that treat feature 

selection as a wrapper around the induction process. 

2.3. Embedded approaches to feature selection 

Methods for inducing logical descriptions provide the clearest example of feature- 

selection methods embedded within a basic induction algorithm. In fact, many algorithms 

for inducing logical conjunctions (e.g., [ 75,99,102] ; and the greedy set-cover algorithm 

given above) do little more than add or remove features from the concept description in 

response to prediction errors on new instances. For these methods, the partial ordering 

in Fig. 1 also describes the space of hypotheses, and the algorithms typically use this 

ordering to organize their search for concept descriptions. 

Theoretical results for learning pure conjunctive (or pure disjunctive) concepts are 

encouraging. As mentioned above, the greedy set-cover approach finds a hypothesis at 

most a logarithmic factor larger than the smallest possible. In fact, Warmuth (personal 

communication) notes that one can achieve slightly better bounds in the PAC setting by 

halting earlier so that some training examples are misclassified. Because the resulting 

hypothesis is guaranteed to be fairly small, the sample complexity grows only logarithmi- 

cally with the number of irrelevant features. These results apply directly to other settings 

in which the target concept can be characterized as a conjunction (or disjunction) of 

a list of functions produced by the induction algorithm. Situations of this form include 

learning intersections of halfspaces in constant-dimensional spaces [ 14 1, and algorithms 

for learning DNF formulas in n ‘(“gn) time under the uniform distribution [98]. The 

above results for the greedy set-cover method are distribution free and worst case, but 

Pazzani and Sarrett [78] report an average-case analysis of even simpler methods for 

conjunctive learning that imply logarithmic growth for certain product distributions. 

Similar operations for adding and removing features form the core of methods for 

inducing more complex logical concepts, but these methods also involve routines for 

combining features into richer descriptions. For example, recursive partitioning methods 

for induction, such as Quinlan’s ID3 [ 801 and C4.5 [ 8 11, and CART [ 151, carry out 

a greedy search through the space of decision trees, at each stage using an evaluation 

function to select the attribute that has the best ability to discriminate among the classes. 

They partition the training data based on this attribute and repeat the process on each 

subset, extending the tree downward until no further discrimination is possible. 

Dhagat and Hellerstein [28] have also extended techniques for greedy set cover in a 

recursive fashion to apply to more complex functions such as k-term DNF formulas and 

k-alternation decision lists. Blum [8] describes methods that can be used even when 

the set of all attributes is unbounded, so long as each individual example satisfies a 

reasonably small number of them; this is often a good model when dealing with text 

documents, for instance, that may each contain only a small number of the possible 
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words in the dictionary. For all these cases, the feature-selection process is clearly 

embedded within another, more complex algorithm. 

Separate-and-conquer methods for learning decision lists [ 22,73,79] embed feature 

selection in a similar manner. These techniques use an evaluation function to select a 

feature that helps distinguish a class C from others, then add the resulting test to a single 

conjunctive rule for C. They repeat this process until the rule excludes all members of 

other classes, then remove the members of C that the rule covers and repeat the process 

on the remaining training cases. 

Clearly, both partitioning and separate-and-conquer methods explicitly select features 

for inclusion in a branch or rule, in preference to other features that appear less relevant 

or irrelevant. For this reason, one might expect them to scale well to domains that 

involve many irrelevant features. Although few theoretical results exist for these methods, 

experimental studies by Langley and Sage [ 611 suggest that decision-tree methods scale 

linearly with the number of irrelevant features for certain target concepts, such as logical 

conjunctions. However, the same studies also show that, for other targets concepts, they 

exhibit the same exponential growth as does nearest-neighbor. Experiments by Almuallim 

and Dietterich [ 31 and by Kira and Rendell [ 471 also show substantial decreases in 

accuracy, for a given sample size, when irrelevant features are introduced into selected 

Boolean target concepts. 

The standard explanation of this effect involves the reliance of such algorithms on 

greedy selection of attributes to discriminate among classes. This approach works well 

in domains where there is little interaction among the relevant attributes, as in conjunc- 

tive concepts. However, the presence of attribute interactions, which can lead a relevant 

feature in isolation to look no more discriminating than an irrelevant one, can cause sig- 

nificant problems for this scheme. Parity concepts constitute the most extreme example 

of this situation, but it also arises with other target concepts.3 

Some researchers have attempted to remedy these problems by replacing greedy 

search with lookahead techniques (e.g., [ 771)) with some success. Of course, more 

extensive search carries with it a significant increase in computational cost. Others 

have responded by selectively defining new features as combinations of existing ones, 

so as to make greedy search more powerful by letting it take larger steps (e.g., [72, 

791). However, neither approach has been directly evaluated in terms of its ability to 

handle large numbers of irrelevant features, either through experiment or theoretical 

analysis. 

2.4. Filter approaches to feature selection 

A second general approach to feature selection introduces a separate process for 

this purpose that occurs before the basic induction step. For this reason, John, Kohavi 

and Pfleger [ 421 have termed them jilter methods, because they filter out irrelevant 

attributes before induction occurs. The preprocessing step uses general characteristics 

3 Note that this problem does not disappear with increasing sample size. Embedded selection methods that 

rely on greedy search cannot distinguish between relevant and irrelevant features early in the search process 

even when the entire instance space is available. 
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of the training set to select some features and exclude others. Thus, filtering methods 

are independent of the induction algorithm that will use their output, and they can be 

combined with any such method. 

Perhaps the simplest filtering scheme is to evaluate each feature individually based 

on its correlation with the target function (e.g., using a mutual information measure) 

and then to select the k features with the highest value. The best choice of k can 

then be determined by testing on a holdout set. This method is commonly used in text 

categorization tasks [62,63], often in combination with either a “naive Bayes” or a 

nearest-neighbor classification scheme, and has achieved good empirical success. 

Kira and Rendell’s [ 471 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARELIEF algorithm follows this general paradigm but incorpo- 

rates a more complex feature-evaluation function. Their system then uses ID3 to induce 

a decision tree from the training data using only the selected features. Kononenko [55] 

reports two extensions to this method that handle more general types of features. 

Almuallim and Dietterich [3] describe a filtering approach to feature selection that 

involves a greater degree of search through the feature space. Their FOCUS algorithm 

looks for minimal combinations of attributes that perfectly discriminate among the 

classes. This method begins by looking at each feature in isolation, then turns to pairs 

of features, triples, and so forth, halting only when it finds a combination that generates 

pure partitions of the training set (i.e., in which no instances have different classes). 

FOCUS then passes on the original training examples, described using only the selected 

features, to an algorithm for decision-tree induction. 

Comparative studies with a regular decision-tree method showed that, for a given 

number of training examples on randomly selected Boolean target concepts, FOCUS 

was almost unaffected by the introduction of irrelevant attributes, whereas the accuracy 

of the decision-tree method degraded significantly. Schlimmer [ 871 describes a related 

approach that carries out a systematic search (to avoid revisiting states) through the 

space of feature sets, again starting with the empty set and adding features until it finds 

a combination consistent with the training data. 

Although Focus and RELIEF follow feature selection with decision-tree construction, 

one can of course use other induction methods. For instance, Cardie [ 171 uses filtering 

as a preprocessor for nearest-neighbor retrieval, and Kubat, Flotzinger and Pfurtscheller 

[56] filter features for use with a naive Bayesian classifier. Interestingly, both used 

a decision-tree method that relies on an embedded selection scheme as the filter to 

produce a reduced set of attributes. More recently, Singh and Provan [93] have used 

information-theoretic metrics to filter features for inclusion in a Bayesian network, 

while Koller and Sahami [ 541 have employed a cross-entropy measure, designed to find 

“Markov blankets” of features, for use in both naive Bayes and decision-tree induction. 

In a somewhat different vein, Greiner, Grove and Kogan (in this issue [ 371) consider 

settings where a helpful tutor filters out conditionally irrelevant attributes. 

Table 1 characterizes the recent work on filter methods in terms of the dimensions 

described earlier in the section, along with the induction algorithm that takes advantage 

of the reduced feature set. The typical results show some improvement over embedded 

selection methods. Most experiments have focused on natural domains that contain 

an unknown number of irrelevant features, but a few researchers [ 3,471 have studied 

experimentally the effect of artificially introducing such features. 
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Characterization of recent work on filter approaches to feature selection in terms of heuristic search through 

the space of feature sets 

Authors (system) Starting 

point 

Almuallim (FOCUS) 

Cardie 

Keller and Sahami 

Kira and Rendell (RELIEF) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Kubat et al. 

Schlimmer 

Singh and Provan 

None 

None 

All 

- 

None 

None 

None 

Search Halting 

control criterion 

Breadth first 

Greedy 

Greedy 

Ordering 

Greedy 

Systematic 

Greedy 

Consistency 

Consistency 

Threshold 

Threshold 

Consistency 

Consistency 

No info. gain 

Induction 

algorithm 

Dec. tree 

Near. neigh. 

Tree/Bayes 

Dec. tree 

Naive Bayes 

None 

Bayes net 

Another class of filter methods actually constructs higher-order features from the orig- 

inal ones, orders them in terms of the variance they explain, and selects the best such 

features. The statistical technique of principal components analysis [ 441, the best-known 

example of this approach, generates linear combinations of features whose vectors are 

orthogonal in the original space. Empirically, principal components has successfully 

reduced dimensionality on a variety of learning tasks. Blum and Kannan [ 121 de- 

scribe theoretical guarantees for methods of this form, when the target function is an 

intersection of halfspaces and the examples are chosen from a sufficiently benign dis- 

tribution. The related method of independent component analysis [24] incorporates 

similar ideas, but insists only that the new features be independent rather than orthogo- 

nal. 

2.5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW rapper approaches to feature selection 

A third generic approach for feature selection also occurs outside the basic induction 

method but uses that method as a subroutine, rather than as a postprocessor. For this 

reason, John et al. [42] refer to these as wrapper approaches (see, also, the paper by 

Kohavi and John in this issue [ 5 11) . The typical wrapper algorithm searches the same 

space of feature subsets (see Fig. 1) as embedded and filter methods, but it evaluates 

alternative sets by running some induction algorithm on the training data and using 

the estimated accuracy of the resulting classifier as its metric.4 Actually, the wrapper 

scheme has a long history within the literature on statistics and pattern recognition (e.g., 

[ 271)) where the problem of feature selection has long been an active research topic, 

but its use within machine learning is relatively recent. 

The general argument for wrapper approaches is that the induction method that will 

use the feature subset should provide a better estimate of accuracy than a separate 

4 One natural metric involves running the induction algorithm over the entire training data using a given set 

of features, then measuring the accuracy of the learned structure on the training data. However, John et al. 

argue convincingly that a cross-validation method provides a better measure of expected accuracy on novel 

test cases. 
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measure that may have an entirely different inductive bias. For example, both Doak 

[ 291 and John et al. [42] argue in favor of using a wrapper method to improve the 

behavior of decision-tree induction. Doak reports experimental comparisons of forward 

selection and backward elimination, as well as the impact of different search-control 

techniques. John et al. present similar comparative studies, including the effect of using 

wrappers versus filters. Caruana and Freitag [ 181 report a third set of empirical studies, 

also focusing on decision trees, that explore variations on wrapper methods. 

The major disadvantage of wrapper methods over filter methods is the former’s com- 

putational cost, which results from calling the induction algorithm for each feature set 

considered. This cost has led some researchers to invent ingenious techniques for speed- 

ing the evaluation process. In particular, Caruana and Freitag describe a scheme for 

caching decision trees that lets their algorithms search larger spaces in reasonable time. 

Moore and Lee [ 761 describe an alternative scheme that instead speeds feature selection 

by reducing the percentage of training cases used during evaluation. 

Certainly not all work within the wrapper framework has focused on decision-tree 

induction. Indeed, one might expect methods like nearest-neighbor, which by default 

take into account all attributes, would benefit more from feature-selection wrappers than 

algorithms that themselves incorporate embedded schemes. This expectation has led to 

a substantial body of work on wrapper methods for nearest-neighbor and case-based 

learning. 

Let us consider one such approach and its behavior in some detail. Langley and Sage’s 

[ 591 OBLIWON algorithm combines the wrapper idea with the simple nearest-neighbor 

method, which assigns to new instances the class of the nearest case stored in memory 

during learning. The feature-selection process effectively alters the distance metric used 

in these decisions, taking into account the features judged relevant and ignoring the 

others. 

OBLIVION carries out a backward elimination search through the space of feature 

sets, starting with all features and iteratively removing the one that leads to the great- 

est improvement in estimated accuracy. The system continues this process until the 

estimated accuracy actually declines. We characterize OBLIVION as using a wrapper 

method because its evaluation metric involves running nearest-neighbor itself on the 

training data to measure the accuracy with alternative feature sets. In particular, the 

system uses leave-one-out cross-validation to estimate the accuracy of each feature set 

on novel test cases. 

Although this approach may seem computationally expensive, OBLIVION uses an in- 

sight from Moore and Lee [ 761 to make it tractable. 5 The leave-one-out technique 

estimates accuracy on N training cases by holding out each case in turn, constructing 

a classifier based on the remaining N - 1 cases, seeing whether the classifier correctly 

predicts the case, and averaging the results over all N cases. Because nearest-neighbor 

simply stores the training cases in memory, one can implement leave one out by suc- 

cessively removing each case and using the remaining ones to classify it. This scheme 

is no more expensive than estimating accuracy on the training set itself. 

5 Kohavi [ 501 has incorporated the same idea into his technique for inducing decision tables, which has 

many similarities to OBLIVION. 
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Table 2 

Characterization of recent work on wrapper approaches to feature selection in terms of heuristic search through 

the space of feature sets 

Authors (system) Starting 

point 

Search 

control 

Halting 

criterion 

Induction 

algorithm 

Aha and Bankert (Beam) 

Caruana and Freitag (CAP) 

Doak 

John, Kohavi and Pfleger 

Langley and Sage (OBLIVION) 

Langley and Sage (Sel. Bayes) 

Moore and Lee (Race) 

Singh and Provan (K2-AS) 

Skalak 

Townsend-Weber and Kibler 

Comparison 

Comparison 

Comparison 

All 

None 

Comparison 

None 

Random 

All 

Comparison 

Greedy 

Comparison 

Greedy 

Greedy 

Greedy 

Greedy 

Greedy 

Mutation 

Comparison 

No better 

All used 

Not enough better 

No better 

Worse 

Worse 

No better 

Worse 

Enough times 

No better 

Near. neigh. 

Dec. tree 

Tre.e/Bayes 

Dec. tree 

Near. neigh. 

Naive Bayes 

Near. neigh. 

Bayes net 

Near. neigh. 

Near. neigh. 

Langley and Sage designed a number of experiments to evaluate their system. Results 

with synthetic domains suggest that, when some features are irrelevant, OBLIVION 

learns high-accuracy classifiers from many fewer instances than simple nearest-neighbor. 

However, they also found that this effect was absent from many of the UC1 data sets, 

suggesting that Holte’s [40] finding about the accuracy of one-level decision trees was 

due to highly correlated features (which cause no difficulty for nearest-neighbor) rather 

than completely irrelevant ones. OBLIVION did fare significantly better on classifying 

chess end games and predicting a word’s semantic class, giving evidence that these 

domains do contain irrelevant features. 

Other researchers have also developed wrapper methods for use with nearest-neighbor. 

For instance, Aha and Bankert [ 21 report an a technique much like OBLIVION, but their 

system starts with a randomly selected subset of features and includes an option for 

beam search rather than greedy decisions. They report impressive improvements on a 

cloud classification task that involves over 200 numeric features. Skalak’s [94] work on 

feature selection for nearest-neighbor also starts with a random feature set, but replaces 

greedy search with random hill climbing that continues for a specified number of cycles. 

Most research on wrapper methods has focused on classification, but both Moore 

and Lee [76] and Townsend-Weber and Kibler [97] combine this idea with k-nearest- 

neighbor for numeric prediction. Also, most work has emphasized the advantages of 

feature selection for induction methods that are highly sensitive to irrelevant features. 

However, Langley and Sage [60] have shown that the naive Bayesian classifier, which is 

sensitive to redundant features, can benefit from the same basic approach (as did Doak’s 

earlier work). Singh and Provan [ 921 have extended this idea to learning more complex 

Bayesian networks. This suggests that techniques for feature selection can improve the 

behavior of induction algorithms in a variety of situations, not only in the presence 

of irrelevant attributes. As Caruana and Freitag [ 191 argue, most methods for feature 

selection focus on finding attributes that are useful for performance (in the sense of 

Definition 5), rather than necessarily finding the relevant ones. 
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Table 2 characterizes the recent efforts on wrapper methods in terms of the dimensions 

discussed earlier, as well as the induction method used in each case to direct the search 

process. The table shows the diversity of techniques that researchers have developed, and 

the heavy reliance on the experimental comparison of variant methods. Unfortunately, 

few of these experiments directly study the algorithms’ ability to deal with increasing 

numbers of irrelevant features, and few theoretical results are available for them. 

2.6. Feature-weighting methods 

So far, we have discussed algorithms that explicitly attempt to select a “most relevant” 

subset of features. However, another approach, especially for embedded algorithms, is 

to apply a weighting function to features, in effect assigning them degrees of perceived 

relevance. We have separated this from the explicit feature-selection approach because 

the motivations and uses for these two methods tend to be different. Explicit feature 

selection is generally most natural when the result is intended to be understood by 

humans, or fed into another algorithm. Weighting schemes tend to be easier to implement 

in on-line incremental settings, and are generally more purely motivated by performance 

considerations. 

Weighting schemes can be viewed in terms of heuristic search, as we viewed explicit 

feature-selection methods. However, because the weight space lacks the partial ordering 

of feature sets, most approaches to feature weighting rely on quite different forms of 

search. For instance, the most common is some form of gradient descent, in which 

training instances lead to simultaneous changes in all weights. 

Perhaps the best-known attribute-weighting method is the perceptron updating rule 

[ 741, which adds or subtracts weights on a linear threshold unit in response to errors 

on training instances. The least-mean squares algorithm 11011 for linear units and 

backpropagation [ 841, its generalization for multilayer neural networks, also involve 

additive changes to a set of weights to reduce error on the training set. 6 Baluja and 

Pomerleau (in this issue [ 7]), discuss using a neural network approach in domains 

whose features have time-varying degrees of relevance. 

Perceptron-weighting techniques can have difficulty in settings dominated by truly 

irrelevant features (see, for instance, the paper by Kivinen, Warmuth and Auer in this 

issue [49] ). In response, Littlestone [ 661 developed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWINNOW, an algorithm that up- 

dates weights in a multiplicative manner, rather than additively as in the perceptron rule. 

Littlestone showed that, on any on-line stream of data consistent with a disjunction of Y 

features, WINNOW makes at most 0( rlogn) mistakes. (This effectively uses the notion 

of relevance given in Definition 4.) Thus, its behavior degrades only logarithmically 

with the number of irrelevant features in the target concept. More generally, WINNOW 

achieves this logarithmic degradation for concept classes such as conjunctions, k-DNF 

formulas, and linear threshold functions with good separation between positive and 

negative examples. 

h While most work on embedded weighting schemes has a neural-network fiavor, Aha [ 11 reports an error- 

driven method, embedded within a nearest-neighbor learner, that modifies its distance metric by altering 

weights. 
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For concreteness, we present a version of the WINNOW algorithm for the disjunction- 

learning scenario discussed in Sections 2.1 and 2.2, along with a proof of Littlestone’s 

theorem: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The Winnow algorithm (a simple version). 

I. Initialize the weights WI,. . . , w, of the features to 1. 

2. Given an example (xi,. . . ,x,>, output 1 if ~1x1 + . . . + w,x, > n, and output 0 

otherwise. 

3. If the algorithm makes a mistake: 

(a) If the algorithm predicts negative on a positive example, then for each xi 

equal to 1, double the value of wi. 

(b) If the algorithm predicts positive on a negative example, then for each xi 

equal to 1, cut the value of Wi in half. 

4. Go to 2. 

Theorem 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWINNOW makes at most 2 + 3r( 1 + lg n) mistakes on any sequence of 

examples consistent with a disjunction of r features. 

Proof. Let us first bound the number of mistakes that will be made on positive examples. 

Any mistake made on a positive example must double at least one of the weights in 

the target function (the relevant weights), and a mistake made on a negative example 

will not halve any of these weights, by definition of a disjunction. Furthermore, each of 

relevant weights can be doubled at most 1 + lgn times, since only weights that are less 

than n can ever be doubled. Therefore, WINNOW makes at most r( 1 + lg n) mistakes 

on positive examples. 

Now we bound the number of mistakes made on negative examples. The total weight 

summed over all features is initially n. Each mistake made on a positive example 

increases the total weight by at most n (since before doubling, we must have had 

WlXl +. . . w,x, < n). On the other hand, each mistake made on a negative example 

decreases the total weight by at least n/2 (since before halving, we must have had 

wixi + ... + w,x, 2 n). The total weight never drops below zero. Therefore, the 

number of mistakes made on negative examples is at most twice the number of mistakes 

made on positive examples, plus 2; that is, 2 + 2r( 1 + lg n). Adding this to the bound 

on the number of mistakes on positive examples yields the theorem. 0 

The same general approach of WINNOW has been used in algorithms developed by 

Littlestone and Warmuth [ 691, Vovk [ 1001, Littlestone, Long and Warmuth [ 671, and 

Cesa-Bianchi et al. [21]. Kivinen and Warmuth [48] describe relations between these 

approaches and additive updating methods such as the least mean squares algorithm. 

In fact, these multiplicative updating schemes are very similar to the kind of multi- 

plicative probability updates that occur in Bayesian methods, and several of the results 

provide bounds on the performance of Bayesian updating, even when the probabilistic 

assumptions of that approach are not met. Experimental tests of WINNOW and related 

multiplicative methods on natural domains have revealed good behavior [ 6,93, and stud- 

ies with synthetic data show that they scale very well to domains with even thousands 

of irrelevant features [ 681. 
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More generally, weighting methods are often cast as ways of merging advice from 

different knowledge sources that may themselves be generated through learning. In 

this light, the weighting process plays an interesting dual role with respect to the filter 

methods discussed earlier. Filter approaches pass their output (a set of selected features) 

to a black-box learning algorithm, whereas weighting approaches can take as input the 

classifiers generated by black-box learning algorithms and determine the best way to 

combine their predictions. 

On the other hand, direct analogs to the filter and wrapper approaches do exist for 

determining weights. Stanfill 1951 and Ting [96] describe filter-like methods that use 

conditional probability distributions to weight attributes for nearest-neighbor. Daelemans 

et al. [26] present a different weighting scheme that normalizes features based on an 

information-theoretic metric, and one could use the scores produced by RELIEF [47] to 

the same end. Finally, Kohavi, Langley and Yun [52] have adapted the wrapper method 

to search through a discretized weight space that can be explored in much the same way 

as feature sets. Each of these approaches shows improvement over use of all features, 

but only the latter reports comparisons with a simple selection of attributes. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe problem of irrelevant examples 

Just as some attributes are more useful than others, so may some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexamples better 

aid the learning process than others. This suggests a second broad type of relevance 

that concerns the examples themselves, and here we briefly consider techniques for 

their selection. Some work has assumed the presence of a benevolent tutor who gives 

informative instances, such as near misses, or provides ideal training sequences [ 1021. 

However, a more robust approach involves letting the learning system select or focus on 

training examples by itself. 

Researchers have proposed at least three reasons for selecting examples used during 

learning. One is if the learning algorithm is computationally intensive; in this case, if 

sufficient training data is available, it makes sense to learn only from some examples for 

purposes of computational efficiency. Another reason is if the cost of labeling is high 

(e.g., when labels must be obtained from experts) but many unlabeled examples are 

available or are easy to generate. Yet a third reason for example selection is to increase 

the rate of learning by focusing attention on informative examples, thus aiding search 

through the space of hypotheses. Here we should distinguish between examples that are 

relevant from the viewpoint of infomtation and ones that are relevant from the viewpoint 

of one’s algorithm. Most work emphasizes the latter, though information-based measures 

are sometimes used for this purpose. 

As with feature-selection schemes, we can separate example-selection methods into 

those that embed the selection process within the learning algorithm, those that filter 

examples before passing them to the induction process, and those that wrap example 

selection around successive calls to the learning technique. Although we will refer to 

this dimension below, we will instead organize the section around another distinction: 

between methods that select relevant examples from labeled training instances and ones 

that select from unlabeled instances. 
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3.1. Selecting labeled data 

The first generic approach assumes that a set of labeled training data is available for 

use by the learning system, but that not all of these examples are equally useful. As we 

noted above, one can embed the process of example selection within the basic learning 

algorithm, and many simple induction schemes take this approach. For instance, the per- 

ceptron algorithm, edited nearest-neighbor methods, and some incremental conjunctive 

methods only learn from an example when their current hypothesis misclassifies it. Such 

embedded methods, sometimes called conservative algorithms, ignore all examples on 

which their hypothesis is correct. ’ 

If one assumes that training data and test data are both taken from a single fixed distri- 

bution, then one can guarantee that with high probability, the data used for training will 

overall be relevant to the success criteria used for testing [ 141. As learning progresses, 

however, the learner’s knowledge about certain parts of the input space increases, and 

examples in the “well-understood” portion of the space become less useful. For instance, 

when a conservative algorithm has a 20% error rate, it will ignore 80% of the training 

cases, and when it achieves 10% error, it will ignore 90% of the data. 

In the PAC model, learning algorithms need to roughly double the number of examples 

seen in order to halve their error rate [ 14,34,86]. However, for conservative algorithms, 

since the number of examples actually used for learning is proportional to the error rate, 

the number of new examples used by the algorithm each time it wishes to halve its 

error rate remains (roughly) constant. Thus, the number of examples actually used to 

achieve some error rate E is really just logarithmic in l/e rather than linear. 

Although this result holds only for conservative algorithms that embed the example- 

selection process within learning, one can use explicit example selection to achieve 

similar effects for other induction methods. In particular, Schapire [86] describes a 

wrapper method called boosting that takes a generic learning algorithm and adjusts 

the distribution given to it (by removing some training data) based on the algorithm’s 

behavior. The basic idea is that, as learning progresses, the booster samples the input 

distribution to keep the accuracy of the learner’s current hypothesis near to that of random 

guessing. As a result, the learning process focuses on the currently hard data. Schapire 

has shown that boosting lets one achieve the logarithmic use of examples described 

above under quite general conditions, and Freund [ 33,341 has further improved on 

this technique. On the experimental front, Drucker et al. [ 30,311 have shown that 

boosting can improve the accuracy of neural network methods on tasks involving optical 

character recognition. This approach seems especially appropriate for techniques like 

backpropagation, for which training is much more expensive than prediction.’ 

7 Littlestone and Mesterharm [68] have shown that a variant of naive Bayes that learns only from errors 

can deal better with irrelevant features than the standard version, which updates its statistics on each example. 

This shows there exist interactions between the problems of feature selection and example selection. 

x Although boosting has clear empirical uses, it was originally developed for the theoretical goal of showing 

that “weak learning implies strong learning” in the PAC model. In other words, if one has an algorithm that 

will perform somewhat better than guessing over every distribution, then there cannot be a hard “core” to the 

function being learned, and one can boost performance to produce high-quality predictions. 
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Another class of wrapper methods for example selection originated in the experimental 

study of decision-tree induction. Quinlan [SO] reports a windowing technique designed 

to reduce the time needed to construct decision trees from very large training sets. 

Windowing selects a random sample of the training data to induce an initial decision 

tree, then uses that tree to classify all the remaining examples. From the misclassified 

cases, the method selects another random set to augment the original sample, constructs 

a new decision tree, and so forth, repeating the process until it has a tree that correctly 

classifies all of the training data. Quinlan reports that windowing led to substantial 

reduction in processing time on a large collection of chess endgames, and Catlett [20] 

describes another wrapper method called peepholing designed for even larger training 

sets. John and Langley [43] report a much simpler use of wrappers to determine the 

proper size of a randomly selected training sample. 

Lewis and Catlett [ 641 describe a filter approach to selection of labeled data, but such 

techniques are less common in the machine learning literature than embedded or wrapper 

methods. One can imagine simple techniques for cleaning training data, say by removing 

inconsistent examples that are identical except for their class, but such methods are not 

widely used. One-pass sampling of the training data would also constitute filtering, but 

again research has leaned towards iterative versions of sampling like those in boosting 

and windowing. 

3.2, Selecting unlabeled data 

The learner can also select data even before it has been labeled. This can be useful in 

scenarios where unlabeled data is plentiful, but where the labeling process is expensive. 

One generic approach to this problem, which can be embedded within an induction algo- 

rithm that maintains a set of hypotheses consistent with the training data, is called query 

by committee [ 891. Given an unlabeled instance, the method selects two hypotheses at 

random from the consistent set and, if they make different predictions, requests the label 

for the instance. The basic idea is that informative or relevant examples are more likely 

to pass the test than those that most hypotheses classify the same way. Unfortunately, to 

obtain theoretical results for query by committee requires much stronger constraints on 

the space of hypotheses than does boosting. Specifically, this method requires an ability 

to sample random consistent hypotheses, which can be quite difficult, although it is also 

a major topic of algorithmic research (e.g., [ 32,70,91] ) . 

There has been a larger body of work on algorithms that generate examples of 

their own choosing, under the heading of membership query algorithms within the 

theoretical community and experimentation within the empirical community. A common 

technique used by algorithms of this sort is to take a known example and slightly 

alter its feature values to determine the effect on its classification. For instance, one 

might take two examples with different labels and then “walk” them towards each 

other to determine at what point the desired classification changes (this, in turn, is 

often used to determine relevant features, tying in with our earlier discussion). Another 

class of methods effectively designs critical experiments to distinguish among competing 

hypotheses, letting them eliminate competitors and thus reduce the complexity of the 

learning task. Mitchell [75] suggested an information-theoretic approach to example 
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selection, whereas Sammut and Banerji [ 851 and Gross [ 381 used less formal methods 

but demonstrated their advantage empirically. More recently, work on “active learning” 

has continued this tradition; for instance, Cohn, Ghahramani and Jordan [23] report 

successful results with a system that selects examples designed to reduce the learner’s 

variance. In parallel, theoretical researchers [4,5,16,41,83] have shown that the ability 

to generate queries greatly enlarges the types of concept classes for which one can 

guarantee polynomial-time learning. 

Although much work on queries and experimentation has emphasized simple classifi- 

cation learning, other efforts have addressed more complex learning tasks. For example, 

Knobe and Knobe [53] let their grammar-induction system query an oracle about the 

legality of candidate strings to distinguish among competing hypotheses, and Kulkarni 

and Simon’s [ 571 KEKADA and Rajamoney’s [ 821 COAST design critical experiments 

to distinguish among competing hypotheses in scientific domains. Finally, Shen and 

Simon [ 901 and Gil [ 361 have explored the uses of experimentation in learning action 

models for planning tasks. 

Other learning systems incorporate strategies for exploring portions of the instance 

space that have not yet been encountered to obtain more representative information 

about the domain. For example, Scott and Markovitch [ 881 adapt this idea to unsuper- 

vised learning situations, and many methods for reinforcement learning include a bias 

toward exploring unfamiliar parts of the state space (e.g., [65]). Both approaches can 

considerably increase learning rates over random presentations. 

Most work on selecting and querying unlabeled data has used embedded methods, 

but Angluin et al. [5] and Blum et al. [Ill describe theoretical results for a wrapper 

query method that can be applied to any algorithm. Specifically, they show that when 

membership queries are available, any algorithm with a polynomial mistake bound for 

learning a “reasonable” concept class can be converted in an automated way into one 

in which the number of mistakes plus queries has only a logarithmic dependence on 

the number of irrelevant features present. The basic idea is to gradually grow a set of 

features known to be relevant, and whenever the algorithm makes a mistake, to use 

queries to determine if the mistake results from a missing relevant feature and, if so, to 

place a new relevant feature into the set. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChallenges for future relevance research 

Despite the recent activity, and the associated progress, in methods for selecting 

relevant features and examples, there remain many directions in which machine learning 

can improve its study of these important problems. Here we outline some research 

challenges for the theoretical and empirical learning communities. 

4.1. Theoretical challenges 

We claim that, in a sense, many of the central open theoretical problems in machine 

learning revolve around questions of finding relevant features. For instance, consider the 

well-known question of whether there are polynomial-time algorithms that can guarantee 
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learning of polynomial-size DNF formulas in the PAC or uniform distribution models. 

Or, consider the similar question of whether polynomial-size decision trees are learnable 

in either model. These questions both include the following open problem as a special 

case: 

Does there exist a polynomial-time algorithm for learning the class of Boolean 

functions over (0, l}n that have log*(n) relevant features, in the PAC or uniform 

distribution models? 

This is a special case because any function that has only log, n relevant features can, 

by definition, be written as a truth table having only n entries, and therefore it must have 

a small decision tree and a small DNF representation (note that the learning problem 

would be trivial if we knew a priori which log, n variables were relevant). 9 On the 

other hand, this problem appears to be a quite difficult special case. For instance, any 

algorithm to solve this problem would need to be “unusual” in the sense that the class 

has been proven impossible to learn in the statistical query model of Kearns [ lo]. Thus, 

issues of finding relevant features seem to be at the core of what makes those classes 

hard. 

As a practical matter, it is unclear how to experimentally test a proposed algorithm 

for this problem, since no distribution on the targetfunctions is given. In fact, functions 

with random truth tables in this class are generally easy. To allow for easier experimental 

testing of algorithms for this problem, the following is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspeci$c distribution on the target 

functions that seems quite hard even for uniform random examples (for convenience, 

the number of relevant features is 2 log, n): 

Select at random two disjoint sets S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc { 1,. . . , n} each of size log, n. On input 

X, compute the parity of the bits indexed by S (that is, does S contain an odd 

number of ones?) and the majority function of the bits indexed by T (that is, 

does T contain more ones than zeroes?), and output the exclusive-or of the two 

results. lo 

A second theoretical challenge is to develop algorithms with the focusing ability 

of WINNOW that apply to more complex target classes such as decision lists, parity 

functions, or general linear threshold functions. This would greatly extend the class of 

problems for which there exist positive results in on-line settings. 

In the framework of example selection, one important direction is to connect the work 

on membership query models, which have the advantage of generally being algorithmic 

but assume that arbitrary points in the input space may be probed, with the work on 

filtering unlabeled instances, which apply when only a fixed data stream is available, but 

often require solving a computationally hard subproblem. Another challenge is to further 

‘) In fact, this class is easy to learn when the algorithm can make active (membership) queries about 

examples of its own choosing. Indeed, the algorithm of Bshouty [ 161 learns the larger class of decision trees 

with membership queries in the exact leaning model, and a recent algorithm of Jackson [41] learns the even 

larger class of general DNF formulas using membership queries, with respect to the uniform distribution. 

I” For instance, if S = { 1,2,3} and T = {4,5,6} then the classification of the example 011101001010 would 

be positive, since the first three bits have an even number of ones (making their parity 0). and the next three 

bits have more ones than zeros (so the majority function is I), and the XOR of those two quantities is I 
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theoretically analyze the ways in which example selection can aid the feature-selection 

process. 

4.2. Empirical challenges 

Considerable work also remains on the empirical front, with one of the most urgent 

needs being studies on more challenging data sets. For instance, few of the domains used 

to date have involved more than 40 features. Two exceptions are Aha and Bankert’s study 

of cloud classification (204 attributes) and Koller and Sahami’s work on information 

retrieval ( 1675 attributes), but typical experiments have dealt with far fewer features; 

Moreover, Langley and Sage’s [61] results with the nearest-neighbor method suggest 

that many of the widely-used UC1 data sets have few completely irrelevant attributes. 

In hindsight, this seems natural for diagnostic domains, in which experts tend to ask 

about relevant features and ignore other ones. However, we believe that many real- 

world domains do not have this character, and that we must find data sets with a 

substantial fraction of irrelevant attributes if we want to test adequately our ideas on 

feature selection. 

Experiments with synthetic data also have important roles to play in the study of 

feature-selection methods. Such data sets can let one systematically vary factors of 

interest, such as the number of relevant and irrelevant attributes, while holding other 

factors constant. In this way, one can directly measure the sample complexity of al- 

gorithms as a function of these factors, showing their ability to scale to domains with 

many irrelevant features. However, we distinguish between the use of synthetic data for 

such systematic experiments and reliance on isolated artificial data sets (such as the 

Monks problems), which seem much less useful. 

More challenging domains, with more features and a higher proportion of irrelevant 

ones, will require more sophisticated methods for feature selection. Although further 

increases in efficiency would increase the number of states examined, such constant- 

factor improvements cannot eliminate problems caused by exponential growth in the 

number of feature sets. However, viewing these problems in terms of heuristic search 

suggests some places to look for solutions. In general, we must invent better techniques 

for selecting an initial feature set from which to start the search, formulate search-control 

methods that take advantage of structure in the space of feature sets, devise improved 

frameworks for evaluating the usefulness of alternative feature sets, and design better 

halting criteria that will improve efficiency without sacrificing accuracy. Future research 

in the area should also compare more carefully the behavior of feature-selection and 

attribute-weighting schemes. Presumably, each approach has some advantages, leaving 

an open question that is best answered by experiment, but preferably by informed 

experiments designed to test specific hypotheses about these two approaches to relevance. 

More generally, feature selection and example selection are tasks that seem to be 

intimately related and we need more studies designed to help understand and quantify 

this relationship. Much of the empirical work on example selection (e.g., [23,38] ) 

has dealt with low-dimensional spaces, yet this approach clearly holds even greater 

potential for domains involving many irrelevant features. Resolving basic issues of this 

sort promises to keep the field of machine learning occupied for many years to come. 
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