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Abstract

This paper introduces a novel method for constructing

and selecting scale-invariant object parts. Scale-invariant

local descriptors are first grouped into basic parts. A clas-

sifier is then learned for each of these parts, and feature

selection is used to determine the most discriminative ones.

This approach allows robust part detection, and it is invari-

ant under scale changes—that is, neither the training im-

ages nor the test images have to be normalized.

The proposed method is evaluated in car detection

tasks with significant variations in viewing conditions, and

promising results are demonstrated. Different local re-

gions, classifiers and feature selection methods are quanti-

tatively compared. Our evaluation shows that local invari-

ant descriptors are an appropriate representation for object

classes such as cars, and it underlines the importance of

feature selection.

1. Introduction

Recognizing general object classes and parts is one of the

most challenging problems in computer vision. The combi-

nation of computer vision and machine learning techniques

has recently led to significant progress [1, 17, 18], but exist-

ing approaches are based on fixed-size windows and do not

make use of recent advances in scale-invariant local feature

extraction [6, 8]. Thus, they require normalizing the train-

ing and test images.

We propose in this paper a method for selecting discrimi-

native scale-invariant object parts. Figure 1(a) demonstrates

the importance of feature selection. It shows the output

of a scale-invariant operator for finding significant circu-

lar patches in images [6]. In this context, it is natural to

define object parts in terms of clusters of patches with sim-

ilar brightness patterns. However, consider the two patches

marked in black in the figure. The corresponding patterns

are very close, but one of the patches lies on a car, while

the other lies in the background. This shows that the cor-

responding part is not discriminative for cars (in this en-

vironment at least). To demonstrate the effect of the pro-

posed feature selection method, Fig. 1(b) shows the initially

detected features (white) and discriminative descriptors de-

termined by feature selection (black). These are the ones

which should be used in a final, robust detection system.

(a)

(b)

Figure 1. Illustration of feature selection (see
text for details).

1.1. Related Work

Most appearance-based approaches to object class

recognition characterize the object by its whole image

[9, 15]. They are not robust to occlusion and also suffer

1
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from a lack of invariance. Furthermore, these methods are

only applicable to rigid objects and either they require pre-

liminary segmentation, or windows have to be extracted for

different locations, scales and rotations. The representa-

tion is also high-dimensional, therefore many learning tech-

niques cannot be used. To overcome these problems the use

of local features is becoming increasingly popular for object

detection and recognition.

Weber et al. [18] use localized image patches and ex-

plicitly compute their joint spatial probability distribution.

This approach has recently been extended to include scale-

invariant image regions [11]. Agarwal and Roth [1] first

learn a vocabulary of parts, determine spatial relations on

these parts and use them to train a Sparse Network of Win-

nows (SNoW) learning architecture. Lazebnik et al. [5] take

advantage of local affine invariants to represent textures.

Some recent methods combine feature selection and lo-

cal features. Viola and Jones [17] select rectangular (Haar-

like) features with an AdaBoost trained classifier. Chen

et al. [3] also use this boosting approach for components

learned by local non-negative matrix factorization. Amit

and Geman [2] employ small, localized and oriented edges

and combine them with decision trees. Mahamud and

Hebert [7] select discriminative object parts and develop

an optimal distance measure for nearest neighbor search.

Rikert et al. [12] use a mixture model, but only keep the

discriminative clusters and Schmid [14] selects significant

texture descriptors in a weakly supervised framework. Both

approaches select features based on their likelihood. Ull-

mann et al. [16] use image fragments and combine them

with a linear discriminative type classification rule. Their

selection algorithm is based on mutual information.

1.2. Overview

The first step of our approach is the detection of scale-

invariant interest points (regions) and the computation of

a rotation-invariant descriptor for each region (cf. section

2.1). These descriptors are then clustered and we obtain

a set of parts each of which is described by a classifier

(cf. section 2.2). Finally, we select a set of discriminative

parts/classifiers (cf. section 3). An experimental evaluation

compares different approaches to region extraction, classi-

fication and selection (cf. Section 4). Finally in Section 5

we conclude and outline our future work.

2. Object-Part Classifiers

In the following we first describe how to compute in-

variant descriptors and then explain how to learn object part

classifiers.

2.1. Scale-Invariant Descriptors

To obtain invariant descriptors we detect scale-invariant

interest points (regions) and characterize each of them by a

scale, rotation and illumination invariant descriptor.

Scale-invariant detectors. We have used two differ-

ent scale-invariant detectors: Harris-Laplace [8] and DoG

(Difference-of-Gaussian) [6]. Harris-Laplace detects multi-

scale Harris points and then selects characteristic points

in scale-space with the Laplace operator. DoG interest

points [6] are local scale-space maxima of the Difference-

of-Gaussian.

The image locations (regions) selected by the two detec-

tors differ: The DoG detector finds blob-like structures and

Harris-Laplace detects corners and highly textured points.

Examples for detection are shown in the first column of Fig-

ure 7.

Scale and rotation invariant descriptors. The output of

the two detectors are scale-invariant regions of different

sizes. These regions are first mapped to circular regions of

a fixed-sized radius. Point neighborhoods which are larger

than the normalized region, are smoothed before the size

normalization. Rotation-invariance is obtained by rotation

in the direction of the average gradient orientation (within a

small point neighborhood). Affine illumination changes of

the pixel intensities ������ � �� are eliminated by normal-

ization of the image region with the mean and the standard

deviation of the intensities within the point neighborhood.

These normalized regions are then described by the SIFT

descriptor (Scale Invariant Feature Transform) [6]. SIFT is

computed for 8 orientation planes and each gradient image

is sampled over a 4x4 grid of locations. The resulting de-

scriptor is of dimension 128.

2.2. Classifiers

Object-part classifiers are learned from sets of similar

descriptors. These sets are obtained automatically by clus-

tering local invariant descriptors. Figure 2 shows a few im-

ages of two different clusters. The top row displays a “tire”

cluster and the bottom row a “front window” cluster.

We have used two types of classifiers: Support Vector

Machines (SVMs) and classification based on a Gaussian

mixture model (GMM). The training data consists of posi-

tive and negative descriptors. Note that the descriptors are

labeled manually.

Support Vector Machine. Each object part is described by

a separate SVM. A descriptor is classified as a part, if the

the corresponding SVM has a positive response.

The SVMs are trained as follows. The first step is to de-

termine groups of similar descriptors. We cluster the pos-

itive training descriptors with a hierarchical clustering al-

gorithm. The number of clusters is set to 300. We then
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Figure 2. A few images of two different clusters. The first row shows a cluster which represents

“tires”. The second row shows a cluster which contains regions detected in the “front window”.

learn a linear SVM [4] for each positive cluster. The SVM

is trained with all descriptors of the positive cluster and a

subset of the negative descriptors. This subset are the medi-

ans of negative clusters. Note that this pre-selection of the

negative samples is necessary. Otherwise we would have

highly unbalanced training sets, which can not be handled

by current state of the art SVM techniques.

Gaussian mixture model. The distribution of the train-

ing descriptors is described by a Gaussian mixture model�
�
�������� ����. Each Gaussian �� corresponds to an

“object-part”. A descriptor is assigned to the most likely

Gaussian ��, i.e. it is classified as the corresponding part.

Each ������� is assumed to be a Gaussian with mean

�� and covariance matrix ��. We use the EM algorithm to

estimate the parameters of the mixture model, namely the

means ��, covariances ��, and mixing weights � ����. EM

is initialized with the output of the �-means algorithm. In

this work, we use the 600 components to describe the train-

ing set which includes positive and negative descriptors. We

use all positive and randomly choose the same number of

negative descriptors. We limit the number of free parame-

ters in the optimization by using diagonal Gaussians. This

restriction also helps prevent the covariance matrices from

becoming singular.

3. Feature Selection

Given a set of classifiers, we want to rank them by their

distinctiveness. Here, we use two different feature selection

techniques: likelihood ratio and mutual information. These

techniques assign a score to each classifier depending on its

performance on a validation set.

The two feature selection methods are based on the prob-

abilities described in the following. Let �� be a classifier

and � the object to be recognized (detected). � ��� �
��� � �� is the probability that �� classifies a object �

descriptor correctly (i.e the true positives for �� over the

number of positives descriptors). � ��� � ��� � �� is

the probability of non-objects descriptors being accepted by

classifier ��.

Likelihood ratio. A classifier �� is representative of an ob-

ject class if it is likely to be found in the class, but unlikely

to be detected in non-class images. The likelihood ratio of

classifier �� is defined by:

	���� �
� ��� � ��� � ��

� ��� � ��� � ��

Mutual information. Mutual information [10] selects in-
formative features. Mutual information ����
 �� between
the classifier �� and the object class � is defined by:

����� �� �

�

������

�

�������

� ��� � � � � �� ���
� ��� � � � � ��

� ��� � �� �� � ��

For both feature selection methods presented above, the

higher the score the more relevant it is. The difference be-

tween the two methods is illustrated by Figure 3. The image

is one of the test images and regions are detected with the

DoG detector.

The top 4 rows show the descriptors classified as object

parts by the � best SVM classifiers. We can see that the

likelihood selects very specific features which are highly

discriminative. For example there is no car feature detected
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Likelihood Mutual Information

1 selected part, SVM

no regions 12 correct + 1 incorrect

5 selected parts, SVM

1 correct 16 correct, 6 incorrect

10 selected parts, SVM

2 correct 21 correct, 7 incorrect

25 selected parts, SVM

25 correct, 7 incorrect 74 correct, 33 incorrect

50 selected parts, GMM

7 correct, 1 incorrect 56 correct, 38 incorrect

100 selected parts, GMM

19 correct, 8 incorrect 86 correct, 83 incorrect

Figure 3. Comparison of feature selection

with likelihood ratio and mutual information.

by the “best” classifier in the case of likelihood ratio. This

feature is very specific and only detected on certain cars.

In contrast mutual information selects informative features.

For example the first selected features already classifies 13

descriptors as object descriptors. Note that one of them is

incorrect. If we look at the overall performance of the two

feature selection methods, we can observe that the likeli-

hood ratio performs slightly better than mutual information.

Note however that fewer classifiers are used in the case of

mutual information. This is confirmed by the images in the

2 bottom rows which show the results for the � best GMM

classifiers as well as by the quantitative evaluation in Sec-

tion 4. Note that to obtain similar results for GMM we have

to use more classifiers. This is due to the fact that there are

twice as many classifiers and that they are in general more

specific.

4. Experiments

In the previous sections we have presented several tech-

niques for the different steps of our approach. We now eval-

uate these techniques in the context of car detection. We

then present car detection results for a few test images.

4.1. Set-up

Our training database contains ��� images of cars with

a relatively large amount of background (more that 	�
 on

average). We have marked the cars in these images man-

ually. Note that the car images can be at different scale

levels and do not require normalization. We extract scale-

invariant interest points (regions) with the DoG detector and

Harris-Laplace. For DoG we obtained ����� positive and

���� negative regions. For Harris-Laplace we detected

����� positive and ������ negative regions.

The test images were taken independently and contain

unseen cars and unseen background. We have used ��� im-

ages which often contain several cars and a large amount

of background. To evaluate and compare different meth-

ods, we marked them manually. We therefore know that the

test images contain �	��� positive and ���� negative de-

scriptor if the DoG detector is used and ��� and ���
descriptors for Harris-Laplace.

4.2. Evaluation of Different Methods

In the following we evaluate our approach and compare

the performance of different techniques. The comparison

criterion is true positive rate (the number of positive de-

scriptors retrieved over the total number of positive descrip-

tors) against false positive rate (the number of false positives

over the total number of negatives descriptors).

Classification and Feature selection. Figure 4 compares
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the performance of two different classification techniques

and two different feature selection criteria. Regions are ex-

tracted with the DoG detector. Fig. 4 shows the ROC curve

(true positive rate against false positive rate). We can ob-

serve that the combination of Gaussian mixture model and

likelihood ratio performs best. The second best is the curve

for SVM and likelihood ratio which performs slightly better

than SVM and mutual information. Results for the combi-

nation of mixture model and mutual information are signif-

icantly worse. This can be explained by the fact that the

classifiers are mostly specific. Fig. 5(a) and (b) compare the

criteria true positive rate and false negative rate separately

as a function of the number of selected classifiers. As ex-

pected mutual information has a higher true positive rate

and the false negatives rate is better (lower) for the likeli-

hood ratio.
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Figure 4. Comparison of the performance of

the likelihood ratio and the mutual informa-
tion for SVM and GMM. Regions are extracted

with the DoG detector.

Descriptors.We have also compared the performance of the

two detectors DoG and Harris-Laplace. Figure 6 shows the

results for Harris-Laplace. We can observe that the rank-

ing of the different combinations of classifier and feature

selection techniques are the same as for DoG. Furthermore,

Harris-Laplace and DoG show a similar performance. How-

ever, we have noticed that the behavior depends on the test

image. Furthermore, Harris-Laplace detects less points on

the background and therefore detects more true positives

than DoG for a fixed number of false positives.

4.3. Car Recognition/Detection

In this section we illustrate the performance of our ap-

proach with two examples. Figure 7 shows results for DoG

and Harris-Laplace as well as the two classification tech-

niques. The first column displays the detected regions. The
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Figure 5. Comparison of the performance of
the likelihood ratio and the mutual informa-

tion for SVM. Regions are extracted with the

DoG detector.
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Figure 6. Comparison of the performance of
the likelihood ratio and the mutual informa-

tion for SVM and GMM. Regions are extracted

with the Harris-Laplace detector.
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second column shows the results of the 25 best parts ob-

tained with SVM and selected by the likelihood ratio. The

third column displays the results of the 100 best parts for

GMM and likelihood ratio. We can see that the method al-

lows to select car features. It can be further improved by

adding relaxation.

Relaxation. The descriptors selected in Figure 7 are

sparsely distributed over the object (car). We would like

to obtain a dense feature map which permits segmentation

of the object.

Given the selected features, we can use the order of se-

lection to assign a probability to each descriptor. A de-

scriptor which is classified by a more discriminative feature

is assigned a higher probability. We can then use relax-

ation [13] to improve the classification of the descriptors.

Relaxation reinforces or weakens the probabilities depend-

ing on the probabilities of the nearest neighbors (5 in our

experiments). Figure 8 shows the descriptors classified as

car features after applying the relaxation algorithm. Initial

results based only on feature selection are shown in Figure 7

(DoG, SVM and likelihood). Compared to these initial re-

sults, we can clearly observe that more features are detected

on the cars and less on the background, that is the overall

performance is significantly improved. Further improve-

ment is possible by integrating spatial constraints into the

neighborhood relations of the relaxation process.

5. Conclusion and Future work

In this paper, we have introduced a method for construct-

ing object-part classifiers and selecting the most discrimi-

nant ones. Object-parts are invariant to scale and rotation

as well as illumination changes. Alignment of the training

and test images is therefore not necessary. This paper has

also illustrated the importance of feature selection and has

compared different techniques. This comparison shows that

likelihood is well suited for object recognition and mutual

information for focus of attention mechanisms, that is rapid

localization based on a few classifiers.

Learning of the parts is unsupervised, but the descrip-

tors are manually marked as positive and negative. We

plan to extend the approach to the weakly supervised case

where the descriptors are unlabeled and only the images are

marked as positive or negative. This should be straightfor-

ward in the case of classification with a Gaussian mixture

model.
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Figure 7. Results for two test images. The left column shows the interest regions detected with

DoG and Harris-Laplace. The middle column displays the descriptors classified by the 25 best SVM
classifiers selected with the likelihood ratio. The right column shows the results for the 100 best

GMM classifiers selected with likelihood ratio.
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